Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genomic imprinting: the emergence of an epigenetic paradigm

An Erratum to this article was published on 02 August 2011

This article has been updated


The emerging awareness of the contribution of epigenetic processes to genome function in health and disease is underpinned by decades of research in model systems. In particular, many principles of the epigenetic control of genome function have been uncovered by studies of genomic imprinting. The phenomenon of genomic imprinting, which results in some genes being expressed in a parental--origin-specific manner, is essential for normal mammalian growth and development and exemplifies the regulatory influences of DNA methylation, chromatin structure and non-coding RNA. Setting seminal discoveries in this field alongside recent progress and remaining questions shows how the study of imprinting continues to enhance our understanding of the epigenetic control of genome function in other contexts.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Imprinted clusters in mammals.
Figure 2: Tissue-specific imprinting effects.

Change history

  • 02 August 2011

    In figure 1Aa of the above article, the imprinting control region (ICR) on the paternal allele of the Airn gene was incorrectly shown as methylated (indicated by a dark grey octagon). This ICR should be shown as unmethylated (indicated by a white octagon). This image has now been corrected online. The editors apologize for this error.


  1. 1

    Crouse, H. V. The controlling element in sex chromosome behavior in Sciara. Genetics 45, 1429–1443 (1960).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Khosla, S., Mendiratta, G. & Brahmachari, C. Genomic imprinting in the mealybugs. Cytogenet. Genome Res. 113, 41–52 (2006).

    CAS  Google Scholar 

  3. 3

    Cooper, D. W., VendeBerg, J. L., Sharman, G. B. & Poole, W. Phosphoglycerate kinase polymorphism in kangaroos provides further evidence for paternal X inactivation. Nature New Biol. 230, 155–157 (1971).

    CAS  PubMed  Google Scholar 

  4. 4

    Takagi, N. & Sasaki, M. Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature 256, 640–642 (1975).

    CAS  PubMed  Google Scholar 

  5. 5

    Kermicle, J. L. Dependence of the R-mottled aleurone phenotype in maize on mode of sexual transmission. Genetics 66, 69–85 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Johnson, D. M. Hairpin-tail: a case of post-reductional gene action in the mouse egg? Genetics 76, 795–805 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Snell, G. An analysis of translocations in the mouse. Genetics 31, 157–180 (1946).

    PubMed  PubMed Central  Google Scholar 

  8. 8

    Searle, A. G. & Beechey, C. V. Complementation studies with mouse translocations. Cytogenet. Cell Genet. 20, 282–303 (1978).

    CAS  PubMed  Google Scholar 

  9. 9

    Cattanach, B. M. & Kirk, M. Differential activity of maternal and paternally derived chromosome regions in mice. