Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Endogenous viruses: insights into viral evolution and impact on host biology

Key Points

  • Recent studies have shown that in addition to vertebrate retroviruses, virtually all types of eukaryotic viruses can be endogenized: that is, they can be integrated into the germline genome of their host and vertically inherited.

  • The endogenization of non-retroviral viruses is believed to result from accidental integration mediated by various mechanisms that are encoded either by the viral genome or by the host genome, such as DNA repair processes or resident retrotransposons.

  • Various endogenous viral elements (EVEs) have been dated, showing that the roots of several notorious viral families that are currently circulating in human and animal populations are much deeper than previously thought.

  • Long-term viral substitution rates estimated using the age of EVEs as a calibration point are several orders of magnitude slower than short-term viral substitution rates calculated through comparison of modern viral sequences.

  • The integration of EVEs in the host genome is an important source of structural variation, and EVEs can continue long after integration to provoke genomic rearrangements, some of which have been linked to cancer and other diseases.

  • Recent genome-wide studies have shown that thousands of mammalian endogenous retroviral sequences have been co-opted to control host gene expression, substantially contributing to regulatory innovation in mammals.

  • The domestication of EVE protein-coding sequences has led to the birth of new host genes, most of which are used to combat exogenous viruses or for the physiology and development of the placenta.

Abstract

Recent studies have uncovered myriad viral sequences that are integrated or 'endogenized' in the genomes of various eukaryotes. Surprisingly, it appears that not just retroviruses but almost all types of viruses can become endogenous. We review how these genomic 'fossils' offer fresh insights into the origin, evolutionary dynamics and structural evolution of viruses, which are giving rise to the burgeoning field of palaeovirology. We also examine the multitude of ways through which endogenous viruses have influenced, for better or worse, the biology of their hosts. We argue that the conflict between hosts and viruses has led to the invention and diversification of molecular arsenals, which, in turn, promote the cellular co-option of endogenous viruses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Breitbart, M. & Rohwer, F. Here a virus, there a virus, everywhere the same virus? Trends Microbiol. 13, 278–284 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Koonin, E. V., Senkevich, T. G. & Dolja, V. V. The ancient Virus World and evolution of cells. Biol. Direct 1, 29 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Forterre, P. & Prangishvili, D. The origin of viruses. Res. Microbiol. 160, 466–472 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Katzourakis, A. & Gifford, R. J. Endogenous viral elements in animal genomes. PLoS Genet. 6, e1001191 (2010). This paper presents a systematic in silico mining of EVEs in animal genomes (that were available at the time), revealing that all major types of eukaryotic viruses can be endogenized.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Patel, M. R., Emerman, M. & Malik, H. S. Paleovirology — ghosts and gifts of viruses past. Curr. Opin. Virol. 1, 304–309 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kidwell, M. G. & Lisch, D. R. Perspective: transposable elements, parasitic DNA, and genome evolution. Evolution 55, 1–24 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Levin, H. L. & Moran, J. V. Dynamic interactions between transposable elements and their hosts. Nature Rev. Genet. 12, 615–627 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Iskra-Caruana, M. L., Baurens, F. C., Gayral, P. & Chabannes, M. A four-partner plant–virus interaction: enemies can also come from within. Mol. Plant Microbe Interact. 23, 1394–1402 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Koonin, E. V., Mushegian, A. R., Ryabov, E. V. & Dolja, V. V. Diverse groups of plant RNA and DNA viruses share related movement proteins that may possess chaperone-like activity. J. Gen. Virol. 72, 2895–2903 (1991).

    Article  PubMed  Google Scholar 

  10. Malik, H. S., Henikoff, S. & Eickbush, T. H. Poised for contagion: evolutionary origins of the infectious abilities of invertebrate retroviruses. Genome Res. 10, 1307–1318 (2000). Along with reference 45, this study blurs the boundary between retrotransposons and retroviruses and suggests an evolutionary continuum between the two.

    Article  CAS  PubMed  Google Scholar 

  11. Staginnus, C. & Richert-Pöggeler, K. R. Endogenous pararetroviruses: two-faced travelers in the plant genome. Trends Plant Sci. 11, 485–491 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Lockhart, B. E., Menke, J., Dahal, G. & Olszewski, N. E. Characterization and genomic analysis of tobacco vein clearing virus, a plant pararetrovirus that is transmitted vertically and related to sequences integrated in the host genome. J. Gen. Virol. 81, 1579–1585 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Gayral, P. et al. A single Banana streak virus integration event in the banana genome as the origin of infectious endogenous pararetrovirus. J. Virol. 82, 6697–6710 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Holmes, E. C. The evolution of endogenous viral elements. Cell Host Microbe 10, 368–377 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Geuking, M. B. et al. Recombination of retrotransposon and exogenous RNA virus results in nonretroviral cDNA integration. Science 323, 393–396 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Taylor, D. J. & Bruenn, J. The evolution of novel fungal genes from non-retroviral RNA viruses. BMC Biol. 7, 88 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Horie, M. et al. Endogenous non-retroviral RNA virus elements in mammalian genomes. Nature 463, 84–87 (2010). This was one of the first reports of non-retroviral EVEs in mammalian genomes and an experimental demonstration that Borna disease virus DNA can spontaneously integrate in the genome of human infected cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bill, C. A. & Summers, J. Genomic DNA double-strand breaks are targets for hepadnaviral DNA integration. Proc. Natl Acad. Sci. USA 101, 11135–11140 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gilbert, C. & Feschotte, C. Genomic fossils calibrate the long-term evolution of hepadnaviruses. PLoS Biol. 8, e1000495 (2010). This paper provides a clear illustration of the discrepancy between short-term and long-term evolutionary rates of a virus family.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Belyi, V. A., Levine, A. J. & Skalka, A. M. Sequences from ancestral single-stranded DNA viruses in vertebrate genomes: the parvoviridae and circoviridae are more than 40 to 50 million years old. J. Virol. 84, 12458–12462 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Belyi, V. A., Levine, A. J. & Skalka, A. M. Unexpected inheritance: multiple integrations of ancient bornavirus and ebolavirus/marburgvirus sequences in vertebrate genomes. PLoS Pathog. 6, e1001030 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Krupovic, M. & Bamford, D. H. Virus evolution: how far does the double β-barrel viral lineage extend? Nature Rev. Microbiol. 6, 941–948 (2008).

    Article  CAS  Google Scholar 

  23. Pybus, O. G. & Rambaut, A. Evolutionary analysis of the dynamics of viral infectious disease. Nature Rev. Genet. 10, 540–550 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Holmes, E. C. Evolutionary history and phylogeography of human viruses. Annu. Rev. Microbiol. 62, 307–328 (2008). The above two references provide an excellent review of the concepts and methods used to delineate the epidemiological dynamics of clinically relevant viruses.

    Article  CAS  PubMed  Google Scholar 

  25. Firth, C., Charleston, M. A., Duffy, S., Shapiro, B. & Holmes, E. C. Insights into the evolutionary history of an emerging livestock pathogen: porcine circovirus 2. J. Virol. 83, 12813–12821 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Orito, E. et al. Host-independent evolution and a genetic classification of the hepadnavirus family based on nucleotide sequences. Proc. Natl Acad. Sci. USA. 86, 7059–7062 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Katzourakis, A., Gifford, R. J., Tristem, M., Gilbert, M. T. & Pybus, O. G. Macroevolution of complex retroviruses. Science 325, 1512 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Keckesova, Z., Ylinen, L. M., Towers, G. J., Gifford, R. J. & Katzourakis, A. Identification of a RELIK orthologue in the European hare (Lepus europaeus) reveals a minimum age of 12 million years for the lagomorph lentiviruses. Virology 384, 7–11 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Cui, J. & Holmes, E. C. Endogenous lentiviruses in the ferret genome. J. Virol. 86, 3383–3385 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Duffy, S., Shackelton, L. A. & Holmes, E. C. Rates of evolutionary change in viruses: patterns and determinants. Nature Rev. Genet. 9, 267–276 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Lefeuvre, P. et al. Evolutionary time-scale of the begomoviruses: evidence from integrated sequences in the Nicotiana genome. PLoS ONE 6, e19193 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ho, S. Y. et al. Time-dependent rates of molecular evolution. Mol. Ecol. 20, 3087–3101 (2011).

    Article  PubMed  Google Scholar 

  33. Gibbs, A. J., Fargette, D., García-Arenal, F. & Gibbs, M. J. Time—the emerging dimension of plant virus studies. J. Gen. Virol. 91, 13–22 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Wertheim, J. O. & Kosakovsky Pond, S. L. Purifying selection can obscure the ancient age of viral lineages. Mol. Biol. Evol. 28, 3355–3365 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Drake, J. W., Charlesworth, B., Charlesworth, D. & Crow J. F. Rates of spontaneous mutation. Genetics 148, 1667–1686 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Gifford, R. & Tristem, M. The evolution, distribution and diversity of endogenous retroviruses. Virus Genes. 26, 291–315 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Jern, P. & Coffin, J. M. Effects of retroviruses on host genome function. Annu. Rev. Genet. 42, 709–732 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Thomas, J. H. & Schneider, S. Coevolution of retroelements and tandem zinc finger genes. Genome Res. 21, 1800–1812 (2011). This paper reports a striking correlation in the number and evolutionary emergence of KRAB-ZNF genes and ERVs within a wide range of vertebrate genomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rowe, H. M. & Trono, D. Dynamic control of endogenous retroviruses during development. Virology 411, 273–287 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Turner, G. et al. Insertional polymorphisms of full-length endogenous retroviruses in humans. Curr. Biol. 11, 1531–1535 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Kidd, J. M. et al. A human genome structural variation sequencing resource reveals insights into mutational mechanisms. Cell 143, 837–847 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jha, A. R. et al. Human endogenous retrovirus K106 (HERV-K106) was infectious after the emergence of anatomically modern humans. PLoS ONE 6, e20234 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Beck, C. R., Garcia-Perez, J. L., Badge, R. M. & Moran, J. V. LINE-1 elements in structural variation and disease. Annu. Rev. Genomics Hum. Genet. 12, 187–215 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Maksakova, I. A. et al. Retroviral elements and their hosts: insertional mutagenesis in the mouse germ line. PLoS Genet. 2, e2 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Ribet, D. et al. An infectious progenitor for the murine IAP retrotransposon: emergence of an intracellular genetic parasite from an ancient retrovirus. Genome Res. 18, 597–609 (2008). See summary for reference 10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, Y., Maksakova, I. A., Gagnier, L., van de Lagemaat, L. N. & Mager, D. L. Genome-wide assessments reveal extremely high levels of polymorphism of two active families of mouse endogenous retroviral elements. PLoS Genet. 4, e1000007 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Yalcin, B. et al. Sequence-based characterization of structural variation in the mouse genome. Nature. 477, 326–329 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang, Y. et al. A novel active endogenous retrovirus family contributes to genome variability in rat inbred strains. Genome Res. 20, 19–27 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Hughes, J. F. & Coffin, J. M. Evidence for genomic rearrangements mediated by human endogenous retroviruses during primate evolution. Nature Genet. 29, 487–489 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Sun, C. et al. Deletion of azoospermia factor a (AZFa) region of human Y chromosome caused by recombination between HERV15 proviruses. Hum. Mol. Genet. 9, 2291–2296 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Sanchez-Valle, A. et al. HERV-mediated genomic rearrangement of EYA1 in an individual with branchio-oto-renal syndrome. Am. J. Med. Genet. 152A, 2854–2860 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Tomlins, S. A. et al. Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature 448, 595–599 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Cohen, C. J., Lock, W. M. & Mager, D. L. Endogenous retroviral LTRs as promoters for human genes: a critical assessment. Gene 448, 105–114 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Maksakova, I. A., Mager, D. L. & Reiss, D. Keeping active endogenous retroviral-like elements in check: the epigenetic perspective. Cell. Mol. Life Sci. 65, 3329–3347 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Zhang, Y., Romanish, M. T. & Mager, D. L. Distributions of transposable elements reveal hazardous zones in mammalian introns. PLoS Comput. Biol. 7, e1002046 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Macfarlan, T. S. et al. Endogenous retroviruses and neighboring genes are coordinately repressed by LSD1/KDM1A. Genes Dev. 25, 594–607 (2011). This provides an explicit demonstration of how the epigenetic machinery repressing ERV expression may be co-opted for the coordinated control of neighbouring host gene expression in early mammalian development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lamprecht, B. et al. Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma. Nature Med. 16, 571–579 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Seifarth, W. et al. Comprehensive analysis of human endogenous retrovirus transcriptional activity in human tissues with a retrovirus-specific microarray. J. Virol. 79, 341–352 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Faulkner, G. J. The regulated retrotransposon transcriptome of mammalian cells. Nature Genet. 41, 563–571 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Beyer, U., Moll-Rocek, J., Moll, U. M. & Dobbelstein, M. Endogenous retrovirus drives hitherto unknown proapoptotic p63 isoforms in the male germ line of humans and great apes. Proc. Natl Acad. Sci. USA 108, 3624–3629 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. van de Lagemaat, L. N., Landry, J. R., Mager, D. L. & Medstrand, P. Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet. 19, 530–536 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Conley, A. B., Piriyapongsa, J. & Jordan, I. K. Retroviral promoters in the human genome. Bioinformatics 24, 1563–1567 (2008). References 59, 61 and 62 provide compelling evidence for an extensive, tightly regulated and lineage-specific ERV-derived transcriptome in mammals.

