Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The early bird catches the worm: new technologies for the Caenorhabditis elegans toolkit

Key Points

  • The nematode worm Caenorhabitis elegans is ideal as a model organism for scientific research owing to its simplicity and arsenal of available tools. New technologies increase the usefulness of the worm as a model.

  • Loss-of-function experiments used to rely on untargeted mutagenesis techniques, such as chemical or transposon-based mutagenesis. Recent techniques allow for targeted mutagenesis using Mos-transposon-directed or zinc finger nuclease (ZFN)- or transcription activator-like effector nuclease (TALEN)-site-directed mutagenesis.

  • Loss-of-function experiments using RNAi have been refined so that knockdown only occurs in a tissue of interest rather than in the whole body.

  • Gain-of-function experiments have been improved in multiple facets by recent developments: recombineering technology and a fosmid DNA library have facilitated the generation and modification of DNA constructions, Mos transposition has allowed for single-copy insertion of a transgene into a defined locus, and using antibiotics as a selection marker has made it easier to screen for positive transgenesis events.

  • Gain-of-function experiments have been enhanced by the introduction of the FLP–FRT (flippase and flippase recognition target) system for inducible gene expression. In combination with other inducible systems, such as Cre–loxP and the heat shock promoter, FLP–FRT should allow for more refined control over gene expression.

  • Flow-cytometry technology can be used to ameliorate difficult or labour-intensive processes, including sorting synchronous-stage embryos and screening for genetic mutants.

  • Microfluidic technology can semi-automate procedures that require considerable labour or precision. Recent developments use microfluidic setups in order to semi-automate lifespan analysis and neurosurgery.

  • Imaging techniques have allowed for studies on the level of single cells or single molecules. Recent developments include methods to quantify gene expression in single cells, trace expression through cellular lineages during embryogenesis and detect single mRNA molecules in single cells.

  • Optogenetics, a method that uses light to activate or inactivate specific neurons, is ideally suited for C. elegans owing to the worm's transparent body and fairly simple nervous system of only 302 neurons. Recent methods that allow for optogenetics in freely moving worms permit the examination of the neural networks underlying movement and other behaviours, which could not be examined in immobilized worms.

Abstract

The inherent simplicity of Caenorhabditis elegans and its extensive genetic toolkit make it ideal for studying complex biological processes. Recent developments further increase the usefulness of the worm, including new methods for: altering gene expression, altering physiology using optogenetics, manipulating large numbers of worms, automating laborious processes and processing high-resolution images. These developments both enhance the worm as a model for studying processes such as development and ageing and make it an attractive model in areas such as neurobiology and behaviour.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: New genetic methods in Caenorhabditis elegans.
Figure 2: Caenorhabditis elegans microfluidics.
Figure 3: Using imaging in Caenorhabditis elegans to study cell lineages.
Figure 4: Using optogenetics in Caenorhabditis elegans.

Similar content being viewed by others

References

  1. Kimble, J. & Hirsh, D. The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Dev. Biol. 70, 396–417 (1979).

    Article  CAS  PubMed  Google Scholar 

  2. Sulston, J. E. & Horvitz, H. R. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev. Biol. 56, 110–156 (1977).

    Article  CAS  PubMed  Google Scholar 

  3. Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119 (1983).

    Article  CAS  PubMed  Google Scholar 

  4. C. elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012–2018 (1998).

  5. Lai, C. H., Chou, C. Y., Ch'ang, L. Y., Liu, C. S. & Lin, W. Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. Genome Res. 10, 703–713 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hulme, S. E. & Whitesides, G. M. Chemistry and the worm: Caenorhabditis elegans as a platform for integrating chemical and biological research. Angew. Chem. Int. Edn Engl. 50, 4774–4807 (2011).

    Article  CAS  Google Scholar 

  7. Antoshechkin, I. & Sternberg, P. W. The versatile worm: genetic and genomic resources for Caenorhabditis elegans research. Nature Rev. Genet. 8, 518–532 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Van Nostrand, E. L. & Kim, S. K. Seeing elegance in the gene regulatory networks of the worm. Curr. Opin. Genet. Dev. 21, 1–10 (2011).

    Article  Google Scholar 

  9. Flibotte, S. et al. Whole-genome profiling of mutagenesis in Caenorhabditis elegans. Genetics 185, 431–441 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sarin, S. et al. Analysis of multiple ethyl methanesulfonate-mutagenized Caenorhabditis elegans strains by whole-genome sequencing. Genetics 185, 417–430 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Frokjaer-Jensen, C. et al. Targeted gene deletions in C. elegans using transposon excision. Nature Methods 7, 451–453 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bazopoulou, D. & Tavernarakis, N. The NemaGENETAG initiative: large scale transposon insertion gene-tagging in Caenorhabditis elegans. Genetica 137, 39–46 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Kim, Y. G., Cha, J. & Chandrasegaran, S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl Acad. Sci. USA 93, 1156–1160 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Boch, J. et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326, 1509–1512 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Moscou, M. J. & Bogdanove, A. J. A simple cipher governs DNA recognition by TAL effectors. Science 326, 1501 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Wood, A. J. et al. Targeted genome editing across species using ZFNs and TALENs. Science 333, 307 (2011). Although there are still major design and cost considerations, ZFN- and TALEN-mediated mutagenesis have the potential to revolutionize the way mutants are generated. This paper describes the first time such methods have been employed in C. elegans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. De Francesco, L. Move over ZFNs. Nature Biotech. 29, 681–684 (2011).

    Article  Google Scholar 

  18. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Kamath, R. S. & Ahringer, J. Genome-wide RNAi screening in Caenorhabditis elegans. Methods 30, 313–321 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Calixto, A., Chelur, D., Topalidou, I., Chen, X. & Chalfie, M. Enhanced neuronal RNAi in C. elegans using SID-1. Nature Methods 7, 554–559 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Qadota, H. et al. Establishment of a tissue-specific RNAi system in C. elegans. Gene 400, 166–173 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mello, C. C., Kramer, J. M., Stinchcomb, D. & Ambros, V. Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959–3970 (1991). A classic, this paper describes how to introduce DNA into worms via microinjection. Microinjection is still the most common way of generating transgenic worms today and is also the basis for some of the newer techniques described in this Review, such as Mos transposition and mutagenesis mediated by TALENs and ZFNs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Praitis, V., Casey, E., Collar, D. & Austin, J. Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. Genetics 157, 1217–1226 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Frokjaer-Jensen, C. et al. Single-copy insertion of transgenes in Caenorhabditis elegans. Nature Genet. 40, 1375–1383 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Macosko, E. Z. et al. A hub-and-spoke circuit drives pheromone attraction and social behaviour in C. elegans. Nature 458, 1171–1175 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hoier, E. F., Mohler, W. A., Kim, S. K. & Hajnal, A. The Caenorhabditis elegans APC-related gene apr-1 is required for epithelial cell migration and Hox gene expression. Genes Dev. 14, 874–886 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Davis, M. W., Morton, J. J., Carroll, D. & Jorgensen, E. M. Gene activation using FLP recombinase in C. elegans. PLoS Genet. 4, e1000028 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Voutev, R. & Hubbard, E. J. A “FLP-Out” system for controlled gene expression in Caenorhabditis elegans. Genetics 180, 103–119 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ezcurra, M., Tanizawa, Y., Swoboda, P. & Schafer, W. R. Food sensitizes C. elegans avoidance behaviours through acute dopamine signalling. EMBO J. 30, 1110–1122 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sarov, M. et al. A recombineering pipeline for functional genomics applied to Caenorhabditis elegans. Nature Methods 3, 839–844 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Gerstein, M. B. et al. Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science 330, 1775–1787 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Giordano-Santini, R. et al. An antibiotic selection marker for nematode transgenesis. Nature Methods 7, 721–723 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Semple, J. I., Garcia-Verdugo, R. & Lehner, B. Rapid selection of transgenic C. elegans using antibiotic resistance. Nature Methods 7, 725–727 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Stoeckius, M. et al. Large-scale sorting of C. elegans embryos reveals the dynamics of small RNA expression. Nature Methods 6, 745–751 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rea, S. L., Ventura, N. & Johnson, T. E. Relationship between mitochondrial electron transport chain dysfunction, development, and life extension in Caenorhabditis elegans. PLoS Biol. 5, e259 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Moy, T. I. et al. High-throughput screen for novel antimicrobials using a whole animal infection model. ACS Chem. Biol. 4, 527–533 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Doitsidou, M., Flames, N., Lee, A. C., Boyanov, A. & Hobert, O. Automated screening for mutants affecting dopaminergic-neuron specification in C. elegans. Nature Methods 5, 869–872 (2008). Genetic screens are a time-consuming and laborious process. This paper describes a method that would not only automate such processes, but is exquisite in its ability to detect even minute changes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hulme, S. E. et al. Lifespan-on-a-chip: microfluidic chambers for performing lifelong observation of C. elegans. Lab. Chip 10, 589–597 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Sanchez-Blanco, A. & Kim, S. K. Variable pathogenicity determines individual lifespan in Caenorhabditis elegans. PLoS Genet. 7, e1002047 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Samara, C. et al. Large-scale in vivo femtosecond laser neurosurgery screen reveals small-molecule enhancer of regeneration. Proc. Natl Acad. Sci. USA 107 (2010). Microfluidic technology has the potential to semi-automate many laborious processes in the laboratory. This paper presents one of the most elegant applications of microfluidics by converting the typically arduous process of neurosurgery into one that could be performed by a minimally trained user with ease, rapidity and precision.

    Article  CAS  Google Scholar 

  41. Liu, X. et al. Analysis of cell fate from single-cell gene expression profiles in C. elegans. Cell 139, 623–633 (2009). Although the invariant cell lineage of the worm has been defined for over 30 years, expression analysis still tends towards descriptive characterizations of large tissues rather than quantitative characterizations of single cells. The method described in this paper allows for a minimally trained user to measure gene expression at a level of detail that was not previously thought possible without having committed to knowledge the entire cell lineage of the worm.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Peng, H., Long, F., Liu, X., Kim, S. K. & Myers, E. W. Straightening Caenorhabditis elegans images. Bioinformatics 24, 234–242 (2008).

    Article  PubMed  Google Scholar 

  43. Long, F., Peng, H., Liu, X., Kim, S. K. & Myers, G. Automatic recognition of cells (ARC) for 3D images of C. elegans. Lect. Notes Comp. Sci. 4955, 128–139 (2008).

    Article  Google Scholar 

  44. Long, F., Peng, H., Liu, X., Kim, S. K. & Myers, E. A 3D digital atlas of C. elegans and its application to single-cell analyses. Nature Methods 6, 667–672 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Aydin, Z., Murray, J. I., Waterston, R. H. & Noble, W. S. Using machine learning to speed up manual image annotation: application to a 3D imaging protocol for measuring single cell gene expression in the developing C. elegans embryo. BMC Bioinformatics 11, 84 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Murray, J. I. et al. Automated analysis of embryonic gene expression with cellular resolution in C. elegans. Nature Methods 5, 703–709 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Raj, A., van den Bogaard, P., Rifkin, S. A., van Oudenaarden, A. & Tyagi, S. Imaging individual mRNA molecules using multiple singly labeled probes. Nature Methods 5, 877–879 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Raj, A., Rifkin, S. A., Andersen, E. & van Oudenaarden, A. Variability in gene expression underlies incomplete penetrance. Nature 463, 913–918 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Deisseroth, K. Optogenetics. Nature Methods 8, 26–29 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Phil. Trans. R. Soc. Lond. B 314, 1–340 (1986).

    Article  CAS  Google Scholar 

  51. Hobert, O., Carrera, I. & Stefanakis, N. The molecular and gene regulatory signature of a neuron. Trends Neurosci. 33, 435–445 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Guo, Z. V., Hart, A. C. & Ramanathan, S. Optical interrogation of neural circuits in Caenorhabditis elegans. Nature Methods 6, 891–896 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu, Q., Hollopeter, G. & Jorgensen, E. M. Graded synaptic transmission at the Caenorhabditis elegans neuromuscular junction. Proc. Natl Acad. Sci. USA 106, 10823–10828 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Leifer, A. M., Fang-Yen, C., Gershow, M., Alkema, M. J. & Samuel, A. D. Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans. Nature Methods 8, 147–152 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Stirman, J. N. et al. Real-time multimodal optical control of neurons and muscles in freely behaving Caenorhabditis elegans. Nature Methods 8, 153–158 (2011). Optogenetics has transformed the field of neurobiology by allowing researchers to study real-time behavioural phenotypes resulting from the activation or inactivation of specific neurons. This paper is exciting not only because it uses optogenetics to address important research questions, but also because it makes optogenetics accessible to most research laboratories by demonstrating that the required tools can be built from a standard three-colour liquid crystal display (LCD) projector.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Greenwald, I. lin-12, a nematode homeotic gene, is homologous to a set of mammalian proteins that includes epidermal growth factor. Cell 43, 583–590 (1985).

    Article  CAS  PubMed  Google Scholar 

  58. Sigurdson, D. C., Spanier, G. J. & Herman, R. K. Caenorhabditis elegans deficiency mapping. Genetics 108, 331–345 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Bacaj, T. & Shaham, S. Temporal control of cell-specific transgene expression in Caenorhabditis elegans. Genetics 176, 2651–2655 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pulak, R. Techniques for analysis, sorting, and dispensing of C. elegans on the COPAS flow-sorting system. Methods Mol. Biol. 351, 275–286 (2006).

    PubMed  Google Scholar 

  61. Gray, J. M. et al. Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue. Nature 430, 317–322 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Nagel, G. et al. Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr. Biol. 15, 2279–2284 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the worm research community and apologize for the numerous works we could not cite owing to space limitations. We thank D. Sagi, M. Schvarzstein and members of the Kim laboratory for helpful discussion. We thank A. Sánchez-Blanco, A. Friedland and the anonymous reviewers for their suggestions and improvements and for their critical reading of the manuscript. X.X. is supported by the Cancer Biology Training Grant at Stanford University, California, USA. Research in the laboratory of S.K.K. is supported by the US National Human Genome Research Institute, the US National Institute of General Medical Sciences, the US National Institute on Aging and the Glenn Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart K. Kim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Stuart K. Kim's homepage

C. elegans fosmid library

C. elegans Gene Knockout Consortium

C. elegans RNAi library

Caenorhabditis Genetics Center

Cell lineaging information from the Waterston laboratory

Kim laboratory Automatic Cell Lineage Analyzer information

National BioResource Project of Japan

NemaGENETAG

Stanford Microfluidics Foundry

WormBase

WormBook

Wormatlas

Glossary

Biolistic bombardment

A technique for delivering nucleic acids into the cells, in which small metal particles coated with nucleic acid are fired into the target tissue under high pressure.

Recombineering

Molecular genetic engineering technique that uses homologous recombination to manipulate and/or alter DNA.

Fosmid

A low-copy vector for the construction of stable genomic libraries that uses the Escherichia coli F factor origin for replication. Each fosmid can store ~40 kb of library DNA, and these sequences are more stable in fosmids than in multi-copy vectors.

Florescence-activated cell sorting

(FACS). An experimental technology that can separate cells by their fluorescence and light-scattering properties.

Fluorescent in situ hybridization

(FISH). A microscopic technique that uses fluorescently tagged DNA probes to detect the cytological localization of specific RNA by in situ hybridization.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, X., Kim, S. The early bird catches the worm: new technologies for the Caenorhabditis elegans toolkit. Nat Rev Genet 12, 793–801 (2011). https://doi.org/10.1038/nrg3050

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3050

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing