Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Variation in the mutation rate across mammalian genomes

Key Points

  • The germline mutation rate varies across the mammalian genome at several scales: between adjacent nucleotides; over hundreds of nucleotides; over hundreds of thousands to millions of nucleotides; and between whole chromosomes.

  • The strongest patterns are observed at the smallest scales.

  • Variation between adjacent nucleotides can either be dependent or independent of context.

  • Large-scale variation in the mutation rate is underestimated by between-species comparisons.

  • Variation between chromosomes is most conspicuous for the sex chromosomes.

  • There is variation in the somatic mutation rate across the genome. The variation has similarities and differences to that observed in the germline.

Abstract

It has been known for many years that the mutation rate varies across the genome. However, only with the advent of large genomic data sets is the full extent of this variation becoming apparent. The mutation rate varies over many different scales, from adjacent sites to whole chromosomes, with the strongest variation seen at the smallest scales. Some of these patterns have clear mechanistic bases, but much of the rate variation remains unexplained, and some of it is deeply perplexing. Variation in the mutation rate has important implications in evolutionary biology and underexplored implications for our understanding of hereditary disease and cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Variation between adjacent sites.
Figure 2: The effect of transcription.
Figure 3: The effect of indels on the rate of point mutations.
Figure 4: Variation in the mutation rate at the 1 Mb scale.
Figure 5: Variation between chromosomes.

Similar content being viewed by others

References

  1. Benzer, S. On the topography of the genetic fine structure. Proc. Natl Acad. Sci. USA 47, 403–415 (1961). This is a classic study demonstrating that the mutation rate varies between sites within a gene; it was performed before the birth of DNA sequencing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Greenman, C., Wooster, R., Futreal, P. A., Stratton, M. R. & Easton, D. F. Statistical analysis of pathogenicity of somatic mutations in cancer. Genetics 173, 2187–2198 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Haag-Liautard, C. et al. Direct estimation of per nucleotide and genomic deleterious mutation rates in Drosophila. Nature 445, 82–85 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Conrad, D. F. et al. Variation in genome-wide mutation rates within and between human families. Nature Genet. 43, 712–714 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Gojobori, T., Li, W.-H. & Graur, D. Patterns of nucleotide substitution in pseudogenes and functional genes. J. Mol. Evol. 18, 360–369 (1982).

    Article  CAS  PubMed  Google Scholar 

  6. Bulmer, M. Neighbouring base effects on substitution rates in pseudogenes. Mol. Biol. Evol. 3, 322–329 (1986).

    CAS  PubMed  Google Scholar 

  7. Lynch, M. The Origins of Genome Architecture (Sinauer Associates, Sunderland, Massachusetts, 2007).

    Google Scholar 

  8. Hershberg, R. & Petrov, P. Evidence that mutation is universally biased towards AT in bacteria. PLoS Genetics 6, e1001115 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Blake, R. D., Hess, S. T. & Nicholson, J. The influence of nearest neighbours on the rate and pattern of spontaneous point mutations. J. Mol. Evol. 34, 189–200 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Zhao, Z. & Boerwinkle, E. Neighboring-nucleotide effects on single nucleotide polymorphisms: a study of 2.6 million polymorphisms across the human genome. Genome Res. 12, 1679–1686 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hwang, D. G. & Green, P. Bayesian Markov chain Monte Carlo sequence analysis reveals varying neutral substitution patterns in mammalian evolution. Proc. Natl Acad. Sci. USA 101, 13994–14001 (2004). This is the most comprehensive analysis of the effect of neighbouring nucleotides on the rate of mutation in mammals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Keightley, P. D., Eory, L., Halligan, D. L. & Kirkpatrick, M. Inference of mutation parameters and selective constraint in Mammalian coding sequences by approximate bayesian computation. Genetics 187, 1153–1161 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Siepel, A. & Haussler, D. Phylogenetic estimation of context-dependent substitution rates by maximum likelihood. Mol. Biol. Evol. 21, 468–488 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Nachman, M. W. & Crowell, S. L. Estimate of the mutation rate per nucleotide in humans. Genetics 156, 297–304 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

  16. Fryxell, K. J. & Moon, W. J. CpG mutation rates in the human genome are highly dependent on local GC content. Mol. Biol. Evol. 22, 650–658 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Coulondre, C., Miller, J. H., Farabaugh, P. J. & Gilbert, W. Molecular basis of base substitution hot-spots in Escherichia coli. Nature 274, 775–780 (1978).

    Article  CAS  PubMed  Google Scholar 

  18. Nevarez, P. A., DeBoever, C. M., Freeland, B. J., Quitt, M. A. & Bush, E. C. Context dependent substitution biases vary within the human genome. BMC Bioinformatics 11, 462 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Excoffier, L. & Yang, Z. Substitution rate variation among sites in mitochondrial hypervariable region I of humans and chimpanzees. Mol. Biol. Evol. 16, 1357–1368 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Wakeley, J. Substitution rate heterogeneity variation among sites in hypervariable region 1 of human mitochondrial DNA. J. Mol. Evol. 37, 613–623 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Stoneking, M. Hypervariable sites in the mtDNA control region are mutational hotspots. Am. J. Hum. Genet. 67, 1029–1032 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Eyre-Walker, A. & Awadalla, P. Does human mtDNA recombine? J. Mol. Evol. 53, 430–435 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Rogozin, I. B. & Pavlov, Y. I. Theoretical analysis of mutation hotspots and their DNA sequence context specificity. Mutat. Res. 544, 65–85 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Hodgkinson, A., Ladoukakis, E. & Eyre-Walker, A. Cryptic variation in the human mutation rate. PLoS Biol. 7, e27 (2009). This was the first demonstration that the mutation rate varies between adjacent sites in a context-independent manner in the nuclear genome.

    Article  CAS  Google Scholar 

  25. Johnson, P. L. F. & Hellmann, I. Mutation rate distribution inferred from coincident SNPs and coincident substitutions. Genome Biol. Evol. 13 May 2011 (doi:10.1093/gbe/evr044).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Musumeci, L. et al. Single nucleotide differences (SNDs) in the dbSNP database may lead to errors in genotyping and haplotyping studies. Hum. Mutat. 31, 67–73 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hodgkinson, A. & Eyre-Walker, A. The genomic distribution and local context of coincident SNPs in human and chimpanzee. Genome Biol. Evol. 2, 547–557 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bird, A. P. CpG-rich islands and the function of DNA methylation. Nature 321, 209–213 (1986).

    Article  CAS  PubMed  Google Scholar 

  29. Polak, P. & Arndt, P. F. Transcription induces strand-specific mutations at the 5′ end of human genes. Genome Res. 18, 1216–1223 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cohen, N. M., Kenigsberg, E. & Tanay, A. Primate CpG islands are maintained by heterogeneous evolutionary regimes involving minimal selection. Cell 145, 773–786 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Elango, N., Kim, S. H., Vigoda, E. & Yi, S. V. Mutations of different molecular origins exhibit contrasting patterns of regional substitution rate variation. PLoS Comput. Biol. 4, e1000015 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fryxell, K. & Zuckerkandl, E. Cytosine deamination plays a primary role in the evolution of mammalian isochores. Mol. Biol. Evol. 17, 1371–1383 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Bernardi, G. Ischores and the evolutionary genomics of vertebrates. Gene 241, 3–17 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Boulikas, T. Evolutionary consequences of nonrandom damage and repair of chromatin domains. J. Mol. Evol. 35, 156–180 (1992).

    Article  CAS  Google Scholar 

  35. Hanawalt, P. C. & Spivak, G. Transcription-coupled DNA repair: two decades of progress and surprises. Nature Rev. Mol. Cell Biol. 9, 958–970 (2008).

    Article  CAS  Google Scholar 

  36. Green, P., Ewing, B., Miller, W., Thomas, P. J. & Green, E. D. Transcription-associated mutational asymmetry in mammalian evolution. Nature Genet. 33, 514–517 (2003). This is an analysis that showed for the first time that transcription affects the pattern but not the rate of mutation in the germline.

    Article  CAS  PubMed  Google Scholar 

  37. Webster, M. T., Smith, N. G. C., Lercher, M. J. & Ellegren, H. Gene expression, synteny and local similarity in human noncoding mutation rates. Mol. Biol. Evol. 21, 1820–1830 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Ying, H., Epps, J., Williams, R. & Huttley, G. Evidence that localized variation in primate sequence divergence arises from an influence of nucleosome placement on DNA repair. Mol. Biol. Evol. 27, 637–649 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Boyle, A. P. et al. High-resolution genome-wide in vivo footprinting of diverse transcription factors in human cells. Genome Res. 21, 456–464 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tian, D. et al. Single-nucleotide mutation rate increases close to insertions/deletions in eukaryotes. Nature 455, 105–108 (2008). This paper presents the first evidence that indel mutations are mutagenic in a broad variety of organisms.

    Article  CAS  PubMed  Google Scholar 

  41. Hollister, J. D., Ross-Ibarra, J. & Gaut, B. S. Indel-associated mutation rate varies with mating system in flowering plants. Mol. Biol. Evol. 27, 409–416 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. McDonald, M. J., Wang, W. C., Huang, H. D. & Leu, J. Y. Clusters of nucleotide substitutions and insertion/deletion mutations are associated with repeat sequences. PLoS Biol. 9, e1000622 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhu, L., Wang, Q., Tang, P., Araki, H. & Tian, D. Genomewide association between insertions/deletions and the nucleotide diversity in bacteria. Mol. Biol. Evol. 26, 2353–2361 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Amos, W. Mutation biases and mutation rate variation around very short human microsatellites revealed by human–chimpanzee–orangutan genomic sequence alignments. J. Mol. Evol. 71, 192–201 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Lang, G. I. & Murray, A. W. Estimating the per-base-pair mutation rate in the yeast Saccharomyces cerevisiae. Genetics 178, 67–82 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Eory, L., Halligan, D. L. & Keightley, P. D. Distributions of selectively constrained sites and deleterious mutation rates in the hominid and murid genomes. Mol. Biol. Evol. 27, 177–192 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Pink, C. J. et al. Evidence that replication-associated mutation alone does not explain between-chromosome differences in substitution rates. Genome Biol. Evol. 1, 13–22 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hellmann, I., Ebersberger, I., Ptak, S. E., Paabo, S. & Przeworski, M. A neutral explanation for the correlation of diversity with recombination rates in humans. Am. J. Hum. Genet. 72, 1527–1535 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hellmann, I. et al. Why do human diversity levels vary at a megabase scale? Genome Res. 15, 1222–1231 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lercher, M. J. & Hurst, L. D. Human SNP variability and mutation rate are higher in regions of high recombination. Trends Genet. 18, 337–340 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Hardison, R. C. et al. Covariation in frequencies of substitution, deletion, transposition, and recombination during eutherian evolution. Genome Res. 13, 13–26 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ananda, G., Chiaromonte, F. & Makova, K. D. A genome-wide view of mutation rate co-variation using multivariate analyses. Genome Biol. 12, R27 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bromham, L. & Penny, D. The modern molecular clock. Nature Rev. Genet. 4, 216–224 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Walser, J. C., Ponger, L. & Furano, A. V. CpG dinucleotides and the mutation rate of non-CpG DNA. Genome Res. 18, 1403–1414 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hodgkinson, A. & Eyre-Walker, A. Human triallelic sites: evidence for a new mutational mechanism? Genetics 184, 233–241 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Averof, M., Rokas, A., Wolfe, K. H. & Sharp, P. M. Evidence for a high frequency of simultaneous double-nucleotide substitutions. Science 287, 1283–1286 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Schrider, D. R., Hourmozdi, J. N. & Hahn, M. W. Pervasive multinucleotide mutational events in eukaryotes. Curr. Biol. 21, 1051–1054 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wolfe, K. H., Sharp, P. M. & Li, W.-H. Mutation rates differ among regions of the mammalian genome. Nature 337, 283–285 (1989).

    Article  CAS  PubMed  Google Scholar 

  59. Matassi, G., Sharp, P. M. & Gautier, C. Chromosomal location effects on gene sequence evolution in mammals. Curr. Biol. 9, 786–791 (1999). This was the first demonstration that the mutation rate varies at a large scale across the mammalian genome.

    Article  CAS  PubMed  Google Scholar 

  60. Williams, E. J. & Hurst, L. D. The proteins of linked genes evolve at similar rates. Nature 407, 900–903 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Lercher, M. J., Williams, E. J. & Hurst, L. D. Local similarity in evolutionary rates extends over whole chromosomes in human–rodent and mouse–rat comparisons: implications for understanding the mechanistic basis of the male mutation bias. Mol. Biol. Evol. 18, 2032–2039 (2001). This was the first indication that the mutation rate varies between the autosomes, as well as between the autosomes and sex chromosomes.

    Article  CAS  PubMed  Google Scholar 

  62. Lercher, M. J., Chamary, J. V. & Hurst, L. D. Genomic regionality in rates of evolution is not explained by clustering of genes of comparable expression profile. Genome Res. 14, 1002–1013 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Dermitzakis, E. T., Reymond, A. & Antonarakis, S. E. Conserved non-genic sequences — an unexpected feature of mammalian genomes. Nature Rev. Genet. 6, 151–157 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Asthana, S. et al. Widely distributed noncoding purifying selection in the human genome. Proc. Natl Acad. Sci. USA 104, 12410–12415 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Meader, S., Ponting, C. P. & Lunter, G. Massive turnover of functional sequence in human and other mammalian genomes. Genome Res. 20, 1335–1343 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hodgkinson, A., Chen, Y. & Eyre-Walker, A. The large scale distribution of somatic mutations in cancer genomes. Hum. Mutat. 23 Sep 2011(doi:10.1002/humu.21616).

