Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Understanding the transcriptome through RNA structure

Key Points

  • In addition to carrying information in their linear sequences of nucleotides (primary structure), RNA molecules fold into intricate shapes. Pairing of local nucleotides can create secondary structures such as hairpins and stem–loops, and interactions among distantly located sequences can create tertiary structures.

  • RNA structures are involved in a wide range of cellular processes, including transcriptional and post-transcriptional regulation and sensing metabolites.

  • Structures can occur in coding or non-coding RNAs, and learning more about RNA structure will improve our understanding of the transcriptome.

  • Computational predictions of RNA structures have been important and continue to be refined and also combined with experimental methods.

  • Experimental methods, which can involve enzymes or chemicals, to differentiate single- or double-stranded RNAs are now being scaled-up through coupling to next-generation sequencing.

Abstract

RNA structure is crucial for gene regulation and function. In the past, transcriptomes have largely been parsed by primary sequences and expression levels, but it is now becoming feasible to annotate and compare transcriptomes based on RNA structure. In addition to computational prediction methods, the recent advent of experimental techniques to probe RNA structure by high-throughput sequencing has enabled genome-wide measurements of RNA structure and has provided the first picture of the structural organization of a eukaryotic transcriptome — the 'RNA structurome'. With additional advances in method refinement and interpretation, structural views of the transcriptome should help to identify and validate regulatory RNA motifs that are involved in diverse cellular processes and thereby increase understanding of RNA function.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diversity and dynamics of RNA structures.
Figure 2: Predicting structural motifs for RNA-binding-protein targets in mRNAs from different organisms.
Figure 3: Structure probing by RNA footprinting followed by gel or capillary electrophoresis.
Figure 4: PARS and Frag-seq methods.
Figure 5: Structural organization of the mRNA transcriptome.

Similar content being viewed by others

References

  1. Garneau, N. L., Wilusz, J. & Wilusz, C. J. The highways and byways of mRNA decay. Nature Rev. Mol. Cell Biol. 8, 113–126 (2007).

    Article  CAS  Google Scholar 

  2. Warf, M. B. & Berglund, J. A. Role of RNA structure in regulating pre-mRNA splicing. Trends Biochem. Sci. 35, 169–178 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Martin, K. C. & Ephrussi, A. mRNA localization: gene expression in the spatial dimension. Cell 136, 719–730 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kozak, M. Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 361, 13–37 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Breaker, R. R. Riboswitches and the RNA World. Cold Spring Harb. Perspect. Biol. 24 Nov 2010 (doi:10.1101/cshperspect.a003566).

    Google Scholar 

  6. Park, P. J. ChIP–seq: advantages and challenges of a maturing technology. Nature Rev. Genet. 10, 669–680 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Nagalakshmi, U. et al. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320, 1344–1349 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Blencowe, B. J., Ahmad, S. & Lee, L. J. Current-generation high-throughput sequencing: deepening insights into mammalian transcriptomes. Genes Dev. 23, 1379–1386 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Henkin, T. M. Riboswitch RNAs: using RNA to sense cellular metabolism. Genes Dev. 22, 3383–3390 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Winkler, W., Nahvi, A. & Breaker, R. R. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 419, 952–956 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Weinberg, Z. et al. Comparative genomics reveals 104 candidate structured RNAs from bacteria, archaea, and their metagenomes. Genome Biol. 11, R31 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Barrick, J. E. & Breaker, R. R. The distributions, mechanisms, and structures of metabolite-binding riboswitches. Genome Biol. 8, R239 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dann, C. E. et al. Structure and mechanism of a metal-sensing regulatory RNA. Cell 130, 878–892 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Mandal, M., Boese, B., Barrick, J. E., Winkler, W. C. & Breaker, R. R. Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell 113, 577–586 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Mandal, M. et al. A glycine-dependent riboswitch that uses cooperative binding to control gene expression. Science 306, 275–279 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Nahvi, A., Barrick, J. E. & Breaker, R. R. Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes. Nucleic Acids Res. 32, 143–150 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Croft, M. T., Moulin, M., Webb, M. E. & Smith, A. G. Thiamine biosynthesis in algae is regulated by riboswitches. Proc. Natl Acad. Sci. USA 104, 20770–20775 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sudarsan, N., Barrick, J. E. & Breaker, R. R. Metabolite-binding RNA domains are present in the genes of eukaryotes. RNA 9, 644–647 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mandal, M. & Breaker, R. R. Adenine riboswitches and gene activation by disruption of a transcription terminator. Nature Struct. Mol. Biol. 11, 29–35 (2004). This paper discusses the discovery that a single base in the adenine riboswitch determines the affinity of the aptamer for adenine versus guanine. This demonstrates the specificity of RNA structures in binding to their substrates.

