Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Experimental and analytical tools for studying the human microbiome

Key Points

  • New sequencing technologies and open-source computational tools have enabled rapid progress in research into the human microbiota and the human microbiome.

  • Most recent studies use 16S rDNA gene profiling to assess the organisms that are present in a sample or shotgun metagenomics to get a complete profile of gene content in a given habitat.

  • Bacterial and archaeal communities are currently easy to profile using the 16S rDNA gene sequence: techniques for profiling eukaryotes and viruses are more challenging but are intense areas of interest.

  • Both taxonomic and functional profiling are crucial for obtaining a full picture of the microbiota, although error rates both in sequencing and in functional and taxonomic assignment need to be considered when drawing conclusions.

  • Time series studies are proving to be especially useful for understanding variation in the microbiome, as individuals can vary considerably in their microbiome composition. Thus far, developmental trajectories have only been studied in the gut, although it will be fascinating to extend these studies to other body habitats and to developmental disorders.

  • Clustering sequences into taxonomic groups remains challenging, although the quality of current techniques is sufficient to observe clinically relevant differences among subjects.

  • Public resources for functional annotation of metagenomic data are expanding rapidly; they are providing key enabling technology for large-scale projects, such as the Human Microbiome Project and the Earth Microbiome Project.

  • Studies of the microbiome are rapidly moving from preliminary studies that observe differences among groups to mechanistic and longitudinal studies that allow us to see how and why these differences develop. Personalized culture collections will be especially important in this respect.


The human microbiome substantially affects many aspects of human physiology, including metabolism, drug interactions and numerous diseases. This realization, coupled with ever-improving nucleotide sequencing technology, has precipitated the collection of diverse data sets that profile the microbiome. In the past 2 years, studies have begun to include sufficient numbers of subjects to provide the power to associate these microbiome features with clinical states using advanced algorithms, increasing the use of microbiome studies both individually and collectively. Here we discuss tools and strategies for microbiome studies, from primer selection to bioinformatics analysis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Bioinformatics analysis of microbiome sequence data.
Figure 2: Effects of primer choice in targeted amplicon sequencing.
Figure 3: How to get the most taxonomic information out of each sequencing technology.


  1. 1

    Ravel, J. et al. Vaginal microbiome of reproductive-age women. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4680–4687 (2011).

    CAS  PubMed  Google Scholar 

  2. 2

    Ley, R. E. et al. Obesity alters gut microbial ecology. Proc. Natl Acad. Sci. USA 102, 11070–11075 (2005).

    CAS  PubMed  Google Scholar 

  3. 3

    Aas, J., Gessert, C. E. & Bakken, J. S. Recurrent Clostridium difficile colitis: case series involving 18 patients treated with donor stool administered via a nasogastric tube. Clin. Infect. Dis. 36, 580–585 (2003).

    PubMed  Google Scholar 

  4. 4

    Sartor, R. B. Microbial influences in inflammatory bowel diseases. Gastroenterology 134, 577–594 (2008).

    CAS  PubMed  Google Scholar 

  5. 5

    Kinross, J. M., Darzi, A. W. & Nicholson, J. K. Gut microbiome–host interactions in health and disease. Genome Med. 3, 14 (2011).

    PubMed  PubMed Central  Google Scholar 

  6. 6

    Peterson, J. et al. The NIH Human Microbiome Project. Genome Res. 19, 2317–2323 (2009).

    PubMed  PubMed Central  Google Scholar 

  7. 7

    Blaser, M. J. Harnessing the power of the human microbiome. Proc. Natl Acad. Sci. USA 107, 6125–6126 (2010).

    CAS  PubMed  Google Scholar 

  8. 8

    Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010). This is a large-scale study aimed at characterizing the functionality encoded in the gut microbiome. This work defined a minimal set of functions that are present in all of the sampled individuals.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Costello, E. K. et al. Bacterial community variation in human body habitats across space and time. Science 326, 1694–1697 (2009). This paper was the first to establish that the microbial communities harboured across the human body are personalized but vary substantially across body sites and over time.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).

    CAS  Article  PubMed Central  Google Scholar 

  11. 11

    Caporaso, J. G. et al. Moving pictures of the human microbiome. Genome Biol. 12, R50 (2011). This is the densest time-series analysis of variation in the human microbiota that has been carried out so far. This study also proved the usefulness of newer DNA sequencers to provide deeper insights into the microbiota by recapturing previous results in variability across body sites and time using a different sequencing technology.

    PubMed  PubMed Central  Google Scholar 

  12. 12

    Shi, Y., Tyson, G. W. & DeLong, E. F. Metatranscriptomics reveals unique microbial small RNAs in the ocean's water column. Nature 459, 266–269 (2009).

    CAS  PubMed  Google Scholar 

  13. 13

    Maron, P. A., Ranjard, L., Mougel, C. & Lemanceau, P. Metaproteomics: a new approach for studying functional microbial ecology. Microb. Ecol. 53, 486–493 (2007).

    CAS  PubMed  Google Scholar 

  14. 14

    Clayton, T. A., Baker, D., Lindon, J. C., Everett, J. R. & Nicholson, J. K. Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc. Natl Acad. Sci. USA 106, 14728–14733 (2009). The authors of this paper suggest a link between a person's microbiome and their ability to metabolize a common drug, paracetamol (acetaminophen).

    CAS  PubMed  Google Scholar 

  15. 15

    DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Pruesse, E. et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188–7196 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Cole, J. R. et al. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37, D141–D145 (2009).

    CAS  PubMed  Google Scholar 

  18. 18

    Bellemain, E. et al. ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol. 10, 189 (2010).

    PubMed  PubMed Central  Google Scholar 

  19. 19

    Hayashi, H., Sakamoto, M. & Benno, Y. Evaluation of three different forward primers by terminal restriction fragment length polymorphism analysis for determination of fecal Bifidobacterium spp. in healthy subjects. Microbiol. Immunol. 48, 1–6 (2004).

    CAS  PubMed  Google Scholar 

  20. 20

    Bergmann, G. T. et al. The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biol. Biochem. 43, 1450–1455 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Liu, Z., DeSantis, T. Z., Andersen, G. L. & Knight, R. Accurate taxonomy assignments from 16S rRNA sequences produced by highly parallel pyrosequencers. Nucleic Acids Res. 36, e120 (2008).

    PubMed  PubMed Central  Google Scholar 

  22. 22

    Walters, W. A. et al. PrimerProspector: de novo design and taxonomic analysis of barcoded polymerase chain reaction primers. Bioinformatics 27, 1159–1161 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Marchesi, J. R. Prokaryotic and eukaryotic diversity of the human gut. Adv. Appl. Microbiol. 72, 43–62 (2010).

    PubMed  Google Scholar 

  24. 24

    Parfrey, L. W., Walters, W. A. & Knight, R. Microbial eukaryotes in the human microbiome: ecology, evolution, and future directions. Front. Microbiol. 2, 153 (2011).

    PubMed  PubMed Central  Google Scholar 

  25. 25

    Ott, S. J. et al. Fungi and inflammatory bowel diseases: alterations of composition and diversity. Scand. J. Gastroenterol. 43, 831–841 (2008).

    CAS  PubMed  Google Scholar 

  26. 26

    Ghannoum, M. A. et al. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog. 6, e1000713 (2010).

    PubMed  PubMed Central  Google Scholar 

  27. 27

    Vestheim, H. & Jarman, S. N. Blocking primers to enhance PCR amplification of rare sequences in mixed samples — a case study on prey DNA in Antarctic krill stomachs. Front. Zool. 5, 12 (2008).

    PubMed  PubMed Central  Google Scholar 

  28. 28

    Haynes, M. & Rohwer, F. in Metagenomics of the Human Body (ed. Nelson, K. E.) 63–77 (Springer, New York, 2011).

    Google Scholar 

  29. 29

    Virgin, H. W., Wherry, E. J. & Ahmed, R. Redefining chronic viral infection. Cell 138, 30–50 (2009).

    CAS  Google Scholar 

  30. 30

    Breitbart, M. et al. Viral diversity and dynamics in an infant gut. Res. Microbiol. 159, 367–373 (2008).

    CAS  PubMed  Google Scholar 

  31. 31

    Reyes, A. et al. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature 466, 334–338 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A. & Brown, P. O. Development of the human infant intestinal microbiota. PLoS Biol. 5, e177 (2007).

    PubMed  PubMed Central  Google Scholar 

  33. 33

    Koenig, J. E. et al. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4578–4585 (2011). This paper describes a two-year longitudinal study of the development of the gut microbiota in an infant. This work provides a detailed analysis of the relationship between life events and changes in microbiome composition and function.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Oliver, K. M., Degnan, P. H., Hunter, M. S. & Moran, N.A. Bacteriophages encode factors required for protection in a symbiotic mutualism. Science 325, 992–994 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Caporaso, J. G., Knight, R. & Kelley, S. T. Host-associated and free-living phage communities differ profoundly in phylogenetic composition. PLoS ONE 6, e16900 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Willner, D. et al. Metagenomic analysis of respiratory tract DNA viral communities in cystic fibrosis and non-cystic fibrosis individuals. PLoS ONE 4, e7370 (2009).

    PubMed  PubMed Central  Google Scholar 

  37. 37

    McOrist, A. L., Jackson, M. & Bird, A. R. A comparison of five methods for extraction of bacterial DNA from human faecal samples. J. Microbiol. Methods 50, 131–139 (2002).

    CAS  PubMed  Google Scholar 

  38. 38

    Wang, R.-F., Beggs, M. L., Erickson, B. D. & Cerniglia, C. E. DNA microarray analysis of predominant human intestinal bacteria in fecal samples. Mol. Cell. probes 18, 223–234 (2004).

    CAS  PubMed  Google Scholar 

  39. 39

    Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Turnbaugh, P. J., Bäckhed, F., Fulton, L. & Gordon, J. I. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3, 213–223 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Fierer, N., Hamady, M., Lauber, C. L. & Knight, R. The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc. Natl Acad. Sci. USA 105, 17994–17999 (2008).

    CAS  PubMed  Google Scholar 

  42. 42

    Wu, G. D. et al. Sampling and pyrosequencing methods for characterizing bacterial communities in the human gut using 16S sequence tags. BMC Microbiol. 10, 206–206 (2010). This study shows that long-term dietary patterns are associated with particular enterotypes. Bacteroides spp. were associated with a Western-like diet that is rich in proteins and animal fats, whereas Prevotella spp. were linked with high-carbohydrate diets.

    PubMed  PubMed Central  Google Scholar 

  43. 43

    Lauber, C. L., Zhou, N., Gordon, J. I., Knight, R. & Fierer, N. Effect of storage conditions on the assessment of bacterial community structure in soil and human-associated samples. FEMS Microbiol. Lett. 307, 80–86 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Amann, R. I., Ludwig, W. & Schleifer, K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143–169 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol 73, 5261–5267 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).

    PubMed  PubMed Central  Google Scholar 

  47. 47

    Liu, Z., Lozupone, C., Hamady, M., Bushman, F. D. & Knight, R. Short pyrosequencing reads suffice for accurate microbial community analysis. Nucleic Acids Res. 35, e120 (2007).

    PubMed  PubMed Central  Google Scholar 

  48. 48

    Zhou, H. W. et al. BIPES, a cost-effective high-throughput method for assessing microbial diversity. ISME J. 5, 741–749 (2011).

    CAS  PubMed  Google Scholar 

  49. 49

    Hummelen, R. et al. Deep sequencing of the vaginal microbiota of women with HIV. PLoS ONE 5, e12078 (2010).

    PubMed  PubMed Central  Google Scholar 

  50. 50

    Lazarevic, V. et al. Metagenomic study of the oral microbiota by Illumina high-throughput sequencing. J. Microbiol. Methods 79, 266–271 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Gloor, G. B. et al. Microbiome profiling by illumina sequencing of combinatorial sequence-tagged PCR products. PLoS ONE 5, e15406 (2010).

    PubMed  PubMed Central  Google Scholar 

  52. 52

    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4516–4522 (2011).

    CAS  PubMed  Google Scholar 

  53. 53

    Bartram, A. K., Lynch, M. D., Stearns, J. C., Moreno-Hagelsieb, G. & Neufeld, J. D. Generation of multimillion-sequence 16S rRNA gene libraries from complex microbial communities by assembling paired-end illumina reads. Appl. Environ. Microbiol. 77, 3846–3852 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Claesson, M. J. et al. Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Res. 38, e200 (2010).

    PubMed  PubMed Central  Google Scholar 

  55. 55

    Gilbert, J. A. & Dupont, C. L. Microbial metagenomics: beyond the genome. Ann. Rev. Mar. Sci. 3, 347–371 (2011).

    PubMed  Google Scholar 

  56. 56

    Tyson, G. W. et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428, 37–43 (2004).

    CAS  PubMed  Google Scholar 

  57. 57

    Rodrigue, S. et al. Unlocking short read sequencing for metagenomics. PLoS ONE 5, e11840 (2010).

    PubMed  PubMed Central  Google Scholar 

  58. 58

    Goldberg, S. M. D. et al. A Sanger/pyrosequencing hybrid approach for the generation of high-quality draft assemblies of marine microbial genomes. Proc. Natl Acad. Sci. USA 103, 11240–11245 (2006).

    CAS  PubMed  Google Scholar 

  59. 59

    Gnerre, S. et al. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc. Natl Acad. Sci. USA 108, 1513–1518 (2011).

    CAS  PubMed  Google Scholar 

  60. 60

    Huse, S. M., Huber, J. A., Morrison, H. G., Sogin, M. L. & Welch, D. M. Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol. 8, R143 (2007).

    PubMed  PubMed Central  Google Scholar 

  61. 61

    Kunin, V., Engelbrektson, A., Ochman, H. & Hugenholtz, P. Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ. Microbiol. 12, 118–123 (2010).

    CAS  PubMed  Google Scholar 

  62. 62

    Schloss, P. D., Gevers, D., Westcott, S. L. Reducing the effects of PCR and sequencing artifacts on 16S rRNA-based studies. PLoS ONE (in the press).

  63. 63

    Haas, B. J. et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 21, 494–504 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Quince, C., Lanzen, A., Davenport, R. J. & Turnbaugh, P. J. Removing noise from pyrosequenced amplicons. BMC bioinformatics 12, 38 (2011).

    PubMed  PubMed Central  Google Scholar 

  65. 65

    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7, 335–336 (2010). This paper introduces QIIME, an open-source software tool that performs the complete analysis of microbial communities. Among other functions, QIIME implements quality filtering of the input raw reads, OTU picking, α- and β-diversity estimates and prediction of OTUs that are significantly associated with categories in the data.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Reeder, J. & Knight, R. Rapidly denoising pyrosequencing amplicon reads by exploiting rank-abundance distributions. Nature Methods 7, 668–669 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Rappe, M. S. & Giovannoni, S. J. The uncultured microbial majority. Annu. Rev. Microbiol. 57, 369–394 (2003).

    CAS  PubMed  Google Scholar 

  70. 70

    Schloss, P. D. The effects of alignment quality, distance calculation method, sequence filtering, and region on the analysis of 16S rRNA gene-based studies. PLoS Comput. Biol. 6, e1000844 (2010).

    PubMed  PubMed Central  Google Scholar 

  71. 71

    Meyer, F. et al. The metagenomics RAST server — a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9, 386 (2008).

    CAS  PubMed  Google Scholar 

  72. 72

    Yilmaz, P. et al. Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nature Biotech. 29, 415–420 (2011).

    CAS  Google Scholar 

  73. 73

    Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804–810 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Gilbert, J. A. et al. The Earth Microbiome Project: meeting report of the “1 EMP meeting on sample selection and acquisition” at Argonne National Laboratory October 6 2010. Stand. Genomic Sci. 3, 249–253 (2010).

    PubMed  PubMed Central  Google Scholar 

  75. 75

    Caporaso, J. G. et al. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26, 266–267 (2010).

    CAS  PubMed  Google Scholar 

  76. 76

    DeSantis, T. Z. Jr et al. NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Res. 34, W394–W399 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    PubMed  PubMed Central  Google Scholar 

  78. 78

    Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005). This study introduces UniFrac, a phylogenetically aware measure of similarity, and one of the most widely used methods to establish the extent to which different microbial communities resemble each other.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Faith, D. P. & Baker, A. M. Phylogenetic diversity (PD) and biodiversity conservation: some bioinformatics challenges. Evolutionary Bioinform. Online 2, 121–128 (2006).

    Google Scholar 

  80. 80

    Morowitz, M. J. et al. Strain-resolved community genomic analysis of gut microbial colonization in a premature infant. Proc. Natl Acad. Sci. USA 108, 1128–1133 (2011).

    CAS  PubMed  Google Scholar 

  81. 81

    Tringe, S. G. et al. Comparative metagenomics of microbial communities. Science 308, 554–557 (2005).

    CAS  PubMed  Google Scholar 

  82. 82

    Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011). In this study, faecal microbiomes were found to cluster into three distinct groups ('enterotypes') with minimal overlap.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Muegge, B. D. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970–974 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Brady, A. & Salzberg, S. PhymmBL expanded: confidence scores, custom databases, parallelization and more. Nature Methods 8, 367 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Mitra, S. et al. Functional analysis of metagenomes and metatranscriptomes using SEED and KEGG. BMC Bioinformatics 12, S21 (2011).

    PubMed  PubMed Central  Google Scholar 

  86. 86

    Sharpton, T. J. et al. PhylOTU: a high-throughput procedure quantifies microbial community diversity and resolves novel taxa from metagenomic data. PLoS Comput. Biol. 7, e1001061 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    von Mering, C. et al. Quantitative phylogenetic assessment of microbial communities in diverse environments. Science 315, 1126–1130 (2007).

    CAS  PubMed  Google Scholar 

  88. 88

    Muller, J. et al. eggNOG v2.0: extending the evolutionary genealogy of genes with enhanced non-supervised orthologous groups, species and functional annotations. Nucleic Acids Res. 38, D190–D195 (2010).

    CAS  PubMed  Google Scholar 

  89. 89

    Kanehisa, M., Goto, S., Furumichi, M., Tanabe, M. & Hirakawa, M. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res. 38, D355–D360 (2010).

    CAS  PubMed  Google Scholar 

  90. 90

    Finn, R. D. et al. The Pfam protein families database. Nucleic Acids Res. 36, D281–D288 (2008).

    CAS  PubMed  Google Scholar 

  91. 91

    Wooley, J. C., Godzik, A. & Friedberg, I. A primer on metagenomics. PLoS Comput. Biol. 6, e1000667 (2010).

    PubMed  PubMed Central  Google Scholar 

  92. 92

    Glass, E. et al. Meeting report from the Genomic Standards Consortium (GSC) Workshop 10. Stand. Genom. Sci. 3, 225–231 (2010).

    Google Scholar 

  93. 93

    Arumugam, M., Harrington, E. D., Foerstner, K. U., Raes, J. & Bork, P. SmashCommunity: a metagenomic annotation and analysis tool. Bioinformatics 26, 2977–2978 (2010).

    CAS  PubMed  Google Scholar 

  94. 94

    Sun, S. et al. Community Cyberinfrastructure for Advanced Microbial Ecology Research and Analysis: the CAMERA resource. Nucleic Acids Res. 39, D546–D551 (2011).

    CAS  PubMed  Google Scholar 

  95. 95

    Markowitz, V. M. et al. IMG/M: a data management and analysis system for metagenomes. Nucleic Acids Res. 36, D534–D538 (2008).

    CAS  PubMed  Google Scholar 

  96. 96

    Kristiansson, E., Hugenholtz, P. & Dalevi, D. ShotgunFunctionalizeR: an R-package for functional comparison of metagenomes. Bioinformatics 25, 2737–2738 (2009).

    CAS  PubMed  Google Scholar 

  97. 97

    Liu, B. & Pop, M. MetaPath: identifying differentially abundant metabolic pathways in metagenomic datasets. BMC Proc. 5, S9 (2011).

    PubMed  PubMed Central  Google Scholar 

  98. 98

    Chen, K. & Pachter, L. Bioinformatics for whole-genome shotgun sequencing of microbial communities. PLoS Comput. Biol. 1, 106–112 (2005).

    CAS  PubMed  Google Scholar 

  99. 99

    Kuczynski, J. et al. Microbial community resemblance methods differ in their ability to detect biologically relevant patterns. Nature Methods 7, 813–819 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Quince, C., Curtis, T. P. & Sloan, W. T. The rational exploration of microbial diversity. ISME J. 2, 997–1006 (2008).

    CAS  PubMed  Google Scholar 

  101. 101

    Mcpeek, M. A. & Mcpeek, M. A. The consequences of changing the top predator in a food web: a comparative experimental approach. Ecol. Monogr. 68, 1–23 (1998).

    Google Scholar 

  102. 102

    Khoruts, A., Dicksved, J., Jansson, J. K. & Sadowsky, M. J. Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clostridium difficile-associated diarrhea. J. Clin. Gastroenterol. 44, 354–360 (2010).

    PubMed  Google Scholar 

  103. 103

    West, T. E. et al. Toll-like receptor 4 region genetic variants are associated with susceptibility to melioidosis. Genes Immun. 2011, 1–9 (2011).

    Google Scholar 

  104. 104

    Turnbaugh, P. J. et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Transl. Med. 1, 6ra14 (2009).

    PubMed  PubMed Central  Google Scholar 

  105. 105

    Goodman, A. L. et al. Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proc. Natl Acad. Sci. USA 108, 6252–6257 (2011). This paper showed that a substantial proportion of an individual's gut microbiota can be recaptured using anaerobic culturing conditions, both in vitro and in vivo.

    CAS  PubMed  Google Scholar 

  106. 106

    Paulino, L. C., Tseng, C. H., Strober, B. E. & Blaser, M. J. Molecular analysis of fungal microbiota in samples from healthy human skin and psoriatic lesions. J. Clin. Microbiol. 44, 2933–2941 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Gao, Z., Tseng, C. H., Pei, Z. & Blaser, M. J. Molecular analysis of human forearm superficial skin bacterial biota. Proc. Natl Acad. Sci. USA 104, 2927–2932 (2007).

    CAS  PubMed  Google Scholar 

  108. 108

    Grice, E. A. et al. A diversity profile of the human skin microbiota. Genome Res. 18, 1043–1050 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109

    Zoetendal, E. G. et al. Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl. Environ. Microbiol. 68, 3401–3407 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110

    Brotman, R. M., Ravel, J., Cone, R. A. & Zenilman, J. M. Rapid fluctuation of the vaginal microbiota measured by Gram stain analysis. Sex. Transm. Infect. 86, 297–302 (2010).

    PubMed  PubMed Central  Google Scholar 

Download references


This Review covers work in the Knight laboratory that is supported by the US National Institutes of Health (NIH), the Bill and Melinda Gates Foundation, the Crohn's and Colitis Foundation and the Howard Hughes Medical Institutes. D.G. was supported by a grant from the NIH (NIHU54HG004969), the Crohn's and Colitis Foundation of America and the Juvenile Diabetes Research Foundation.

Author information



Corresponding author

Correspondence to Rob Knight.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links


Rob Knight's homepage


Community Cyberinfrastructure for Advanced Microbial Denoiser

Earth Microbiome Project

Ecology Research and Analysis (CAMERA)


Human Microbiome Project

Integrated Microbial Genomes with Microbiome samples (IMG/M)




Nature Reviews Genetics Series on Study designs

Nature Reviews Genetics Series on Applications of next-generation sequencing


QIIME database

Ribosomal Database Project (RDP)



Web BLAST page options (details of NCBI's nr database)



The collection of microbial organisms from a defined environment, such as a human gut.


The collection of genes that are harboured by microbiota.


The study of the collective genome of microorganisms from an environment. Shotgun metagenomics refers to the approach of shearing DNA that have been extracted from the environment and sequencing the small fragments.


An amplified fragment of DNA from a region of a marker gene (such as 16S rDNA) that is generated by PCR.

Bead beating

A process used to lyse cells and to disrupt larger structures before DNA extraction.

Paired-end sequencing

An approach used in some sequencing platforms in which a single DNA clone is subjected to sequencing reads that originate from each of a set of primers, such that the direction of each sequencing reaction is directed to the origin of the other.

Functional profiling approaches

Studies in which the genomic DNA of the microbiome is assessed for functional potential.

Jumping libraries

Libraries that use molecular biology techniques to join together the ends of a larger DNA fragment, allowing sequencing on platforms that can only sequence a shorter fragment length. For example, 10 kb fragments might be reduced to 200 bases from each end, giving a final fragment size of 400 bp that can undergo paired-end sequencing.

Operational taxonomic units

(OTUs). Sequences are generally collapsed into OTUs based on sequence similarity thresholds for downstream analyses. The typical threshold is 97%, and this is taken as a proxy for species level divergence, although what constitutes a microbial species remains an open debate.

Chimeric sequence

An artificial sequence that juxtaposes gene regions from two or more unrelated organisms. It is produced by recombination between two or more DNA molecules during PCR amplification.


Sequences that contain repetitions of identical bases.


Information associated with sequences, including environmental conditions and the time and location of the sample collection site.

Principal coordinates analysis

(PCoA). A multivariate technique used in microbiome studies to visualize the relationships among communities. Each community is represented by a point in typically two- or three-dimensional space, and similar communities are located close to one another in the resulting PCoA plot.

Rarefaction curves

Plots of community diversity versus depth of sequencing (or, generally, observation). They are used to assess the amount of diversity and the extent to which it has been sampled at a given depth of sequencing.

Interpolated Markov models

A bioinformatics technique used here to classify DNA sequences using patterns of k-mer nucleotide strings that are present in a within a genome database.

Leave-one-out analyses

Studies of a microbial community that lacks one of its constituent microbial taxa.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kuczynski, J., Lauber, C., Walters, W. et al. Experimental and analytical tools for studying the human microbiome. Nat Rev Genet 13, 47–58 (2012).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing