Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic architectures of psychiatric disorders: the emerging picture and its implications

Key Points

  • Psychiatric disorders cause enormous morbidity, mortality and personal and societal costs.

  • Despite considerable investigation, little is known for certain about aetiologies. Genetic approaches are a major avenue of investigation.

  • In the past 5 years, a considerable number of new findings have been discovered that meet community standards for robustness and replication.

  • Where sample sizes are sufficiently large, genome-wide association has yielded several dozen findings that suggest novel biological mechanisms.

  • Studies of rare variation (generally using genome-wide association study chips) have yielded over ten copy number variants that confer markedly increased risk. However, these tend to be nonspecific and increase risk for multiple different neuropsychiatric conditions.

  • Studies of exonic variation have yielded new findings for autism. However, for autism and schizophrenia, these findings are not abundant, and their genetic architectures do not appear to consist of a series of Mendelian traits, making the 'many Mendelian model' very unlikely.

  • Looking at the psychiatric disorders for which there are sufficient genetics data, it seems that these disorders are fairly typical complex traits with genetic variation scattered across the allelic spectrum.

  • For the first time, a fairly complete enumeration of the 'parts list' for these disorders is attainable using established methods. Further study using a balanced portfolio of methods to assess multiple forms of genetic variation is likely to yield many additional new findings.

Abstract

Psychiatric disorders are among the most intractable enigmas in medicine. In the past 5 years, there has been unprecedented progress on the genetics of many of these conditions. In this Review, we discuss the genetics of nine cardinal psychiatric disorders (namely, Alzheimer's disease, attention-deficit hyperactivity disorder, alcohol dependence, anorexia nervosa, autism spectrum disorder, bipolar disorder, major depressive disorder, nicotine dependence and schizophrenia). Empirical approaches have yielded new hypotheses about aetiology and now provide data on the often debated genetic architectures of these conditions, which have implications for future research strategies. Further study using a balanced portfolio of methods to assess multiple forms of genetic variation is likely to yield many additional new findings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Results pertaining to genetic architecture.

Similar content being viewed by others

References

  1. Eaton, W. W. et al. The burden of mental disorders. Epidemiol. Rev. 30, 1–14 (2008).

    Article  PubMed  Google Scholar 

  2. World Health Organization. The Global Burden of Disease: 2004 Update (WHO Press, 2008).

  3. Collins, P. Y. et al. Grand challenges in global mental health. Nature 475, 27–30 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Park, Y. K., Sempos, C. T., Barton, C. N., Vanderveen, J. E. & Yetley, E. A. Effectiveness of food fortification in the United States: the case of pellagra. Am. J. Public Health 90, 727–738 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Centers for Disease Control and Prevention. Sexually Transmitted Disease Surveillance 2009 (US Department of Health and Human Services, 2010).

  6. Chanock, S. J. et al. Replicating genotype–phenotype associations. Nature 447, 655–660 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. McKusick, V. A. Mendelian Inheritance in Man and its online version, OMIM. Am. J. Hum. Genet. 80, 588–604 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chiurazzi, P., Schwartz, C. E., Gecz, J. & Neri, G. XLMR genes: update 2007. Eur. J. Hum. Genet. 16, 422–434 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Inlow, J. K. & Restifo, L. L. Molecular and comparative genetics of mental retardation. Genetics 166, 835–881 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. McCarthy, M. I. et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nature Rev. Genet. 9, 356–369 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Altshuler, D. & Daly, M. Guilt beyond a reasonable doubt. Nature Genet. 39, 813–815 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Corvin, A., Craddock, N. & Sullivan, P. F. Genome-wide association studies: a primer. Psychol. Med. 40, 1063–1077 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Bassett, A. S., Chow, E. W. & Weksberg, R. Chromosomal abnormalities and schizophrenia. Am. J. Med. Genet. 97, 45–51 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vorstman, J. A. et al. Identification of novel autism candidate regions through analysis of reported cytogenetic abnormalities associated with autism. Mol. Psychiatry 11, 18–28 (2006).

    Article  CAS  Google Scholar 

  15. Malhotra, D. & Sebat, J. CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell 148, 1223–1241 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Alkan, C., Coe, B. P. & Eichler, E. E. Genome structural variation discovery and genotyping. Nature Rev. Genet. 12, 363–376 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Attia, J. et al. How to use an article about genetic association. A: background concepts. JAMA 301, 74–81 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Hindorff, L. A. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl Acad. Sci. USA 106, 9362–9367 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pasaniuc, B. et al. Extremely low-coverage sequencing and imputation increases power for genome-wide association studies. Nature Genet. 20 May 2012 (doi:10.1038/ng.2283).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ng, S. B., Nickerson, D. A., Bamshad, M. J. & Shendure, J. Massively parallel sequencing and rare disease. Hum. Mol. Genet. 19, R119–R124 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cirulli, E. T. & Goldstein, D. B. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nature Rev. Genet. 11, 415–425 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Collins, A. L. et al. Hypothesis-driven candidate genes for schizophrenia compared to genome-wide association results. Psychol. Med. 42, 607–616 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Ng, M. Y. et al. Meta-analysis of 32 genome-wide linkage studies of schizophrenia. Mol. Psychiatry 14, 774–785 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. McQueen, M. B. et al. Combined analysis from eleven linkage studies of bipolar disorder provides strong evidence of susceptibility loci on chromosomes 6q and 8q. Am. J. Hum. Genet. 77, 582–595 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Trikalinos, T. A. et al. A heterogeneity-based genome search meta-analysis for autism-spectrum disorders. Mol. Psychiatry 11, 29–36 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Zhou, K. et al. Meta-analysis of genome-wide linkage scans of attention deficit hyperactivity disorder. Am. J. Med. Genet. B 147, 1392–1398 (2008).

    Article  CAS  Google Scholar 

  27. Bertram, L. & Tanzi, R. E. Thirty years of Alzheimer's disease genetics: the implications of systematic meta-analyses. Nature Rev. Neurosci. 9, 768–778 (2008).

    Article  CAS  Google Scholar 

  28. McNaughton, D. et al. Duplication of amyloid precursor protein (APP), but not prion protein (PRNP) gene is a significant cause of early onset dementia in a large UK series. Neurobiol. Aging 33, 426.e13–426.e21 (2012).

    Article  CAS  Google Scholar 

  29. Rovelet-Lecrux, A. et al. APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nature Genet. 38, 24–26 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Guerreiro, R. J. et al. Exome sequencing reveals an unexpected genetic cause of disease: NOTCH3 mutation in a Turkish family with Alzheimer's disease. Neurobiol. Aging 33, 1008.e17–1008.e23 (2012).

    Article  CAS  Google Scholar 

  31. Pottier, C. et al. High frequency of potentially pathogenic SORL1 mutations in autosomal dominant early-onset Alzheimer disease. Mol. Psychiatry 3 Apr 2012 (doi:10.1038/mp.2012.15).

    Article  CAS  PubMed  Google Scholar 

  32. Strittmatter, W. J. et al. Apolipoprotein E: high-avidity binding to β-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl Acad. Sci. USA 90, 1977–1981 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Harold, D. et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nature Genet. 41, 1088–1093 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Lambert, J. C. et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nature Genet. 41, 1094–1099 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Hollingworth, P. et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nature Genet. 43, 429–435 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Naj, A. C. et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. Nature Genet. 43, 436–441 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Brouwers, N. et al. Alzheimer risk associated with a copy number variation in the complement receptor 1 increasing C3b/C4b binding sites. Mol. Psychiatry 17, 223–233 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Jones, L. et al. Genetic evidence implicates the immune system and cholesterol metabolism in the aetiology of Alzheimer's disease. PLoS ONE 5, e13950 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Guerreiro, R. J. & Hardy, J. Alzheimer's disease genetics: lessons to improve disease modelling. Biochem. Soc. Trans. 39, 910–916 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Treusch, S. et al. Functional links between Aβ toxicity, endocytic trafficking, and Alzheimer's disease risk factors in yeast. Science 334, 1241–1245 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Owen, M. J., Craddock, N. & O'Donovan, M. C. Suggestion of roles for both common and rare risk variants in genome-wide studies of schizophrenia. Arch. Gen. Psychiatry 67, 667–673 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Itsara, A. et al. Population analysis of large copy number variants and hotspots of human genetic disease. Am. J. Hum. Genet. 84, 148–161 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rujescu, D. et al. Disruption of the neurexin 1 gene is associated with schizophrenia. Hum. Mol. Genet. 18, 988–996 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Vacic, V. et al. Duplications of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia. Nature 471, 499–503 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kirov, G. et al. De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Mol. Psychiatry 17, 142–153 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Raychaudhuri, S. et al. Accurately assessing the risk of schizophrenia conferred by rare copy-number variation affecting genes with brain function. PLoS Genet. 6, e1001097 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Walsh, T. et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 320, 539–543 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. International Schizophrenia Consortium. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 455, 237–241 (2008).

  49. Sebat, J. et al. Strong association of de novo copy number mutations with autism. Science 316, 445–449 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xu, B. et al. Strong association of de novo copy number mutations with sporadic schizophrenia. Nature Genet. 40, 880–885 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Zhang, D. et al. Singleton deletions throughout the genome increase risk of bipolar disorder. Mol. Psychiatry 14, 376–380 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Priebe, L. et al. Genome-wide survey implicates the influence of copy number variants (CNVs) in the development of early-onset bipolar disorder. Mol. Psychiatry 17, 421–432 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Malhotra, D. et al. High frequencies of de novo CNVs in bipolar disorder and schizophrenia. Neuron 72, 951–963 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Grozeva, D. et al. Rare copy number variants: a point of rarity in genetic risk for bipolar disorder and schizophrenia. Arch. Gen. Psychiatry 67, 318–327 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  55. McQuillin, A. et al. Analysis of genetic deletions and duplications in the University College London bipolar disorder case control sample. Eur. J. Hum. Genet. 19, 588–592 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Girard, S. L. et al. Increased exonic de novo mutation rate in individuals with schizophrenia. Nature Genet. 43, 860–863 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Xu, B. et al. Exome sequencing supports a de novo mutational paradigm for schizophrenia. Nature Genet. 43, 864–868 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Need, A. C. et al. Exome sequencing followed by large-scale genotyping suggests a limited role for moderately rare risk factors of strong effect in schizophrenia. Am. J. Hum. Genet. (in the press). In the largest study yet reported, the authors report exome resequencing of 166 cases with schizophrenia enriched for strong family histories of illness and treatment non-response. No definitive associations were identified: this intriguing finding makes the 'many Mendelians' model of this disorder far less tenable.

  59. Schizophrenia Psychiatric Genome-Wide Association Study Consortium. Genome-wide association study identifies five new schizophrenia loci. Nature Genet. 43, 969–976 (2011).

  60. Psychiatric GWAS Consortium Bipolar Disorder Working Group. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nature Genet. 43, 977–983 (2011). These two papers are the largest and most comprehensive GWAS mega-analyses conducted for psychotic disorders.

  61. Stefansson, H. et al. Common variants conferring risk of schizophrenia. Nature 460, 744–747 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhong, L., Cherry, T., Bies, C. E., Florence, M. A. & Gerges, N. Z. Neurogranin enhances synaptic strength through its interaction with calmodulin. EMBO J. 28, 3027–3039 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bemis, L. T. et al. MicroRNA-137 targets microphthalmia-associated transcription factor in melanoma cell lines. Cancer Res. 68, 1362–1368 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Kwon, E., Wang, W. & Tsai, L. H. Validation of schizophrenia-associated genes CSMD1, C10orf26, CACNA1C and TCF4 as miR-137 targets. Mol. Psychiatry 20 Dec 2011 (doi:10.1038/mp.2011.170).

    Article  CAS  PubMed  Google Scholar 

  65. Szulwach, K. E. et al. Cross talk between microRNA and epigenetic regulation in adult neurogenesis. J. Cell Biol. 189, 127–141 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Smrt, R. D. et al. MicroRNA miR-137 regulates neuronal maturation by targeting ubiquitin ligase mind bomb-1. Stem Cells 28, 1060–1070 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Willemsen, M. H. et al. Chromosome 1p21.3 microdeletions comprising DPYD and MIR137 are associated with intellectual disability. J. Med. Genet. 48, 810–818 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Shi, Y. et al. Common variants on 8p12 and 1q24.2 confer risk of schizophrenia. Nature Genet. 43, 1224–1227 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Yue, W. H. et al. Genome-wide association study identifies a susceptibility locus for schizophrenia in Han Chinese at 11p11.2. Nature Genet. 43, 1228–1231 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. International Schizophrenia Consortium. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460, 748–752 (2009).

  71. Visscher, P. M., Brown, M. A., McCarthy, M. I. & Yang, J. Five years of GWAS discovery. Am. J. Hum. Genet. 90, 7–24 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Voight, B. F. et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nature Genet. 42, 579–589 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Franke, A. et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nature Genet. 42, 1118–1125 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Houlston, R. S. et al. Meta-analysis of three genome-wide association studies identifies susceptibility loci for colorectal cancer at 1q41, 3q26.2, 12q13.13 and 20q13.33. Nature Genet. 42, 973–977 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Turnbull, C. et al. Genome-wide association study identifies five new breast cancer susceptibility loci. Nature Genet. 42, 504–507 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Lango Allen, H. et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467, 832–838 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Speliotes, E. K. et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nature Genet. 42, 937–948 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Stahl, E. A. et al. Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis. Nature Genet. 44, 483–489 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Folstein, S. E. & Rosen-Sheidley, B. Genetics of autism: complex aetiology for a heterogeneous disorder. Nature Rev. Genet. 2, 943–955 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Betancur, C. Etiological heterogeneity in autism spectrum disorders: more than 100 genetic and genomic disorders and still counting. Brain Res. 1380, 42–77 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Sanders, S. J. et al. Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron 70, 863–885 (2011). There have been many excellent studies of CNVs in autism. This is one of the largest and is particularly technically well done. The authors report compelling findings regarding specific CNVs and a greater burden of rare CNVs in cases with ASD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pinto, D. et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature 466, 368–372 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Marshall, C. R. et al. Structural variation of chromosomes in autism spectrum disorder. Am. J. Hum. Genet. 82, 477–488 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Neale, B. M. et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485, 242–245 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. O'Roak, B. J. et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485, 246–250 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sanders, S. J. et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485, 237–241 (2012). These three papers report exome sequencing of trios with ASD. Support was found for 2–4 de novo mutations that are plausibly causal. However, as for schizophrenia (reference 58), an abundance of Mendelian variants was not identified.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang, K. et al. Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature 459, 528–533 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Weiss, L. A., Arking, D. E., Daly, M. J. & Chakravarti, A. A genome-wide linkage and association scan reveals novel loci for autism. Nature 461, 802–808 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Anney, R. et al. A genome-wide scan for common alleles affecting risk for autism. Hum. Mol. Genet. 19, 4072–4082 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ma, D. et al. A genome-wide association study of autism reveals a common novel risk locus at 5p14.1. Ann. Hum. Genet. 73, 263–273 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Voineagu, I. et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 474, 380–384 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (American Psychiatric Association, 1994).

  93. Tobacco and Genetics Consortium. Meta-analyses of genome-wide association studies implicate multiple loci for smoking behavior. Nature Genet. 42, 441–447 (2010).

  94. Edenberg, H. J. et al. Genome-wide association study of alcohol dependence implicates a region on chromosome 11. Alcohol. Clin. Exp. Res. 34, 840–852 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bierut, L. J. et al. A genome-wide association study of alcohol dependence. Proc. Natl Acad. Sci. USA 107, 5082–5087 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kendler, K. S. et al. Genomewide association analysis of symptoms of alcohol dependence in the molecular genetics of schizophrenia (MGS2) control sample. Alcohol. Clin. Exp. Res. 35, 963–975 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Heath, A. C. et al. A quantitative-trait genome-wide association study of alcoholism risk in the community: findings and implications. Biol. Psychiatry 70, 513–518 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Frank, J. et al. Genome-wide significant association between alcohol dependence and a variant in the ADH gene cluster. Addict. Biol. 17, 171–180 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Baik, I., Cho, N. H., Kim, S. H., Han, B. G. & Shin, C. Genome-wide association studies identify genetic loci related to alcohol consumption in Korean men. Am. J. Clin. Nutr. 93, 809–816 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Takeuchi, F. et al. Confirmation of ALDH2 as a major locus of drinking behavior and of its variants regulating multiple metabolic phenotypes in a Japanese population. Circ. J. 75, 911–918 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Schumann, G. et al. Genome-wide association and genetic functional studies identify autism susceptibility candidate 2 gene (AUTS2) in the regulation of alcohol consumption. Proc. Natl Acad. Sci. USA 108, 7119–7124 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bierut, L. J. et al. ADH1B is associated with alcohol dependence and alcohol consumption in populations of European and African ancestry. Mol. Psychiatry 7, 445–450 (2011).

    Google Scholar 

  103. Thorgeirsson, T. E. et al. Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking behavior. Nature Genet. 42, 448–453 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Liu, J. Z. et al. Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nature Genet. 42, 436–440 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Saccone, N. L. et al. Multiple independent loci at chromosome 15q25.1 affect smoking quantity: a meta-analysis and comparison with lung cancer and COPD. PLoS Genet. 6, e1001053 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Thorgeirsson, T. E. et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature 452, 638–642 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Truong, T. et al. Replication of lung cancer susceptibility loci at chromosomes 15q25, 5p15, and 6p21: a pooled analysis from the International Lung Cancer Consortium. J. Natl Cancer Inst. 102, 959–971 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Fowler, C. D., Lu, Q., Johnson, P. M., Marks, M. J. & Kenny, P. J. Habenular α5 nicotinic receptor subunit signalling controls nicotine intake. Nature 471, 597–601 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Major Depressive Disorder Working Group of the PGC. A mega-analysis of genome-wide association studies for major depressive disorder. Mol. Psychiatry 3 Apr 2012 (doi:10.1038/mp.2012.21). Despite a heritability and lifetime prevalence that is not dissimilar to T2DM and in contrast to similarly sized studies of BIP and SCZ, this study of MDD is largely negative. Higher heterogeneity is a prime candidate for the divergent results.

  110. Rucker, J. J. et al. Genome-wide association analysis of copy number variation in recurrent depressive disorder. Mol. Psychiatry 1 Nov 2011 (doi:10.1038/mp.2011.144).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Caspi, A. et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301, 386–389 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Karg, K., Burmeister, M., Shedden, K. & Sen, S. The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis revisited: evidence of genetic moderation. Arch. Gen. Psychiatry 68, 444–454 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Uher, R. & McGuffin, P. The moderation by the serotonin transporter gene of environmental adversity in the etiology of depression: 2009 update. Mol. Psychiatry 15, 18–22 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Munafo, M. R., Durrant, C., Lewis, G. & Flint, J. Gene X environment interactions at the serotonin transporter locus. Biol. Psychiatry 65, 211–219 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Risch, N. et al. Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: a meta-analysis. JAMA 301, 2462–2471 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Fergusson, D. M., Horwood, L. J., Miller, A. L. & Kennedy, M. A. Life stress, 5-HTTLPR and mental disorder: findings from a 30-year longitudinal study. Br. J. Psychiatry 198, 129–135 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Neale, B. M. et al. Meta-analysis of genome-wide association studies of attention-deficit/hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry 49, 884–897 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Wang, K. et al. A genome-wide association study on common SNPs and rare CNVs in anorexia nervosa. Mol. Psychiatry 16, 949–959 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Williams, N. M. et al. Rare chromosomal deletions and duplications in attention-deficit hyperactivity disorder: a genome-wide analysis. Lancet 376, 1401–1408 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Williams, N. M. et al. Genome-wide analysis of copy number variants in attention deficit hyperactivity disorder: the role of rare variants and duplications at 15q13.3. Am. J. Psychiatry 169, 195–204 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Stergiakouli, E. et al. Investigating the contribution of common genetic variants to the risk and pathogenesis of ADHD. Am. J. Psychiatry 169, 186–194 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Wray, N. R. & Visscher, P. M. Narrowing the boundaries of the genetic architecture of schizophrenia. Schizophr. Bull. 36, 14–23 (2010).

    Article  PubMed  Google Scholar 

  123. McClellan, J. & King, M. C. Genomic analysis of mental illness: a changing landscape. JAMA 303, 2523–2524 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Psychiatric GWAS Consortium. A framework for interpreting genomewide association studies of psychiatric disorders. Mol. Psychiatry 14, 10–17 (2009).

  125. Dickson, S. P., Wang, K., Krantz, I., Hakonarson, H. & Goldstein, D. B. Rare variants create synthetic genome-wide associations. PLoS Biol. 8, e1000294 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wray, N. R., Purcell, S. M. & Visscher, P. M. Synthetic associations created by rare variants do not explain most GWAS results. PLoS Biol. 9, e1000579 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Anderson, C. A., Soranzo, N., Zeggini, E. & Barrett, J. C. Synthetic associations are unlikely to account for many common disease genome-wide association signals. PLoS Biol. 9, e1000580 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Orozco, G., Barrett, J. C. & Zeggini, E. Synthetic associations in the context of genome-wide association scan signals. Hum. Mol. Genet. 19, R137–R144 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lander, E. S. Initial impact of the sequencing of the human genome. Nature 470, 187–197 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. Kim, Y., Zerwas, S., Trace, S. E. & Sullivan, P. F. Schizophrenia genetics: where next? Schizophr. Bull. 37, 456–463 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Lee, S. et al. Estimating the proportion of variation in susceptibility to schizophrenia captured by common SNPs. Nature Genet. 44, 247–250 (2012). This is a provocative paper showing that liability to SCZ is substantial and distributed among genetic variants across the common variant spectrum and across the genome. The authors suggest that the so-called missing heritability problem is hidden and that the architecture of SCZ is polygenic.

    Article  CAS  PubMed  Google Scholar 

  132. Davies, G. et al. Genome-wide association studies establish that human intelligence is highly heritable and polygenic. Mol. Psychiatry 16, 996–1005 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yang, J. et al. Common SNPs explain a large proportion of the heritability for human height. Nature Genet. 42, 565–569 (2010).

    Article  CAS  PubMed  Google Scholar 

  134. Eichler, E. E. et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nature Rev. Genet. 11, 446–450 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Hirschhorn, J. N. Genomewide association studies—illuminating biologic pathways. N. Engl. J. Med. 360, 1699–1701 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Sullivan, P. F. Don't give up on GWAS. Mol. Psychiatry 17, 2–3 (2012).

    Article  CAS  PubMed  Google Scholar 

  137. Addington, J. & Heinssen, R. Prediction and prevention of psychosis in youth at clinical high risk. Annu. Rev. Clin. Psychol. 8, 269–289 (2012).

    Article  PubMed  Google Scholar 

  138. Sullivan, P. F. Schizophrenia as a pathway disease. Nature Med. 18, 210–211 (2012).

    Article  CAS  PubMed  Google Scholar 

  139. Barabasi, A. L., Gulbahce, N. & Loscalzo, J. Network medicine: a network-based approach to human disease. Nature Rev. Genet. 12, 56–68 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. Miller, G. Is pharma running out of brainy ideas? Science 329, 502–504 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Yang, J., Wray, N. R. & Visscher, P. M. Comparing apples and oranges: equating the power of case–control and quantitative trait association studies. Genet. Epidemiol. 34, 254–257 (2010).

    Article  PubMed  Google Scholar 

  142. Gross, C. P., Anderson, G. F. & Powe, N. R. The relation between funding by the National Institutes of Health and the burden of disease. New Engl. J. Med. 340, 1881–1887 (1999).

    Article  CAS  PubMed  Google Scholar 

  143. Aoun, S., Pennebaker, D. & Pascal, R. To what extent is health and medical research funding associated with the burden of disease in Australia? Aust. N. Z. J. Public Health 28, 80–86 (2004).

    Article  CAS  PubMed  Google Scholar 

  144. Gillum, L. A. et al. NIH disease funding levels and burden of disease. PLoS ONE 6, e16837 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Lamarre-Cliche, M., Castilloux, A. M. & LeLorier, J. Association between the burden of disease and research funding by the Medical Research Council of Canada and the National Institutes of Health. A cross-sectional study. Clin. Invest. Med. 24, 83–89 (2001).

    CAS  PubMed  Google Scholar 

  146. Wu, E. Q. et al. The economic burden of schizophrenia in the United States in 2002. J. Clin. Psychiatry 66, 1122–1129 (2005).

    Article  PubMed  Google Scholar 

  147. Cantor, R. M., Lange, K. & Sinsheimer, J. S. Prioritizing GWAS results: a review of statistical methods and recommendations for their application. Am. J. Hum. Genet. 86, 6–22 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. de Bakker, P. I., Neale, B. M. & Daly, M. J. Meta-analysis of genome-wide association studies. Cold Spring Harb. Protoc. 2010, pdb.top81 (2010).

    Article  PubMed  Google Scholar 

  149. Psychiatric GWAS Consortium. Genome-wide association studies: history, rationale, and prospects for psychiatric disorders. Am. J. Psychiatry 166, 540–546 (2009).

  150. Sullivan, P. F. The Psychiatric GWAS Consortium: big science comes to psychiatry. Neuron 68, 182–186 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Waters, K. M. et al. Consistent association of type 2 diabetes risk variants found in Europeans in diverse racial and ethnic groups. PLoS Genet. 6, e1001078 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Easton, D. F. et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447, 1087–1093 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. MacArthur, D. G. et al. A systematic survey of loss-of-function variants in human protein-coding genes. Science 335, 823–828 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Durbin, R. M. et al. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

    Article  CAS  PubMed  Google Scholar 

  155. Kiezun, A. et al. Exome sequencing and the genetic basis of complex traits. Nature Genet. 44, 623–630 (2012).

    Article  CAS  PubMed  Google Scholar 

  156. de Bakker, P. I. et al. Practical aspects of imputation-driven meta-analysis of genome-wide association studies. Hum. Mol. Genet. 17, R122–R128 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ott, J. Analysis of Human Genetic Linkage (Johns Hopkins Univ. Press, 1999).

    Google Scholar 

  158. Weiss, L. A. et al. Association between microdeletion and microduplication at 16p11.2 and autism. N. Engl. J. Med. 358, 667–675 (2008).

    Article  CAS  PubMed  Google Scholar 

  159. Szatmari, P. et al. Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nature Genet. 39, 319–328 (2007).

    Article  CAS  PubMed  Google Scholar 

  160. Kumar, R. A. et al. Recurrent 16p11.2 microdeletions in autism. Hum. Mol. Genet. 17, 628–638 (2008).

    Article  CAS  PubMed  Google Scholar 

  161. Holmans, P. et al. Gene ontology analysis of GWA study data sets provides insights into the biology of bipolar disorder. Am. J. Hum. Genet. 85, 13–24 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Lee, P., O' Dushlaine, C., Thomas, B. & Purcell, S. INRICH: interval-based enrichment analysis for genome-wide association studies. Bioinformatics 17 Apr 2012 (doi:10.1093/bioinformatics/bts191).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Rossin, E. J. et al. Proteins encoded in genomic regions associated with immune-mediated disease physically interact and suggest underlying biology. PLoS Genet. 7, e1001273 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Raychaudhuri, S. et al. Identifying relationships among genomic disease regions: predicting genes at pathogenic SNP associations and rare deletions. PLoS Genet. 5, e1000534 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Khatri, P., Sirota, M. & Butte, A. J. Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput. Biol. 8, e1002375 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Yaspan, B. L. & Veatch, O. J. Strategies for pathway analysis from GWAS data. Curr. Protoc. Hum. Genet. 71, 1.20.1–1.20.15 (2011).

    Article  Google Scholar 

  167. GO Project. The Gene Ontology: enhancements for 2011. Nucleic Acids Res. 40, D559–D564 (2012).

  168. Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. & Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40, D109–D114 (2012).

    Article  CAS  PubMed  Google Scholar 

  169. Mi, H. et al. PANTHER version 7: improved phylogenetic trees, orthologs and collaboration with the Gene Ontology Consortium. Nucleic Acids Res. 38, D204–D210 (2010).

    Article  CAS  PubMed  Google Scholar 

  170. Croning, M. D., Marshall, M. C., McLaren, P., Armstrong, J. D. & Grant, S. G. G2Cdb: the Genes to Cognition database. Nucleic Acids Res. 37, D846–D851 (2009).

    Article  CAS  PubMed  Google Scholar 

  171. Ruano, D. et al. Functional gene group analysis reveals a role of synaptic heterotrimeric G proteins in cognitive ability. Am. J. Hum. Genet. 86, 113–125 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Lindblad-Toh, K. et al. A high-resolution map of human evolutionary constraint using 29 mammals. Nature 478, 476–482 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Nicolae, D. L. et al. Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet. 6, e1000888 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. O'Donovan, M. et al. Identification of novel schizophrenia loci by genome-wide association and follow-up. Nature Genet. 40, 1053–1055 (2008).

    Article  CAS  PubMed  Google Scholar 

  175. Shi, J. et al. Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature 460, 753–757 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Sklar, P. et al. Whole-genome association study of bipolar disorder. Mol. Psychiatry 13, 558–569 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. The Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

  178. Ruderfer, D. M. et al. A family-based study of common polygenic variation and risk of schizophrenia. Mol. Psychiatry 16, 887–888 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Sullivan, P. F., Kendler, K. S. & Neale, M. C. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch. Gen. Psychiatry 60, 1187–1192 (2003).

    Article  PubMed  Google Scholar 

  180. Lichtenstein, P. et al. Common genetic influences for schizophrenia and bipolar disorder: a population-based study of 2 million nuclear families. Lancet 373, 234–239 (2009).

    Article  CAS  PubMed  Google Scholar 

  181. Ropers, H. H. Genetics of early onset cognitive impairment. Annu. Rev. Genom. Hum. Genet. 11, 161–187 (2010).

    Article  CAS  Google Scholar 

  182. Arcelus, J., Mitchell, A. J., Wales, J. & Nielsen, S. Mortality rates in patients with anorexia nervosa and other eating disorders. A meta-analysis of 36 studies. Arch. Gen. Psychiatry 68, 724–731 (2011).

    Article  PubMed  Google Scholar 

  183. Biederman, J. & Faraone, S. V. The effects of attention-deficit/hyperactivity disorder on employment and household income. MedGenMed. 8, 12 (2006).

    PubMed  PubMed Central  Google Scholar 

  184. Levinson, D. F. et al. Copy number variants in schizophrenia: confirmation of five previous findings and new evidence for 3q29 microdeletions and VIPR2 duplications. Am. J. Psychiatry 168, 302–316 (2011). This is an excellent large study and meta-analysis of copy number variation in SCZ.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Mefford, H. C. et al. Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes. New Engl. J. Med. 359, 1685–1699 (2008).

    Article  CAS  PubMed  Google Scholar 

  186. Stefansson, H. et al. Large recurrent microdeletions associated with schizophrenia. Nature 455, 232–236 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Brunetti-Pierri, N. et al. Recurrent reciprocal 1q21.1 deletions and duplications associated with microcephaly or macrocephaly and developmental and behavioral abnormalities. Nature Genet. 40, 1466–1471 (2008).

    Article  CAS  PubMed  Google Scholar 

  188. Cooper, G. M. et al. A copy number variation morbidity map of developmental delay. Nature Genet. 43, 838–846 (2011).

    Article  CAS  PubMed  Google Scholar 

  189. Mefford, H. C. et al. Genome-wide copy number variation in epilepsy: novel susceptibility loci in idiopathic generalized and focal epilepsies. PLoS Genet. 6, e1000962 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Jacquemont, S. et al. Mirror extreme BMI phenotypes associated with gene dosage at the chromosome 16p11.2 locus. Nature 478, 97–102 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Shinawi, M. et al. Recurrent reciprocal 16p11.2 rearrangements associated with global developmental delay, behavioural problems, dysmorphism, epilepsy, and abnormal head size. J. Med. Genet. 47, 332–341 (2010).

    Article  CAS  PubMed  Google Scholar 

  192. Moreno-De-Luca, D. et al. Deletion 17q12 is a recurrent copy number variant that confers high risk of autism and schizophrenia. Am. J. Hum. Genet. 87, 618–630 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Seshadri, S. et al. Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA 303, 1832–1840 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Cichon, S. et al. Genome-wide association study identifies genetic variation in neurocan as a susceptibility factor for bipolar disorder. Am. J. Hum. Genet. 88, 372–381 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Steinberg, S. et al. Common variants at VRK2 and TCF4 conferring risk of schizophrenia. Hum. Mol. Genet. 20, 4076–4081 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Williams, H. J. et al. Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder. Mol. Psychiatry 16, 429–441 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Rietschel, M. et al. Association between genetic variation in a region on chromosome 11 and schizophrenia in large samples from Europe. Mol. Psychiatry 12 July 2011 (doi:10.1038/mp.2011.80).

    Article  CAS  PubMed  Google Scholar 

  198. Pe'er, I., Yelensky, R., Altshuler, D. & Daly, M. J. Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet. Epidemiol. 32, 381–385 (2008).

    Article  PubMed  Google Scholar 

  199. Ferreira, M. et al. Collaborative genome-wide association analysis of 10,596 individuals supports a role for Ankyrin-G (ANK3) and the α-1C subunit of the L-type voltage-gated calcium channel (CACNA1C) in bipolar disorder. Nature Genet. 40, 1056–1058 (2008).

    Article  CAS  PubMed  Google Scholar 

  200. McMahon, F. J. et al. Meta-analysis of genome-wide association data identifies a risk locus for major mood disorders on 3p21.1. Nature Genet. 42, 128–131 (2010).

    Article  CAS  PubMed  Google Scholar 

  201. Breen, G. et al. Replication of association of 3p21.1 with susceptibility to bipolar disorder but not major depression. Nature Genet. 43, 3–5 (2011).

    Article  CAS  PubMed  Google Scholar 

  202. Green, E. K. et al. The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia. Mol. Psychiatry 15, 1016–1022 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We remain indebted to the tens of thousand of individuals with psychiatric disorders for their participation in genetic studies of these disorders. We thank many colleagues for helpful critiques, plus a wealth of conversations with colleagues in the Psychiatric Genomics Consortium. We thank the US National Institutes of Health (NIH) for funding (MH077139 and MH085520), T. Lehner of the US National Institute of Mental Health (NIMH) for his continued support, B. Voight and J. Hirschhorn for data relevant to power estimation, S. Ripke for help with figures, J. Szatkiewicz for assistance in reviewing the structural variation literature, and C. Bulik and J. Crowley for helpful comments. M.O. is supported for schizophrenia research by grants from the UK Medical Research Council (MRC) (G0800509, G0801418), the European Community's Seventh Framework Programme (HEALTH-F2-2010-241909 (Project EU-GEI)) and by NIMH (5P50MH066392-09). This study makes use of data generated by DECIPHER. A full list of centres that contributed to the generation of the data is available from http://decipher.sanger.ac.uk. Funding for DECIPHER was provided by the Wellcome Trust. The authors jointly conceived and wrote this paper and take responsibility for its content.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick F. Sullivan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Data for Figure 1a (PDF 149 kb)

Supplementary information S2 (table)

Genetic findings for psychiatric disorders before 2005 (PDF 150 kb)

Supplementary information S3 (figure)

Variants of strong effect on psychiatric disorders (PDF 1094 kb)

Supplementary information S4 (figure)

Psychiatric GWAS authorship network graph (PDF 285 kb)

Related links

Related links

FURTHER INFORMATION

Patrick F. Sullivan's homepage

Mark J. Daly's homepage

Michael O'Donovan's homepage (at University of Cardiff)

Michael O'Donovan's profile at the National Centre for Mental Health

DECIPHER

Nature Reviews Genetics Series on Disease mechanisms

Psychiatric Genomics Consortium

Ricopili (a tool for visualizing regions of interest in select GWAS data sets)

Glossary

Pellagra

A disease caused by niacin (vitamin B3) deficiency that has prominent neuropsychiatric symptoms.

Neurosyphilis

Infection of the central nervous system by Treponema pallidum (which is the spirochete that causes syphilis) and often causes prominent neuropsychiatric symptoms.

Genome-wide association studies

(GWASs). Unbiased genome screens of unrelated cases and appropriately matched controls or parent-affected child trios. The dominant technology has been individual genotyping using highly multiplexed SNP arrays.

Structural variation

A genomic alteration that changes the number of copies or the arrangement of the genome. Copy number variants are one type of structural variation.

Genome-wide linkage

A type of unbiased genome screen based on multiplex pedigrees. Genotyping approaches have included restriction fragment length polymorphisms, microsatellites and SNP arrays. After adjustment for multiple comparisons, the signal is the co-segregation of a genotype with a disease phenotype within the pedigrees.

Karyotyping

Determination of the microscopic appearance and gross changes in chromosomal content and structure of a cell.

Meta-analyses

These are methods for summarizing and combining results across multiple studies and are widely used in complex trait genetics. Meta-analyses combine the summary results from each study.

Lowess smoother

Locally weighted scatterplot smoothing, which is one technique to fit a curve to a scatterplot.

β-amyloid

Neuronal accumulation of this peptide contributes to the aetiology of Alzheimer's disease.

Multiplex pedigrees

Family constellations containing more than one affected individual.

Simplex pedigrees

Family constellations containing one affected individual.

Genotypic relative risk

(GRR). A measure of the effect size of a genetic variant ranging from zero to infinity. A GRR of 1 means no change in risk, GRR < 1 is protective and GRR > 1 is predisposing.

Odds ratio

Similar to genotypic relative risk: a measure of the change in risk associated with a genetic variant.

Mega-analyses

These are methods (that are less widely used than meta-analyses) for summarizing and combining results across multiple studies. Mega-analysis combines individual-level genotype and phenotype data from all subjects in each study.

Major histocompatibility complex region

(MHC). A region of approximately 3 Mb on human chromosome 6p22.1 that is exceptionally complex and has considerable importance to disease. It contains genes encoding cell surface molecules that are important to immunity and disease susceptibility and many other functions.

Expression quantitative trait locus

(eQTL). DNA variation that is strongly associated with the expression of a particular mRNA transcript.

Polygenic

Meaning 'many genes'. As a description of genetic architecture, polygenic gives no indications about the frequencies, modes of action or effect sizes of any relevant genetic variation.

Prodrome

Premonitory symptoms. In this case, a collection of psychotic symptoms that sometimes evolves into schizophrenia or a mood disorder or that resolves without further sequella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sullivan, P., Daly, M. & O'Donovan, M. Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat Rev Genet 13, 537–551 (2012). https://doi.org/10.1038/nrg3240

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3240

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research