    Article  CAS  PubMed  Google Scholar 

  63. Peaston, A. E. et al. Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev. Cell 7, 597–606 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Conley, A. B., Miller, W. J. & Jordan, I. K. Human cis natural antisense transcripts initiated by transposable elements. Trends Genet. 24, 53–56 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Zappulla, D. C. & Cech, T. R. RNA as a flexible scaffold for proteins: yeast telomerase and beyond. Cold Spring Harb. Symp. Quant. Biol. 71, 217–224 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Mattick, J. S., Taft, R. J. & Faulkner, G. J. A global view of genomic information—moving beyond the gene and the master regulator. Trends Genet. 26, 21–28 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Guttman, M. & Rinn, J. L. Modular regulatory principles of large noncoding RNAs. Nature 482, 339–346 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Britten, R. J. & Davidson, E. H. Gene regulation for higher cells: a theory. Science 165, 349–357 (1969).

    Article  CAS  PubMed  Google Scholar 

  69. Feschotte, C. Transposable elements and the evolution of regulatory networks. Nature Rev. Genet. 9, 397–405 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Lynch, V. J., Leclerc, R. D., May, G. & Wagner, G. P. Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nature Genet. 43, 1154–1159 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Wang, T. et al. Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53. Proc. Natl Acad. Sci. USA 104, 18613–18618 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Belyi, V. A. et al. The origins and evolution of the p53 family of genes. Cold Spring Harb. Perspect. Biol. 2, a001198 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Kunarso, G. et al. Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nature Genet. 42, 631–634 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Xie, D. et al. Rewirable gene regulatory networks in the preimplantation embryonic development of three mammalian species. Genome Res. 20, 804–815 (2010). References 71, 73 and 74 show how transcription factor binding sites dispersed by ERV wire extensive gene regulatory networks in a lineage-specific fashion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bannert, N. & Kurth, R. Retroelements and the human genome: new perspectives on an old relation. Proc. Natl Acad. Sci. USA 101, 14572–14579 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Perron, H. & Lang, A. The human endogenous retrovirus link between genes and environment in multiple sclerosis and in multifactorial diseases. Clin. Rev. Allergy Immunol. 39, 51–61 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Kurth, R. & Bannert, N. Beneficial and detrimental effects of human endogenous retroviruses. Int. J. Cancer 126, 306–314 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Waterland, R. A. & Jirtle, R. L. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol. Cell. Biol. 23, 5293–5300 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Contreras-Galindo, R. A. et al. Characterization of human endogenous retroviral elements in the blood of HIV-1-infected individuals. J. Virol. 86, 262–276 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Stauffer, Y. et al. Interferon-α-induced endogenous superantigen. A model linking environment and autoimmunity. Immunity 15, 591–601 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Arnaud, F., Varela, M., Spencer, T. E. & Palmarini, M. Coevolution of endogenous betaretroviruses of sheep and their host. Cell. Mol. Life Sci. 65, 3422–3432 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Spencer, T. E., Mura, M., Gray, C. A., Griebel, P. J. & Palmarini, M. Receptor usage and fetal expression of ovine endogenous betaretroviruses: implications for coevolution of endogenous and exogenous retroviruses. J. Virol. 77, 749–753 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mura, M. et al. Late viral interference induced by transdominant Gag of an endogenous retrovirus. Proc. Natl Acad. Sci. USA 101, 11117–11122 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yan, Y., Buckler-White, A., Wollenberg, K. & Kozak, C. A. Origin, antiviral function and evidence for positive selection of the gammaretrovirus restriction gene Fv1 in the genus Mus. Proc. Natl Acad. Sci. USA 106, 3259–3263 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Hilditch, L. et al. Ordered assembly of murine leukemia virus capsid protein on lipid nanotubes directs specific binding by the restriction factor, Fv1. Proc. Natl Acad. Sci. USA 108, 5771–5776 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Arnaud, F. et al. A paradigm for virus-host coevolution: sequential counter-adaptations between endogenous and exogenous retroviruses. PLoS Pathog. 3, e170 (2007). This paper provides a comprehensive characterization of the various events that took place during the molecular arms race between domesticated endogenous betaretroviruses and their exogenous counterparts in sheep.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Malik, H. S. & Henikoff, S. Positive selection of Iris, a retroviral envelope-derived host gene in Drosophila melanogaster. PLoS Genet. 1, e44 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Taylor, D. J., Dittmar, K., Ballinger, M. J. & Bruenn, J. A. Evolutionary maintenance of filovirus-like genes in bat genomes. BMC Evol. Biol. 11, 336 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Liu, H. et al. Widespread endogenization of densoviruses and parvoviruses in animal and human genomes. J. Virol. 85, 9863–9876 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kobayashi, Y., Horie, M., Tomonaga, K. & Suzuki, Y. No evidence for natural selection on endogenous borna-like nucleoprotein elements after the divergence of Old World and New World monkeys. PLoS ONE 6, e24403 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fort, P. et al. Fossil rhabdoviral sequences integrated into arthropod genomes: ontogeny, evolution, and potential functionality. Mol. Biol. Evol. 29, 381–390 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Rawn, S. M. & Cross, J. C. The evolution, regulation, and function of placenta-specific genes. Annu. Rev. Cell Dev. Biol. 24, 159–181 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Blikstad, V., Benachenhou, F., Sperber, G. O. & Blomberg, J. Evolution of human endogenous retroviral sequences: a conceptual account. Cell. Mol. Life Sci. 65, 3348–3365 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Dupressoir, A. et al. Syncytin-A knockout mice demonstrate the critical role in placentation of a fusogenic, endogenous retrovirus-derived, envelope gene. Proc. Natl Acad. Sci. USA 106, 12127–12132 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dupressoir, A. et al. A pair of co-opted retroviral envelope syncytin genes is required for formation of the two-layered murine placental syncytiotrophoblast. Proc. Natl Acad. Sci. USA 108, e1164–e1173 (2011). The above two references provide genetic evidence for an essential role of two env -derived murine syncytins in placenta formation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dunlap, K. A. et al. Endogenous retroviruses regulate periimplantation placental growth and differentiation. Proc. Natl Acad. Sci. USA 103, 14390–14395 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Flegel, T. W. Hypothesis for heritable, anti-viral immunity in crustaceans and insects. Biol. Direct 4, 32 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Harms, M. J. & Thornton, J. W. Analyzing protein structure and function using ancestral gene reconstruction. Curr. Opin. Struct. Biol. 20, 360–366 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Katzourakis, A., Tristem, M., Pybus, O. G. & Gifford, R. J. Discovery and analysis of the first endogenous lentivirus. Proc. Natl Acad. Sci. USA 104, 6261–6265 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gifford, R. J. et al. A transitional endogenous lentivirus from the genome of a basal primate and implications for lentivirus evolution. Proc. Natl Acad. Sci. USA 105, 20362–20367 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sharp, P. M., Bailes, E., Stevenson, M., Emerman, M. & Hahn, B. H. Gene acquisition in HIV and SIV. Nature 383, 586–587 (1996).

    Article  CAS  PubMed  Google Scholar 

  102. Hu, J. et al. Characterization and comparison of recombinant simian immunodeficiency virus from drill (Mandrillus leucophaeus) and mandrill (Mandrillus sphinx) isolates. J. Virol. 77, 4867–4880 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tristem, M., Purvis, A. & Quicke, D. L. Complex evolutionary history of primate lentiviral vpr genes. Virology 240, 232–237 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Gilbert C., Maxfield, D. G., Goodman, S. M. & Feschotte, C. Parallel germline infiltration of a lentivirus in two Malagasy lemurs. PLoS Genet. 5, e1000425 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Dangel, A. W., Baker, B. J., Mendoza, A. R. & Yu, C. Y. Complement component C4 gene intron 9 as a phylogenetic marker for primates: long terminal repeats of the endogenous retrovirus ERV-K(C4) are a molecular clock of evolution. Immunogenetics 42, 41–52 (1995).

    Article  CAS  PubMed  Google Scholar 

  106. Kijima, T. E. & Innan, H. On the estimation of the insertion time of LTR retrotransposable elements. Mol. Biol. Evol. 27, 896–904 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Martins, H. & Villesen, P. Improved integration time estimation of endogenous retroviruses with phylogenetic data. PLoS ONE 6, e14745 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wolf, D. & Goff, S. P. Embryonic stem cells use ZFP809 to silence retroviral DNAs. Nature 458, 1201–1204 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Leung, D. C. & Lorincz, M. C. Silencing of endogenous retroviruses: when and why do histone marks predominate? Trends Biochem. Sci. 16 Dec 2011 (doi: 10.1016/j.tibs.2011.11.006).

  110. Rowe, H. M. et al. KAP1 controls endogenous retroviruses in embryonic stem cells. Nature 463, 237–240 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Matsui, T. et al. Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature 464, 927–931 (2010). References 108–111 unveil fundamental components and principles of a recently discovered system of proviral silencing in mammal ESCs.

    Article  CAS  PubMed  Google Scholar 

  112. Nowick, K., Hamilton, A. T., Zhang, H. & Stubbs, L. Rapid sequence and expression divergence suggest selection for novel function in primate-specific KRAB-ZNF genes. Mol. Biol. Evol. 27, 2606–2617 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dewannieux, M. et al. Identification of an infectious progenitor for the multiple-copy HERV-K human endogenous retroelements. Genome Res. 16, 1548–1556 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lee, Y. N. & Bieniasz, P. D. Reconstitution of an infectious human endogenous retrovirus. PLoS Pathog. 3, e10 (2007). The above two references reconstitute an infectious progenitor for a human endogenous retrovirus.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Perez-Caballero, D., Soll, S. J. & Bieniasz, P. D. Evidence for restriction of ancient primate gammaretroviruses by APOBEC3 but not TRIM5α proteins. PLoS Pathog. 4, e1000181 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Kaiser, S. M., Malik, H. S. & Emerman, M. Restriction of an extinct retrovirus by the human TRIM5α antiviral protein. Science. 316, 1756–1758 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Sawyer, S. L., Emerman, M. & Malik, H. S. Ancient adaptive evolution of the primate antiviral DNA-editing enzyme APOBEC3G. PLoS Biol. 2, e275 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Rahm, N. et al. Unique spectrum of activity of prosimian TRIM5α against exogenous and endogenous retroviruses. J. Virol. 85, 4173–4183 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Soll, S. J., Neil, S. J. & Bieniasz, P. D. Identification of a receptor for an extinct virus. Proc. Natl Acad. Sci. USA 107, 19496–19501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Goldstone, D. C. et al. Structural and functional analysis of prehistoric lentiviruses uncovers an ancient molecular interface. Cell Host Microbe 8, 248–259 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Wolf, D. & Goff, S. P. Host restriction factors blocking retroviral replication. Annu. Rev. Genet. 42, 143–163 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sawyer, S. L., Wu, L. I., Emerman, M. & Malik, H. S. Positive selection of primate TRIM5α identifies a critical species-specific retroviral restriction domain. Proc. Natl Acad. Sci. USA 102, 2832–2837 (2005). This study provides a vivid demonstration of the power of evolutionary sequence analysis to shed crucial insight into the interaction of host restriction factors with their viral targets.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kerns, J. A., Emerman, M. & Malik, H. S. Positive selection and increased antiviral activity associated with the PARP-containing isoform of human zinc-finger antiviral protein. PLoS Genet. 4, e21 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Lin, C. L. et al. Persistent Hz-1 virus infection in insect cells: evidence for insertion of viral DNA into host chromosomes and viral infection in a latent status. J. Virol. 73, 128–139 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Arbuckle, J. H. et al. The latent human herpesvirus-6A genome specifically integrates in telomeres of human chromosomes in vivo and in vitro. Proc. Natl Acad. Sci. USA 107, 5563–5568 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Morissette, G. & Flamand, L. Herpesviruses and chromosomal integration. J. Virol. 84, 12100–12109 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bézier, A., Herbinière, J., Lanzrein, B. & Drezen, J. M. Polydnavirus hidden face: the genes producing virus particles of parasitic wasps. J. Invertebr. Pathol. 101, 194–203 (2009).

    Article  PubMed  CAS  Google Scholar 

  128. Delaroque, N., Maier, I., Knippers, R. & Mueller, D. G. Persistent virus integration into the genome of its algal host, Ectocarpus siliculosus (Phaeophyceae). J. Gen. Virol. 80, 1367–1370 (1999).

    Article  CAS  PubMed  Google Scholar 

  129. Cock, J. M. et al. The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465, 617–621 (2010).

    Article  CAS  PubMed  Google Scholar 

  130. Liu, H. et al. Widespread horizontal gene transfer from circular single-stranded DNA viruses to eukaryotic genomes. BMC Evol. Biol. 11, 276 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Bejarano, E. R., Khashoggi, A., Witty, M. & Lichtenstein, C. Integration of multiple repeats of geminiviral DNA into the nuclear genome of tobacco during evolution. Proc. Natl Acad. Sci. USA 93, 759–764 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ashby, M. K. et al. Analysis of multiple copies of geminiviral DNA in the genome of four closely related Nicotiana species suggest a unique integration event. Plant. Mol. Biol. 35, 313–321 (1997).

    Article  CAS  PubMed  Google Scholar 

  133. Kapoor, A., Simmonds, P. & Lipkin, W. I. Discovery and characterization of mammalian endogenous parvoviruses. J. Virol. 84, 12628–12635 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Tang, K. F. & Lightner, D. V. Infectious hypodermal and hematopoietic necrosis virus (IHHNV)-related sequences in the genome of the black tiger prawn Penaeus monodon from Africa and Australia. Virus Res. 118, 185–191 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Liu, H. et al. Widespread horizontal gene transfer from double-stranded RNA viruses to eukaryotic nuclear genomes. J. Virol. 84, 11876–11887 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Frank, A. C. & Wolfe, K. H. Evolutionary capture of viral and plasmid DNA by yeast nuclear chromosomes. Eukaryot. Cell 8, 1521–1531 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Maori, E., Tanne, E. & Sela, I. Reciprocal sequence exchange between non-retro viruses and hosts leading to the appearance of new host phenotypes. Virology 362, 342–349 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Crochu, S. et al. Sequences of flavivirus-related RNA viruses persist in DNA form integrated in the genome of Aedes spp. mosquitoes. J. Gen. Virol. 85, 1971–1980 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. Roiz, D., Vázquez, A., Seco, M. P., Tenorio, A. & Rizzoli, A. Detection of novel insect flavivirus sequences integrated in Aedes albopictus (Diptera: Culicidae) in Northern Italy. Virol. J. 6, 93 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Tanne, E. & Sela, I. Occurrence of a DNA sequence of a non-retro RNA virus in a host plant genome and its expression: evidence for recombination between viral and host RNAs. Virology 332, 614–622 (2005).

    Article  CAS  PubMed  Google Scholar 

  141. Taylor, D. J., Leach, R. W. & Bruenn, J. Filoviruses are ancient and integrated into mammalian genomes. BMC Evol. Biol. 10, 193 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Blond, J. L. et al. An envelope glycoprotein of the human endogenous retrovirus HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor. J. Virol. 74, 3321–3329 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Mi, S. et al. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403, 785–789 (2000).

    Article  CAS  PubMed  Google Scholar 

  144. Blaise, S., de Parseval, N., Bénit, L. & Heidmann, T. Genome wide screening for fusogenic human endogenous retrovirus envelopes identifies syncytin 2, a gene conserved on primate evolution. Proc. Natl Acad. Sci. USA 100, 13013–13018 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Heidmann, O., Vernochet, C., Dupressoir, A. & Heidmann, T. Identification of an endogenous retroviral envelope gene with fusogenic activity and placenta-specific expression in the rabbit: a new “syncytin” in a third order of mammals. Retrovirology 6, 107 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Cornelis, G. et al. Ancestral capture of syncytin-Car1, a fusogenic endogenous retroviral envelope gene ivolved in placentation and conserved in Carnivora. Proc. Natl Acad. Sci. USA 109, e432–e441 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Blaise, S., de Parseval, N. & Heidmann, T. Functional characterization of two newly identified human endogenous retrovirus coding envelope genes. Retrovirology 2, 19 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Best, S., Le Tissier, P., Towers, G. & Stoye, J. P. Positional cloning of the mouse retrovirus restriction gene Fv1. Nature 382, 826–829 (1996).

    Article  CAS  PubMed  Google Scholar 

  149. Marco, A. & Marín, I. CGIN1: a retroviral contribution to mammalian genomes. Mol. Biol. Evol. 26, 2167–2170 (2009).

    Article  CAS  PubMed  Google Scholar 

  150. Lung, O. & Blissard, G. W. A cellular Drosophila melanogaster protein with similarity to baculovirus F envelope fusion proteins. J. Virol. 79, 7979–7989 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to many colleagues who have produced primary research on the topic that could not be cited or discussed owing to space limitations. We thank the three anonymous reviewers for their constructive comments and useful suggestions. This work was supported by grant GM77582 from the US National Institutes of Health to C.F.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cédric Feschotte or Clément Gilbert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Cédric Feschotte's homepage

CNRS 'Ecology, Evolution, Symbiosis' research unit

University of Utah Department of Human Genetics

Glossary

Horizontally

In the context of genetic information, horizontal transmission is the transfer of genetic material by means other than sex.

Vertical transmission

Sexual transmission of genetic material from parent to offspring.

Fixation

A mutation reaches fixation when it is present in all individuals of a given species.

Transposable elements

Pieces of DNA (typically genomic elements) that are able to move from one locus to another, often duplicating themselves in the process.

Reverse transcription

Synthesis of DNA from an RNA template.

Retrotransposon

Mobile intracellular genetic elements that replicate via reverse transcription of an RNA intermediate.

Envelope

(Env). A glycoprotein encoded by many viruses that binds to host receptors located on the cell surface in order to promote viral entry.

Non-homologous end joining

A DNA double-strand break repair pathway that does not make use of a template and is therefore intrinsically error-prone.

Zoonotic

Describes a virus that can be transmitted between animals and humans or vice versa.

Mutational saturation

A given site in a DNA sequence is saturated when the number of observed or inferred mutations is lower than the number of mutations that truly occurred at this site.

Latency

A period during which a virus replicates at a low rate without causing any symptoms to the host.

Saltational

A saltational change is a profound and rapid change in the evolutionary dynamics of a viral lineage.

Phylodynamic

The joint study of the epidemiological and evolutionary dynamics of a virus.

Provirus

The integrated form of a retrovirus.

Reinfection

Repeated infection of the germ cells of the individual carrying a provirus, with possible horizontal transmission to other individuals.

Dimorphic

Full-length insertion present in some individuals but absent in others.

Superantigen

A class of antigens that cause nonspecific activation and uncontrolled proliferation of T cells, often resulting in a chronic inflammatory response.

Gag

A retroviral protein that is one of the structural proteins of the viral capsid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feschotte, C., Gilbert, C. Endogenous viruses: insights into viral evolution and impact on host biology. Nat Rev Genet 13, 283–296 (2012). https://doi.org/10.1038/nrg3199

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3199

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research