    Article  CAS  Google Scholar 

  20. Ray, P. S. et al. A stress-responsive RNA switch regulates VEGFA expression. Nature 457, 915–919 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Kertesz, M. et al. Genome-wide measurement of RNA secondary structure in yeast. Nature 467, 103–107 (2010). This was the first description of genome-wide RNA structure probing, which studied double- and single-stranded regions in yeast RNAs in vitro using RNase V1 and S1 nuclease.

    Article  CAS  PubMed  Google Scholar 

  22. Kedde, M. et al. A Pumilio-induced RNA structure switch in p27-3′ UTR controls miR-221 and miR-222 accessibility. Nature Cell Biol. 12, 1014–1020 (2010). This paper showed that Pumilio 1 protein binding results in a conformational change that allows miRNA binding sites in p27 mRNA to be accessible for regulation. This demonstrates that RNA structure dynamics contributes to the complexity of gene regulation.

    Article  CAS  PubMed  Google Scholar 

  23. Zhao, J. et al. Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol. Cell 40, 939–953 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Licatalosi, D. D. et al. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456, 464–469 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hofacker, I. L., Fekete, M. & Stadler, P. F. Secondary structure prediction for aligned RNA sequences. J. Mol. Biol. 319, 1059–1066 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Do, C. B., Woods, D. A. & Batzoglou, S. CONTRAfold: RNA secondary structure prediction without physics-based models. Bioinformatics 22, e90–e98 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Mathews, D. H., Sabina, J., Zuker, M. & Turner, D. H. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288, 911–940 (1999). This paper reports the measurement of thermodynamic parameters for the stability of secondary-structure motifs. These parameters have been extensively used in prediction algorithms.

    Article  CAS  PubMed  Google Scholar 

  30. Rabani, M., Kertesz, M. & Segal, E. Computational prediction of RNA structural motifs involved in posttranscriptional regulatory processes. Proc. Natl Acad. Sci. USA 105, 14885–14890 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U. & Segal, E. The role of site accessibility in microRNA target recognition. Nature Genet. 39, 1278–1284 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Schattner, P., Brooks, A. N. & Lowe, T. M. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 33, W686–W689 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chan, P. P. & Lowe, T. M. GtRNAdb: a database of transfer RNA genes detected in genomic sequence. Nucleic Acids Res. 37, D93–D97 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Griffiths-Jones, S., Saini, H. K., van Dongen, S. & Enright, A. J. miRBase: tools for microRNA genomics. Nucleic Acids Res. 36, D154–D158 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Rivas, E. & Eddy, S. R. Noncoding RNA gene detection using comparative sequence analysis. BMC Bioinformatics 2, 8 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lu, Z. J. et al. Prediction and characterization of noncoding RNAs in C. elegans by integrating conservation, secondary structure, and high-throughput sequencing and array data. Genome Res. 21, 276–285 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pedersen, J. S. et al. Identification and classification of conserved RNA secondary structures in the human genome. PLoS Comput. Biol. 2, e33 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gautheret, D. & Lambert, A. Direct RNA motif definition and identification from multiple sequence alignments using secondary structure profiles. J. Mol. Biol. 313, 1003–1011 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Hochsmann, M., Toller, T., Giegerich, R. & Kurtz, S. Local similarity in RNA secondary structures. Proc. IEEE Comput. Soc. Bioinform. Conf. 2, 159–168 (2003).

    PubMed  Google Scholar 

  40. Pavesi, G., Mauri, G., Stefani, M. & Pesole, G. RNAProfile: an algorithm for finding conserved secondary structure motifs in unaligned RNA sequences. Nucleic Acids Res. 32, 3258–3269 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gorodkin, J., Heyer, L. J. & Stormo, G. D. Finding the most significant common sequence and structure motifs in a set of RNA sequences. Nucleic Acids Res. 25, 3724–3732 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Eddy, S. R. & Durbin, R. RNA sequence analysis using covariance models. Nucleic Acids Res. 22, 2079–2088 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sun, F. J. & Caetano-Anolles, G. The origin and evolution of tRNA inferred from phylogenetic analysis of structure. J. Mol. Evol. 66, 21–35 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Washietl, S., Hofacker, I. L. & Stadler, P. F. Fast and reliable prediction of noncoding RNAs. Proc. Natl Acad. Sci. USA 102, 2454–2459 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Griffiths-Jones, S., Bateman, A., Marshall, M., Khanna, A. & Eddy, S. R. Rfam: an RNA family database. Nucleic Acids Res. 31, 439–441 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yao, Z., Weinberg, Z. & Ruzzo, W. L. CMfinder—a covariance model based RNA motif finding algorithm. Bioinformatics 22, 445–452 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Knudsen, B. & Hein, J. Pfold: RNA secondary structure prediction using stochastic context-free grammars. Nucleic Acids Res. 31, 3423–3428 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Seemann, S. E., Gorodkin, J. & Backofen, R. Unifying evolutionary and thermodynamic information for RNA folding of multiple alignments. Nucleic Acids Res. 36, 6355–6362 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mathews, D. H. & Turner, D. H. Prediction of RNA secondary structure by free energy minimization. Curr. Opin. Struct. Biol. 16, 270–278 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Gruber, A. R., Lorenz, R., Bernhart, S. H., Neubock, R. & Hofacker, I. L. The Vienna RNA websuite. Nucleic Acids Res. 36, W70–W74 (2008). This paper describes the Vienna RNA package, which is one of the most commonly used software suites for folding single and aligned sequences and predicting RNA–RNA interactions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dowell, R. D. & Eddy, S. R. Evaluation of several lightweight stochastic context-free grammars for RNA secondary structure prediction. BMC Bioinformatics 5, 71 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Doshi, K. J., Cannone, J. J., Cobaugh, C. W. & Gutell, R. R. Evaluation of the suitability of free-energy minimization using nearest-neighbor energy parameters for RNA secondary structure prediction. BMC Bioinformatics 5, 105 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hamada, M., Kiryu, H., Sato, K., Mituyama, T. & Asai, K. Prediction of RNA secondary structure using generalized centroid estimators. Bioinformatics 25, 465–473 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Lu, Z. J., Gloor, J. W. & Mathews, D. H. Improved RNA secondary structure prediction by maximizing expected pair accuracy. RNA 15, 1805–1813 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Halvorsen, M., Martin, J. S., Broadaway, S. & Laederach, A. Disease-associated mutations that alter the RNA structural ensemble. PLoS Genet. 6, e1001074 (2010). This paper describes SNPs that are present in different disease states that result in different predicted RNA structural conformations in UTRs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zuker, M. & Stiegler, P. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9, 133–148 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mathews, D. H. et al. Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc. Natl Acad. Sci. USA 101, 7287–7292 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Quarrier, S., Martin, J. S., Davis-Neulander, L., Beauregard, A. & Laederach, A. Evaluation of the information content of RNA structure mapping data for secondary structure prediction. RNA 16, 1108–1117 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Deigan, K. E., Li, T. W., Mathews, D. H. & Weeks, K. M. Accurate SHAPE-directed RNA structure determination. Proc. Natl Acad. Sci. USA 106, 97–102 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Xia, T. et al. Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson–Crick base pairs. Biochemistry 37, 14719–14735 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Liu, B., Diamond, J. M., Mathews, D. H. & Turner, D. H. Fluorescence competition and optical melting measurements of RNA three-way multibranch loops provide a revised model for thermodynamic parameters. Biochemistry 50, 640–653 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Parisien, M. & Major, F. The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data. Nature 452, 51–55 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Sharma, S., Ding, F. & Dokholyan, N. V. iFoldRNA: three-dimensional RNA structure prediction and folding. Bioinformatics 24, 1951–1952 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Das, R. & Baker, D. Automated de novo prediction of native-like RNA tertiary structures. Proc. Natl Acad. Sci. USA 104, 14664–14669 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. van Batenburg, F. H., Gultyaev, A. P. & Pleij, C. W. PseudoBase: structural information on RNA pseudoknots. Nucleic Acids Res. 29, 194–195 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Brierley, I., Pennell, S. & Gilbert, R. J. Viral RNA pseudoknots: versatile motifs in gene expression and replication. Nature Rev. Microbiol. 5, 598–610 (2007).

    Article  CAS  Google Scholar 

  67. Chen, H. L., Condon, A. & Jabbari, H. An O(n(5)) algorithm for MFE prediction of kissing hairpins and 4-chains in nucleic acids. J. Comput. Biol. 16, 803–815 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Lyngso, R. B. & Pedersen, C. N. RNA pseudoknot prediction in energy-based models. J. Comput. Biol. 7, 409–427 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Rivas, E. & Eddy, S. R. A dynamic programming algorithm for RNA structure prediction including pseudoknots. J. Mol. Biol. 285, 2053–2068 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Dirks, R. M. & Pierce, N. A. An algorithm for computing nucleic acid base-pairing probabilities including pseudoknots. J. Comput. Chem. 25, 1295–1304 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Reeder, J. & Giegerich, R. Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics. BMC Bioinformatics 5, 104 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ruan, J., Stormo, G. D. & Zhang, W. An iterated loop matching approach to the prediction of RNA secondary structures with pseudoknots. Bioinformatics 20, 58–66 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Ren, J., Rastegari, B., Condon, A. & Hoos, H. H. HotKnots: heuristic prediction of RNA secondary structures including pseudoknots. RNA 11, 1494–1504 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen, X. et al. FlexStem: improving predictions of RNA secondary structures with pseudoknots by reducing the search space. Bioinformatics 24, 1994–2001 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Bellaousov, S. & Mathews, D. H. ProbKnot: fast prediction of RNA secondary structure including pseudoknots. RNA 16, 1870–1880 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sato, K., Kato, Y., Hamada, M., Akutsu, T. & Asai, K. IPknot: fast and accurate prediction of RNA secondary structures with pseudoknots using integer programming. Bioinformatics 27, i85–i93 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Weeks, K. M. Advances in RNA structure analysis by chemical probing. Curr. Opin. Struct. Biol. 20, 295–304 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ehresmann, C. et al. Probing the structure of RNAs in solution. Nucleic Acids Res. 15, 9109–9128 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Romby, P. et al. Ribosomal 5S RNA from Xenopus laevis oocytes: conformation and interaction with transcription factor IIIA. Biochimie 72, 437–452 (1990).

    Article  CAS  PubMed  Google Scholar 

  80. Wurst, R. M., Vournakis, J. N. & Maxam, A. M. Structure mapping of 5′-32P-labeled RNA with S1 nuclease. Biochemistry 17, 4493–4499 (1978).

    Article  CAS  PubMed  Google Scholar 

  81. Gornicki, P. et al. Use of lead(II) to probe the structure of large RNA's. Conformation of the 3′ terminal domain of E. coli 16S rRNA and its involvement in building the tRNA binding sites. J. Biomol. Struct. Dyn. 6, 971–984 (1989).

    Article  CAS  PubMed  Google Scholar 

  82. Wells, S. E., Hughes, J. M., Igel, A. H. & Ares, M. Jr. Use of dimethyl sulfate to probe RNA structure in vivo. Methods Enzymol. 318, 479–493 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Merino, E. J., Wilkinson, K. A., Coughlan, J. L. & Weeks, K. M. RNA structure analysis at single nucleotide resolution by selective 2′-hydroxyl acylation and primer extension (SHAPE). J. Am. Chem. Soc. 127, 4223–4231 (2005). This paper describes SHAPE reagents that react with 2′OH of all four RNA bases to probe for flexible structural regions in an RNA. They have been found to be excellent chemical probes.

    Article  CAS  PubMed  Google Scholar 

  84. Lowman, H. B. & Draper, D. E. On the recognition of helical RNA by cobra venom V1 nuclease. J. Biol. Chem. 261, 5396–5403 (1986).

    CAS  PubMed  Google Scholar 

  85. Adilakshmi, T., Lease, R. A. & Woodson, S. A. Hydroxyl radical footprinting in vivo: mapping macromolecular structures with synchrotron radiation. Nucleic Acids Res. 34, e64 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Shcherbakova, I. & Mitra, S. Hydroxyl-radical footprinting to probe equilibrium changes in RNA tertiary structure. Methods Enzymol. 468, 31–46 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Das, R., Laederach, A., Pearlman, S. M., Herschlag, D. & Altman, R. B. SAFA: semi-automated footprinting analysis software for high-throughput quantification of nucleic acid footprinting experiments. RNA 11, 344–354 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mitra, S., Shcherbakova, I. V., Altman, R. B., Brenowitz, M. & Laederach, A. High-throughput single-nucleotide structural mapping by capillary automated footprinting analysis. Nucleic Acids Res. 36, e63 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Vasa, S. M., Guex, N., Wilkinson, K. A., Weeks, K. M. & Giddings, M. C. ShapeFinder: a software system for high-throughput quantitative analysis of nucleic acid reactivity information resolved by capillary electrophoresis. RNA 14, 1979–1990 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zemora, G. & Waldsich, C. RNA folding in living cells. RNA Biol. 7, 634–641 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Liebeg, A. & Waldsich, C. Probing RNA structure within living cells. Methods Enzymol. 468, 219–238 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Russell, R. RNA misfolding and the action of chaperones. Front. Biosci. 13, 1–20 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lindell, M., Romby, P. & Wagner, E. G. Lead(II) as a probe for investigating RNA structure in vivo. RNA 8, 534–541 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Watts, J. M. et al. Architecture and secondary structure of an entire HIV-1 RNA genome. Nature 460, 711–716 (2009). The RNA structure probing of the entire 9 kb HIV RNA genome that is described in this paper provided many insights into differentially structured regions and their biological functions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wilkinson, K. A. et al. High-throughput SHAPE analysis reveals structures in HIV-1 genomic RNA strongly conserved across distinct biological states. PLoS Biol. 6, e96 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Underwood, J. G. et al. FragSeq: transcriptome-wide RNA structure probing using high-throughput sequencing. Nature Methods 7, 995–1001 (2010). This paper reports a method for genome-wide RNA structure probing in using P1 nuclease to probe for single-stranded regions in mouse cells in vitro.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lucks, J. B. et al. Multiplexed RNA structure characterization with selective 2′-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-seq). Proc. Natl Acad. Sci. USA 108, 11063–11068 (2011). In this study, chemical structure probing was coupled to high-throughput sequencing by using a SHAPE reagent to probe flexible structural regions of seven RNAs in vitro.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Aviran, S. et al. Modeling and automation of sequencing-based characterization of RNA structure. Proc. Natl Acad. Sci. USA 108, 11069–11074 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Weeks, K. M. RNA structure probing dash seq. Proc. Natl Acad. Sci. USA 108, 10933–10934 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Roberts, A., Trapnell, C., Donaghey, J., Rinn, J. L. & Pachter, L. Improving RNA-seq expression estimates by correcting for fragment bias. Genome Biol. 12, R22 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Leipply, D. & Draper, D. E. Dependence of RNA tertiary structural stability on Mg2+ concentration: interpretation of the Hill equation and coefficient. Biochemistry 49, 1843–1853 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Chowdhury, S., Maris, C., Allain, F. H. & Narberhaus, F. Molecular basis for temperature sensing by an RNA thermometer. EMBO J. 25, 2487–2497 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Elemento, O., Slonim, N. & Tavazoie, S. A universal framework for regulatory element discovery across all genomes and data types. Mol. Cell 28, 337–350 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Riordan, D. P., Herschlag, D. & Brown, P. O. Identification of RNA recognition elements in the Saccharomyces cerevisiae transcriptome. Nucleic Acids Res. 39, 1501–1509 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Bailey, T. L. & Elkan, C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2, 28–36 (1994).

    CAS  PubMed  Google Scholar 

  106. Ray, D. et al. Rapid and systematic analysis of the RNA recognition specificities of RNA-binding proteins. Nature Biotech. 27, 667–670 (2009).

    Article  CAS  Google Scholar 

  107. Li, X., Quon, G., Lipshitz, H. D. & Morris, Q. Predicting in vivo binding sites of RNA-binding proteins using mRNA secondary structure. RNA 16, 1096–1107 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Montange, R. K. & Batey, R. T. Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. Nature 441, 1172–1175 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Gilbert, S. D., Rambo, R. P., Van Tyne, D. & Batey, R. T. Structure of the SAM-II riboswitch bound to S-adenosylmethionine. Nature Struct. Mol. Biol. 15, 177–182 (2008).

    Article  CAS  Google Scholar 

  110. Lu, C. et al. Crystal structures of the SAM-III/SMK riboswitch reveal the SAM-dependent translation inhibition mechanism. Nature Struct. Mol. Biol. 15, 1076–1083 (2008).

    Article  CAS  Google Scholar 

  111. Zhao, J., Sun, B. K., Erwin, J. A., Song, J. J. & Lee, J. T. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322, 750–756 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kanhere, A. et al. Short RNAs are transcribed from repressed polycomb target genes and interact with polycomb repressive complex-2. Mol. Cell 38, 675–688 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Tsai, M. C. et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science 329, 689–693 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kaneko, S. et al. Phosphorylation of the PRC2 component Ezh2 is cell cycle-regulated and up-regulates its binding to ncRNA. Genes Dev. 24, 2615–2620 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kotake, Y. et al. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene 30, 1956–1962 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Wanrooij, P. H., Uhler, J. P., Simonsson, T., Falkenberg, M. & Gustafsson, C. M. G-quadruplex structures in RNA stimulate mitochondrial transcription termination and primer formation. Proc. Natl Acad. Sci. USA 107, 16072–16077 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Henkin, T. M. & Grundy, F. J. Sensing metabolic signals with nascent RNA transcripts: the T box and S box riboswitches as paradigms. Cold Spring Harb. Symp. Quant. Biol. 71, 231–237 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Wang, J. & Nikonowicz, E. P. Solution structure of the K-turn and Specifier Loop domains from the Bacillus subtilis tyrS T-box leader RNA. J. Mol. Biol. 408, 99–117 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lu, C. et al. SAM recognition and conformational switching mechanism in the Bacillus subtilis yitJ S box/SAM-I riboswitch. J. Mol. Biol. 404, 803–818 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Deikus, G. & Bechhofer, D. H. Bacillus subtilis trp Leader RNA: RNase J1 endonuclease cleavage specificity and PNPase processing. J. Biol. Chem. 284, 26394–26401 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Butler, E. B., Xiong, Y., Wang, J. & Strobel, S. A. Structural basis of cooperative ligand binding by the glycine riboswitch. Chem. Biol. 18, 293–298 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhang, Q., Kang, M., Peterson, R. D. & Feigon, J. Comparison of solution and crystal structures of preQ1 riboswitch reveals calcium-induced changes in conformation and dynamics. J. Am. Chem. Soc. 133, 5190–5193 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kar, A. et al. RNA helicase p68 (DDX5) regulates tau exon 10 splicing by modulating a stem-loop structure at the 5′ splice site. Mol. Cell. Biol. 31, 1812–1821 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Warf, M. B., Diegel, J. V., von Hippel, P. H. & Berglund, J. A. The protein factors MBNL1 and U2AF65 bind alternative RNA structures to regulate splicing. Proc. Natl Acad. Sci. USA 106, 9203–9208 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Oikawa, D., Tokuda, M., Hosoda, A. & Iwawaki, T. Identification of a consensus element recognized and cleaved by IRE1α. Nucleic Acids Res. 38, 6265–6273 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yang, Y. et al. RNA secondary structure in mutually exclusive splicing. Nature Struct. Mol. Biol. 18, 159–168 (2011).

    Article  CAS  Google Scholar 

  127. Cheah, M. T., Wachter, A., Sudarsan, N. & Breaker, R. R. Control of alternative RNA splicing and gene expression by eukaryotic riboswitches. Nature 447, 497–500 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Lee, E. R., Baker, J. L., Weinberg, Z., Sudarsan, N. & Breaker, R. R. An allosteric self-splicing ribozyme triggered by a bacterial second messenger. Science 329, 845–848 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Aragon, T. et al. Messenger RNA targeting to endoplasmic reticulum stress signalling sites. Nature 457, 736–740 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Gonsalvez, G. B., Urbinati, C. R. & Long, R. M. RNA localization in yeast: moving towards a mechanism. Biol. Cell 97, 75–86 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Bullock, S. L., Ringel, I., Ish-Horowicz, D. & Lukavsky, P. J. A′-form RNA helices are required for cytoplasmic mRNA transport in Drosophila. Nature Struct. Mol. Biol. 17, 703–709 (2010).

    Article  CAS  Google Scholar 

  132. Subramanian, M. et al. G-quadruplex RNA structure as a signal for neurite mRNA targeting. EMBO Rep. 12, 697–704 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Chao, J. A. et al. ZBP1 recognition of β-actin zipcode induces RNA looping. Genes Dev. 24, 148–158 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Van Etten, R. A. et al. The COOH terminus of the c-Abl tyrosine kinase contains distinct F- and G-actin binding domains with bundling activity. J. Cell Biol. 124, 325–340 (1994).

    Article  CAS  PubMed  Google Scholar 

  135. Mayer, C., Neubert, M. & Grummt, I. The structure of NoRC-associated RNA is crucial for targeting the chromatin remodelling complex NoRC to the nucleolus. EMBO Rep. 9, 774–780 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Parsons, C. J. et al. Mutation of the 5′-untranslated region stem-loop structure inhibits α1(I) collagen expression in vivo. J. Biol. Chem. 286, 8609–8619 (2011).

    Article  CAS  PubMed  Google Scholar 

  137. Cho, H. H. et al. Selective translational control of the Alzheimer amyloid precursor protein transcript by iron regulatory protein-1. J. Biol. Chem. 285, 31217–31232 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Goforth, J. B., Anderson, S. A., Nizzi, C. P. & Eisenstein, R. S. Multiple determinants within iron-responsive elements dictate iron regulatory protein binding and regulatory hierarchy. RNA 16, 154–169 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Shahid, R., Bugaut, A. & Balasubramanian, S. The BCL-2 5′ untranslated region contains an RNA G-quadruplex-forming motif that modulates protein expression. Biochemistry 49, 8300–8306 (2010).

    Article  CAS  PubMed  Google Scholar 

  140. Derecka, K. et al. Occurrence of a quadruplex motif in a unique insert within exon C of the bovine estrogen receptor α gene (ESR1). Biochemistry 49, 7625–7633 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Gomez, D. et al. A G-quadruplex structure within the 5′-UTR of TRF2 mRNA represses translation in human cells. Nucleic Acids Res. 38, 7187–7198 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Reineke, L. C., Komar, A. A., Caprara, M. G. & Merrick, W. C. A small stem loop element directs internal initiation of the URE2 internal ribosome entry site in Saccharomyces cerevisiae. J. Biol. Chem. 283, 19011–19025 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Feng, S. et al. Alternate rRNA secondary structures as regulators of translation. Nature Struct. Mol. Biol. 18, 169–176 (2011).

    Article  CAS  Google Scholar 

  144. Waldminghaus, T., Heidrich, N., Brantl, S. & Narberhaus, F. FourU: a novel type of RNA thermometer in Salmonella. Mol. Microbiol. 65, 413–424 (2007).

    Article  CAS  PubMed  Google Scholar 

  145. Giuliodori, A. M. et al. The cspA mRNA is a thermosensor that modulates translation of the cold-shock protein CspA. Mol. Cell 37, 21–33 (2010).

    Article  CAS  PubMed  Google Scholar 

  146. Kortmann, J., Sczodrok, S., Rinnenthal, J., Schwalbe, H. & Narberhaus, F. Translation on demand by a simple RNA-based thermosensor. Nucleic Acids Res. 39, 2855–2868 (2011).

    Article  CAS  PubMed  Google Scholar 

  147. Badis, G., Saveanu, C., Fromont-Racine, M. & Jacquier, A. Targeted mRNA degradation by deadenylation-independent decapping. Mol. Cell 15, 5–15 (2004).

    Article  CAS  PubMed  Google Scholar 

  148. Prouteau, M., Daugeron, M. C. & Seraphin, B. Regulation of ARE transcript 3′ end processing by the yeast Cth2 mRNA decay factor. EMBO J. 27, 2966–2976 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Fukuchi, M. & Tsuda, M. Involvement of the 3′-untranslated region of the brain-derived neurotrophic factor gene in activity-dependent mRNA stabilization. J. Neurochem. 115, 1222–1233 (2010).

    Article  CAS  PubMed  Google Scholar 

  150. Winkler, W. C., Nahvi, A., Roth, A., Collins, J. A. & Breaker, R. R. Control of gene expression by a natural metabolite-responsive ribozyme. Nature 428, 281–286 (2004).

    Article  CAS  PubMed  Google Scholar 

  151. McCown, P. J., Roth, A. & Breaker, R. R. An expanded collection and refined consensus model of glmS ribozymes. RNA 17, 728–736 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of the US National Institutes of Health (NIH) (R01-HG004361), the Agency of Science, Technology and Research of Singapore (Y.W.) and the A.P. Giannini Foundation (R.C.S.). E.S. is the incumbent of the Soretta and Henry Shapiro career development chair. H.Y.C. is an Early Career Scientist of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard Y. Chang.

Ethics declarations

Competing interests

Yue Wan, Michael Kertesz, Eran Segal and Howard Y. Chang are holders of a patent for parallel analysis of RNA structure (PARS). Robert C. Spitale declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Eran Segal's homepage

Howard Chang's homepage

CAFA and SNPfold

iPARS application for iPhone and iPad

SAFA

Glossary

Sequence covariation

Nucleotide substitutions that differ between two or more homologous genes but retain the potential for Watson–Crick base pairing in an RNA molecule in each sequence, thus suggesting a selective pressure to retain those base pairings.

SELEX

(Systematic evolution of ligands by exponential enrichment). In the context of RNA, this is a method for identifying consensus protein binding sequences on RNA substrates by in vitro selection of short RNAs that bind preferentially to RNA-binding proteins.

RNAcompete

An in vitro method to identify the structural and linear sequence motifs of RNAs that interact strongly with RNA-binding proteins in a complex pool of k-mer RNAs.

PUF

(Pumilio family). This is a family of evolutionarily conserved RNA-binding proteins. They preferentially bind to the 3′UTR of mRNAs to regulate gene expression.

Small nucleolar RNAs

(snoRNAs). RNAs that are involved in guiding the modification of other RNAs, such as ribosomal RNAs, tRNAs and small nuclear RNAs.

Dynamic programming

A method for solving complex problems by breaking them down into simpler 'sub-problems'. This method is used by most RNA structure-prediction algorithms to efficiently scan the entire landscape of possible secondary structures.

Stochastic context-free grammars

(SCFGs). Mathematical models in which base pairings in an RNA molecule are described as a set of production rules, each augmented with a probability.

Machine learning methods

Algorithms that use empirical data (called the training set) to capture characteristics of unknown underlying phenomena and improve predictions about new data (called the test set).

Pseudoknots

RNA topologies that contain non-nested nucleotide pairings.

Heuristics

An experience-based method of problem solving that is used in cases in which an exhaustive search is impractical to speed up the process of finding a solution. There is usually some loss of accuracy.

Single-hit kinetics

The kinetics of reactions involving chemical and enzymatic probes that react with RNA, such that, on average, there is only one cut per molecule.

Nucleocapsid

A coat of proteins that surrounds the genomic content of a virus.

Gag-Pol

The Gag polyprotein is processed into several proteins including the matrix, capsid, spacer peptides, p6 and nucleocapsid proteins. Pol includes reverse transcriptase, integrase and protease.

Env

(Envelope protein). This is found on the surface of the retroviruses and contains glycoproteins that enable the virus to recognize and enter host cells.

Ash1 localization elements

Sequences that are required to properly localize Ash1 mRNAs to the yeast bud tip.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, Y., Kertesz, M., Spitale, R. et al. Understanding the transcriptome through RNA structure. Nat Rev Genet 12, 641–655 (2011). https://doi.org/10.1038/nrg3049

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3049

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research