    Article  CAS  PubMed  Google Scholar 

  67. Gaffney, D. J. & Keightley, P. D. The scale of mutational variation in the murid genome. Genome Res. 15, 1086–1094 (2005). This is a detailed investigation into the scale over which the mutation rate varies in rodents.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Spencer, C. C. et al. The influence of recombination on human genetic diversity. PLoS Genet. 2, e148 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chimpanzee Sequencing and Analysis Consortium. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437, 69–87 (2005).

  70. Imamura, H., Karro, J. E. & Chuang, J. H. Weak preservation of local neutral substitution rates across mammalian genomes. BMC Evol. Biol. 9, 89 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tyekucheva, S. et al. Human–macaque comparisons illuminate variation in neutral substitution rates. Genome Biol. 9, R76 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chen, C. L. et al. Impact of replication timing on non-CpG and CpG substitution rates in mammalian genomes. Genome Res. 20, 447–457 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pink, C. J. & Hurst, L. D. Timing of replication is a determinant of neutral substitution rates but does not explain slow Y chromosome evolution in rodents. Mol. Biol. Evol. 27, 1077–1086 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Stamatoyannopoulos, J. A. et al. Human mutation rate associated with DNA replication timing. Nature Genet. 41, 393–395 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Duret, L. & Arndt, P. F. The impact of recombination on nucleotide substitutions in the human genome. PLoS Genet. 4, e1000071 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Prendergast, J. G. et al. Chromatin structure and evolution in the human genome. BMC Evol. Biol. 7, 72 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Eyre-Walker, A. Evidence of selection on silent site base composition in mammals: potential implications for the evolution of isochores and junk DNA. Genetics 152, 675–683 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Lercher, M. J., Smith, N. G. C., Eyre-Walker, A. & Hurst, L. D. The evolution of isochores: evidence from SNP frequency distributions. Genetics 162, 1805–1810 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Ebersberger, I., Metzler, D., Schwarz, C. & Paabo, S. Genomewide comparison of DNA sequences between humans and chimpanzees. Am. J. Hum. Genet. 70, 1490–1497 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Makova, K. D. & Li, W.-H. Strong male-driven evolution of DNA sequences in humans and apes. Nature 416, 624–626 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Shen, P. et al. Population genetic implications from sequence variation in four Y-chromosome genes. Proc. Natl Acad. Sci. USA 97, 7354–7359 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Malcom, C. M., Wyckoff, G. J. & Lahn, B. T. Genic mutation rates in mammals: local similarity, chromosomal heterogeneity, and X-versus-autosome disparity. Mol. Biol. Evol. 20, 1633–1641 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Axelsson, E., Smith, N. G., Sundstrom, H., Berlin, S. & Ellegren, H. Male-biased mutation rate and divergence in autosomal, Z-linked and W-linked introns of chicken and Turkey. Mol. Biol. Evol. 21, 1538–1547 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Haldane, J. B. The mutation rate of the gene for haemophilia, and its segregation ratios in males and females. Ann. Eugen. 13, 262–271 (1947).

    Article  CAS  PubMed  Google Scholar 

  85. Ellegren, H. Characteristics, causes and evolutionary consequences of male-biased mutation. Proc. Biol. Sci. 274, 1–10 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Taylor, J., Tyekucheva, S., Zody, M., Chiaromonte, F. & Makova, K. D. Strong and weak male mutation bias at different sites in the primate genomes: insights from the human–chimpanzee comparison. Mol. Biol. Evol. 23, 565–573 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Finkel, T., Serrano, M. & Blasco, M. A. The common biology of cancer and ageing. Nature 448, 767–774 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Stratton, M. R. Exploring the genomes of cancer cells: progress and promise. Science 331, 1553–1558 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Chapman, M. A. et al. Initial genome sequencing and analysis of multiple myeloma. Nature 471, 467–472 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lee, W. et al. The mutation spectrum revealed by paired genome sequences from a lung cancer patient. Nature 465, 473–477 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Pleasance, E. D. et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463, 191–196 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Pleasance, E. D. et al. A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature 463, 184–190 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Jones, S. et al. Core signalling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321, 1801–1806 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Parsons, D. W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wood, L. D. et al. The genomic landscapes of human breast and colorectal cancers. Science 318, 1108–1113 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Cox, E. C. On the organization of higher chromosomes. Nature New Biol. 239, 133–134 (1972).

    Article  CAS  PubMed  Google Scholar 

  97. Chuang, J. H. & Li, H. Functional bias and spatial organization of genes in mutational hot and cold regions in the human genome. PLoS Biol. 2, E29 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wyckoff, G. J., Malcom, C. M., Vallender, E. J. & Lahn, B. T. A highly unexpected strong correlation between fixation probability of nonsynonymous mutations and mutation rate. Trends Genet. 21, 381–385 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Vallender, E. J. & Lahn, B. T. Uncovering the mutation-fixation correlation in short lineages. BMC Evol. Biol. 7, 168 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Stoletzki, N. & Eyre-Walker, A. The positive correlation between dN/dS and dS in mammals is due to runs of adjacent substitutions. Mol. Biol. Evol. 28, 1371–1380 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Denver, D. R., Morris, K., Lynch, M. & Thomas, W. K. High mutation rate and predominance of insertions in the Caenorhabditis elegans nuclear genome. Nature 430, 679–682 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Kimura, M. The Neutral Theory of Molecular Evolution (Cambridge Univ. Press, Cambridge, UK, 1983).

    Book  Google Scholar 

  103. Andolfatto, P. Adaptive evolution of non-coding DNA in Drosophila. Nature 437, 1149–1152 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Haddrill, P. R., Charlesworth, B., Halligan, D. L. & Andolfatto, P. Patterns of intron sequence evolution in Drosophila are dependent upon length and GC content. Genome Biol. 6, R67 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Plotkin, J. B. & Kudla, G. Synonymous but not the same: the causes and consequences of codon bias. Nature Rev. Genet. 12, 32–42 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. McVicker, G., Gordon, D., Davis, C. & Green, P. Widespread genomic signatures of natural selection in hominid evolution. PLoS Genet. 5, e1000471 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Benton, M. J. & Donoghue, P. C. Paleontological evidence to date the tree of life. Mol. Biol. Evol. 24, 26–53 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Eyre-Walker, A. & Keightley, P. D. High genomic deleterious mutation rates in hominids. Nature 397, 344–347 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Yu, N. et al. Global patterns of human DNA sequence variation in a 10kb region on chromosome 1. Mol. Biol. Evol. 18, 214–222 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Ophir, R. & Graur, D. Patterns and rates of indel evolution in processed pseudogenes from humans and murids. Gene 31, 191–202 (1997).

    Article  Google Scholar 

  111. Sjodin, P., Bataillon, T. & Schierup, M. H. Insertion and deletion processes in recent human history. PLoS ONE 5, e8650 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lynch, M. Evolution of the mutation rate. Trends Genet. 26, 345–352 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Li, W.-H. & Stadler, L. A. Low nucleotide diversity in man. Genetics 129, 513–523 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Cargill, M. et al. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nature Genet. 22, 231–238 (1999).

    Article  CAS  PubMed  Google Scholar 

  115. Leigh, E. G. Evolution of mutation rates. Genetics 73 (Suppl.), 1–18 (1973).

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Y. Chen for help in compiling the data in figure 4 and to L. Hurst, C. Pink, N. Stoletzki and the four anonymous referees for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alan Hodgkinson or Adam Eyre-Walker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Adam Eyre-Walker's homepage

Glossary

Pseudogenes

Copies of a gene that are no longer functional, usually because of deactivating mutations, such as premature stop codons.

Transition

A mutation that converts a pyrimidine into another pyrimidine (that is, C↔T) or a purine into another purine (that is, A↔G).

Transversions

Mutations that convert a pyrimidine into a purine or vice versa (for example, C→G or C→A).

Coincident SNPs

(cSNPs). Orthologous sites that contain a SNP in two species.

Coincident single nucleotide substitutions

(cSNSs). Orthologous sites that have substitutions in two independent pairs of species.

Site frequency spectra

The distributions of allele frequencies within a sample of sequences.

DNase I hypersensitive sites

Sites that are digested by the endonuclease DNase I, which preferentially attacks exposed DNA, such as in open chromatin.

Synonymous sites

Sites at which some or all of the mutations do not change the amino acid. The rate of substitution at synonymous sites refers only to the rate of synonymous substitution at such sites.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hodgkinson, A., Eyre-Walker, A. Variation in the mutation rate across mammalian genomes. Nat Rev Genet 12, 756–766 (2011). https://doi.org/10.1038/nrg3098

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3098

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer