Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Software for systems biology: from tools to integrated platforms

Key Points

  • Software is crucial for biological research, has an impact on research productivity and enables researchers to explore massive databases and knowledge-bases.

  • The workflow in systems biology generally consists of iterative cycles of: experiments; data acquisition and analysis; modelling; and computational analysis. Each of these processes is supported by software tools.

  • Standardization and interoperability are crucial for the efficient use of software tools and data resources.

  • A software platform enables various software tools, data resources and knowledge sources to be accessible in a consistent manner. This dramatically improves the productivity of research and reduces potential errors in the workflow.

  • In the future, software platforms and data or knowledge resources need to be supported through community-wide efforts. However, this requires a broader understanding of social dynamics, psychology and the economics of research activities; additionally, platforms need to be supported by user-friendly software tools.

Abstract

Understanding complex biological systems requires extensive support from software tools. Such tools are needed at each step of a systems biology computational workflow, which typically consists of data handling, network inference, deep curation, dynamical simulation and model analysis. In addition, there are now efforts to develop integrated software platforms, so that tools that are used at different stages of the workflow and by different researchers can easily be used together. This Review describes the types of software tools that are required at different stages of systems biology research and the current options that are available for systems biology researchers. We also discuss the challenges and prospects for modelling the effects of genetic changes on physiology and the concept of an integrated platform.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Workflow of computational tasks in systems biology.
Figure 2: An example application of the High-Definition Physiology Project.

Similar content being viewed by others

References

  1. Kitano, H. Systems biology: a brief overview. Science 295, 1662–1664 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Kitano, H. Computational systems biology. Nature 420, 206–210 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Kitano, H. Perspectives on systems biology. New Generation Computing 18, 199–216 (2000).

    Article  Google Scholar 

  4. Ideker, T., Galitski, T. & Hood, L. A new approach to decoding life: systems biology. Annu. Rev. Genomics Hum. Genet. 2, 343–372 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Tyson, J. J., Chen, K. & Novak, B. Network dynamics and cell physiology. Nature Rev. Mol. Cell Biol. 2, 908–916 (2001).

    Article  CAS  Google Scholar 

  6. Novak, B. & Tyson, J. J. Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos. J. Cell Sci. 106, 1153–1168 (1993).

    CAS  PubMed  Google Scholar 

  7. Chen, K. C. et al. Integrative analysis of cell cycle control in budding yeast. Mol. Biol. Cell 15, 3841–3862 (2004). A pioneering study using computational modelling and analysis of the budding yeast cell cycle. The model computationally reproduced the phenotypes of various gene deletion mutants.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Aoki, K., Yamada, M., Kunida, K., Yasuda, S. & Matsuda, M. Processive phosphorylation of ERK MAP kinase in mammalian cells. Proc. Natl Acad. Sci. USA 108, 12675–12680 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schoeberl, B. et al. An ErbB3 antibody, MM-121, is active in cancers with ligand-dependent activation. Cancer Res. 70, 2485–2494 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schoeberl, B. et al. Therapeutically targeting ErbB3: a key node in ligand-induced activation of the ErbB receptor-PI3K axis. Sci. Signal. 2, ra31 (2009).

    Article  PubMed  CAS  Google Scholar 

  11. Evans, D., Hagiu, A. & Schmalensee, R. Invisible Engines: How Software Platforms Drive Innovation and Transform Industries. (MIT Press, 2006). An easy-to-read introduction to the concept of software platforms in industries.

    Book  Google Scholar 

  12. Lee, T. L. Big data: open-source format needed to aid wiki collaboration. Nature 455, 461 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Brown, F. Saving big pharma from drowning in the data pool. Drug Discov. Today 11, 1043–1045 (2006).

    Article  PubMed  Google Scholar 

  14. Kröger, P. & Bry, F. A computational biology database digest: data, data analysis, and data management. Distributed and Parallel Databases 13, 7–42 (2003).

    Article  Google Scholar 

  15. Field, D., Tiwari, B. & Snape, J. Bioinformatics and data management support for environmental genomics. PLoS Biol. 3, e297 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Keator, D. B. Management of information in distributed biomedical collaboratories. Methods Mol. Biol. 569, 1–23 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Van Deun, K., Smilde, A. K., van der Werf, M. J., Kiers, H. A. & Van Mechelen, I. A structured overview of simultaneous component based data integration. BMC Bioinformatics 10, 246 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Brazma, A., Krestyaninova, M. & Sarkans, U. Standards for systems biology. Nature Rev. Genet. 7, 593–605 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Brazma, A. et al. Minimum information about a microarray experiment (MIAME) — toward standards for microarray data. Nature Genet. 29, 365–371, (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Taylor, C. F. et al. The minimum information about a proteomics experiment (MIAPE). Nature Biotech. 25, 887–893 (2007).

    Article  CAS  Google Scholar 

  21. Martens, L., Palazzi, L. M. & Hermjakob, H. Data standards and controlled vocabularies for proteomics. Methods Mol. Biol. 484, 279–286 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Taylor, C. F. et al. Promoting coherent minimum reporting guidelines for biological and biomedical investigations: the MIBBI project. Nature Biotech. 26, 889–896 (2008).

    Article  CAS  Google Scholar 

  23. Saltz, J. et al. caGrid: design and implementation of the core architecture of the cancer biomedical informatics grid. Bioinformatics 22, 1910–1916 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Oinn, T. et al. Taverna: a tool for the composition and enactment of bioinformatics workflows. Bioinformatics 20, 3045–3054 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Lee, S., Wang, T. D., Hashmic, N. & Cummings, M. P. Bio-STEER: A semantic Web workflow tool for Grid computing in the life sciences. Future Generation Computer Systems 23, 497–509 (2007).

    Article  Google Scholar 

  26. Giardine, B. et al. Galaxy: a platform for interactive large-scale genome analysis. Genome Res. 15, 1451–1455 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schadt, E. E., Friend, S. H. & Shaywitz, D. A. A network view of disease and compound screening. Nature Rev. Drug Discov. 8, 286–295 (2009).

    Article  CAS  Google Scholar 

  28. van't Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002).

    Article  CAS  Google Scholar 

  29. Altshuler, D., Daly, M. J. & Lander, E. S. Genetic mapping in human disease. Science 322, 881–888 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Dewan, A. et al. HTRA1 promoter polymorphism in wet age-related macular degeneration. Science 314, 989–992 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Yang, Z. et al. A variant of the HTRA1 gene increases susceptibility to age-related macular degeneration. Science 314, 992–993 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Chesler, E. J. et al. Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nature Genet. 37, 233–242 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Monks, S. A. et al. Genetic inheritance of gene expression in human cell lines. Am. J. Hum. Genet. 75, 1094–1105 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Morley, M. et al. Genetic analysis of genome-wide variation in human gene expression. Nature 430, 743–747 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhu, J. et al. An integrative genomics approach to the reconstruction of gene networks in segregating populations. Cytogenet. Genome Res. 105, 363–374 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Zhu, J. et al. Increasing the power to detect causal associations by combining genotypic and expression data in segregating populations. PLoS Comput. Biol. 3, e69 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Zhu, J. et al. Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks. Nature Genet. 40, 854–861 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Margolin, A. A. et al. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7 (Suppl. 1), S7 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Faith, J. J. et al. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol. 5, e8 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Shen-Orr, S. S., Milo, R., Mangan, S. & Alon, U. Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genet. 31, 64–68 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Alon, U. Network motifs: theory and experimental approaches. Nature Rev. Genet. 8, 450–461 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Fadda, A. et al. Inferring the transcriptional network of Bacillus subtilis. Mol. Biosyst. 5, 1840–1852 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Cho, B. K. et al. The transcription unit architecture of the Escherichia coli genome. Nature Biotech. 27, 1043–1049 (2009).

    Article  CAS  Google Scholar 

  44. Mendoza-Vargas, A. et al. Genome-wide identification of transcription start sites, promoters and transcription factor binding sites in E. coli. PloS ONE 4, e7526 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Lemmens, K. et al. DISTILLER: a data integration framework to reveal condition dependency of complex regulons in Escherichia coli. Genome Biol. 10, R27 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. De Smet, R. & Marchal, K. Advantages and limitations of current network inference methods. Nature Rev. Microbiol. 8, 717–729 (2010).

    Article  CAS  Google Scholar 

  47. Ferrucci, D. et al. Building Watson: an overview of the DeepQA project. AI Magazine 31, 3 (2010).

    Article  Google Scholar 

  48. Oda, K. & Kitano, H. A comprehensive map of the toll-like receptor signaling network. Mol. Syst. Biol. 2, 2006.0015 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Oda, K., Matsuoka, Y., Funahashi, A. & Kitano, H. A comprehensive pathway map of epidermal growth factor receptor signaling. Mol. Syst. Biol. 1, 2005.0010 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Caron, E. et al. A comprehensive map of the mTOR signaling network. Mol. Syst. Biol. 6, 453 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kaizu, K. et al. A comprehensive molecular interaction map of the budding yeast cell cycle. Mol. Syst. Biol. 6, 415 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Joshi-Tope, G. et al. Reactome: a knowledgebase of biological pathways. Nucleic Acids Res. 33, D428–D432 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Mi, H. et al. The PANTHER database of protein families, subfamilies, functions and pathways. Nucleic Acids Res. 33, D284–D288 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Cerami, E. G. et al. Pathway Commons, a web resource for biological pathway data. Nucleic Acids Res. 39, D685–D690 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Karp, P. D. et al. Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Res. 33, 6083–6089 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hucka, M. et al. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19, 524–531 (2003). An original paper on SBML that triggered various standardization efforts in systems biology.

    Article  CAS  PubMed  Google Scholar 

  58. Demir, E. et al. The BioPAX community standard for pathway data sharing. Nature Biotech. 28, 935–942 (2010).

    Article  CAS  Google Scholar 

  59. Le Novere, N. et al. The Systems Biology Graphical Notation. Nature Biotech. 27, 735–741 (2009).

    Article  CAS  Google Scholar 

  60. Le Novere, N. et al. Minimum information requested in the annotation of biochemical models (MIRIAM). Nature Biotech. 23, 1509–1515 (2005).

    Article  CAS  Google Scholar 

  61. Kitano, H., Funahashi, A., Matsuoka, Y. & Oda, K. Using process diagrams for the graphical representation of biological networks. Nature Biotech. 23, 961–966 (2005).

    Article  CAS  Google Scholar 

  62. Klipp, E., Liebermeister, W., Helbig, A., Kowald, A. & Schaber, J. Systems biology standards — the community speaks. Nature Biotech. 25, 390–391 (2007).

    Article  CAS  Google Scholar 

  63. Sauro, H. M. et al. Next generation simulation tools: the Systems Biology Workbench and BioSPICE integration. OMICS 7, 355–372 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. van Iersel, M. P. et al. Presenting and exploring biological pathways with PathVisio. BMC Bioinformatics 9, 399 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bauer-Mehren, A., Furlong, L. I. & Sanz, F. Pathway databases and tools for their exploitation: benefits, current limitations and challenges. Mol. Syst. Biol. 5, 290 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Calzone, L., Gelay, A., Zinovyev, A., Radvanyi, F. & Barillot, E. A comprehensive modular map of molecular interactions in RB/E2F pathway. Mol. Syst. Biol. 4, 173 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Thiele, I. & Palsson, B. O. Reconstruction annotation jamborees: a community approach to systems biology. Mol. Syst. Biol. 6, 361 (2010). This paper discusses issues regarding community efforts to reconstruct comprehensive metabolic networks.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Thiele, I. & Palsson, B. O. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat. Protoc. 5, 93–121 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Feist, A. M., Herrgard, M. J., Thiele, I., Reed, J. L. & Palsson, B. O. Reconstruction of biochemical networks in microorganisms. Nature Rev. Microbiol. 7, 129–143 (2009). A review on the current state-of-the-art in data-driven genome-wide network reconstruction.

    Article  CAS  Google Scholar 

  71. Herrgard, M. J. et al. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nature Biotech. 26, 1155–1160 (2008).

    Article  CAS  Google Scholar 

  72. Wu, G., Zhu, L., Dent, J. E. & Nardini, C. A comprehensive molecular interaction map for rheumatoid arthritis. PLoS ONE 5, e10137 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Matsuoka, Y., Ghosh, S., Kikuchi, N. & Kitano, H. Payao: a community platform for SBML pathway model curation. Bioinformatics 26, 1381–1383 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pico, A. R. et al. WikiPathways: pathway editing for the people. PLoS Biol. 6, e184 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Wierling, C., Herwig, R. & Lehrach, H. Resources, standards and tools for systems biology. Brief. Funct. Genomic. Proteomic. 6, 240–251 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Klipp, E. et al. Systems Biology: A Textbook (Wiley-VCH, 2009). A text book with examples of modelling and computational analysis.

    Google Scholar 

  77. Lopez-Aviles, S., Kapuy, O., Novak, B. & Uhlmann, F. Irreversibility of mitotic exit is the consequence of systems-level feedback. Nature 459, 592–595 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. McAdams, H. H. & Arkin, A. Stochastic mechanisms in gene expression. Proc. Natl Acad. Sci. USA. 94, 814–819 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ozbudak, E. M., Thattai, M., Kurtser, I., Grossman, A. D. & van Oudenaarden, A. Regulation of noise in the expression of a single gene. Nature Genet. 31, 69–73 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Arkin, A., Ross, J. & McAdams, H. H. Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics 149, 1633–1648 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Emonet, T., Macal, C. M., North, M. J., Wickersham, C. E. & Cluzel, P. AgentCell: a digital single-cell assay for bacterial chemotaxis. Bioinformatics 21, 2714–2721 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Hofestadt, R. & Thelen, S. Quantitative modeling of biochemical networks. Stud. Health Technol. Inform. 162, 3–16 (2011).

    CAS  PubMed  Google Scholar 

  83. Blinov, M. L., Faeder, J. R., Goldstein, B. & Hlavacek, W. S. BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. Bioinformatics 20, 3289–3291 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Swainston, N. et al. Enzyme kinetics informatics: from instrument to browser. FEBS J. 277, 3769–3779 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Waltemath, D. et al. Minimum Information About a Simulation Experiment (MIASE). PLoS Comput. Biol. 7, e1001122 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Dada, J. O., Spasic, I., Paton, N. W. & Mendes, P. SBRML: a markup language for associating systems biology data with models. Bioinformatics 26, 932–938 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Hoops, S. et al. COPASI — a COmplex PAthway SImulator. Bioinformatics 22, 3067–3074 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Klipp, E., Herwig, R., Kowald, A., Wierling, C. & Lehrach, H. Systems Biology in Practice: Concepts, Implementation and Application (John Wiley & Sons, 2005).

    Book  Google Scholar 

  89. Haefner, J. W. Modeling Biological Systems: Principles and Applications (Kluwer Academic Pub, 1996).

    Book  Google Scholar 

  90. Kauffman, S. A. Metabolic stability and epigenesis in randomly constructed genetic nets. J.Theor. Biol. 22, 437–467 (1969).

    Article  CAS  PubMed  Google Scholar 

  91. Zheng, J. et al. SimBoolNet — a Cytoscape plugin for dynamic simulation of signaling networks. Bioinformatics 26, 141–142 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Iglesias, P. & Ingaalls, B. Control Theory and Systems Biology (MIT Press, 2009). An excellent collection of introductory articles on how control theory can be applied to systems biology analysis.

    Book  Google Scholar 

  93. Chen, Q. et al. Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature 392, 293–296 (1998).

    Article  CAS  PubMed  Google Scholar 

  94. Noble, D. Modeling the heart — from genes to cells to the whole organ. Science 295, 1678–1682 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Nomura, T. Towards integration of biological and physiological functions at multiple levels. Front. Physiol. 1, 164 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Gleeson, P. et al. NeuroML: a language for describing data driven models of neurons and networks with a high degree of biological detail. PLoS Comput. Biol. 6, e1000815 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Asai, Y. et al. Specifications of insilicoML 1.0: a multilevel biophysical model description language. J. Physiol. Sci. 58, 447–458 (2008).

    Article  PubMed  Google Scholar 

  98. Plewczynski, D., La niewski, M., Augustyniak, R. & Ginalski, K. Can we trust docking results? Evaluation of seven commonly used programs on PDBbind database. J. Comput. Chem. 32, 742–755 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. Englebienne, P. & Moitessier, N. Docking ligands into flexible and solvated macromolecules. 4: are popular scoring functions accurate for this class of proteins? J. Chem. Inf. Model. 49, 1568–1580 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Swertz, M. A. & Jansen, R. C. Beyond standardization: dynamic software infrastructures for systems biology. Nature Rev. Genet. 8, 235–243 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Mi, H. & Thomas, P. PANTHER pathway: an ontology-based pathway database coupled with data analysis tools. Methods Mol. Biol. 563, 123–140 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kemper, B. et al. PathText: a text mining integrator for biological pathway visualizations. Bioinformatics 26, i374–i381 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Maier, H. et al. LitMiner and WikiGene: identifying problem-related key players of gene regulation using publication abstracts. Nucleic Acids Res. 33, W779–W782 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Huss, J. W. et al. The Gene Wiki: community intelligence applied to human gene annotation. Nucleic Acids Res. 38, D633–D639 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Callaway, E. No rest for the bio-wikis. Nature 468, 359–360 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Kitano, H., Ghosh, S. & Matsuoka, Y. Social engineering for virtual 'big science' in systems biology. Nat. Chem. Biol. 7, 323–326 (2011). This paper discusses social issues in community-driven efforts in systems biology.

    Article  CAS  PubMed  Google Scholar 

  107. Surowiecki, J. The Wisdom of Crowds. (Anchor, 2005).

    Google Scholar 

  108. Edwards, J. S. & Palsson, B. O. How will bioinformatics influence metabolic engineering? Biotechnol. Bioeng. 58, 162–169 (1998).

    Article  CAS  PubMed  Google Scholar 

  109. Edwards, J. S., Ibarra, R. U. & Palsson, B. O. In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nature Biotech. 19, 125–130 (2001).

    Article  CAS  Google Scholar 

  110. Smith, D. A. in Metabolism, Pharmacokinetics and Toxicity of Functional Groups 61–94 (Royal Society of Chemistry Publishing, 2010).

    Book  Google Scholar 

Download references

Acknowledgements

This work is, in part, supported by funding from the HD-Physiology Project of the Japan Society for the Promotion of Science (JSPS) to the Okinawa Institute of Science and Technology (OIST). Additional support is from a Canon Foundation Grant, the International Strategic Collaborative Research Program (BBSRC-JST) of the Japan Science and Technology Agency (JST), the Exploratory Research for Advanced Technology (ERATO) programme of JST to the Systems Biology Institute (SBI) and from a strategic cooperation partnership between the Luxembourg Centre for Systems Biomedicine and SBI.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samik Ghosh or Hiroaki Kitano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

A comprehensive table of software tools and resources, including further information and Weblinks (XLS 52 kb)

Related links

Related links

FURTHER INFORMATION

The Systems Biology Institute

BioCatalogue

BioModels.net

Glossary

Mutual information

A dimensionless quantity that measures the extent to which one random variable is informative about another variable. Zero mutual information between two random variables means that they are independent.

Meta-database

A database for storing metadata, which was originally defined as 'data about data', such as tags and keywords. The database is used for integrating independent distributed databases.

Ordinary differential equations

(ODEs). A type of differential equation involving functions of one independent variable, such as time, and derivatives of the functions with respect to the variable.

Partial differential equations

A type of differential equation involving functions of several independent variables, such as time and spatial axes (that is, x, y and z), and partial derivatives of the functions with respect to those variables.

Agent-based modelling

A class of computational models that simulate the interaction of agents to study their effects on a system. Agents are autonomous, decision-making entities that have heterogeneous characteristics; examples of agents are molecules or cells.

Process algebra

A mathematical modelling language for describing the behaviour of distributed systems.

Rule-based modelling

When used in biochemical science, this term refers to a way to model molecules and proteins as objects that interact with each other. The interactions are described as rules that define how the objects transform their attributes and the relationships between the objects.

Phase-space analysis

A way to analyse the dynamics of a system in a space (the phase-space), in which each of the possible states of the system is represented as a unique point.

Bifurcation analysis

A way to analyse the qualitative changes in the dynamics of a system that are caused by varying one or several parameter values continuously.

Homeodynamics

A concept that views an organism as a dynamical system; this concept emerged after the concept of homeostasis. Biological systems can be considered as homeodynamic: they can lose stability and show diverse behaviours, such as bi-stability, periodicity and chaotic dynamics.

Constraint-based reconstruction and analysis

(COBRA). A suite of methods to simulate, analyse and predict various phenotypes using genome-scale models. These methods are used particularly for metabolic networks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, S., Matsuoka, Y., Asai, Y. et al. Software for systems biology: from tools to integrated platforms. Nat Rev Genet 12, 821–832 (2011). https://doi.org/10.1038/nrg3096

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3096

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics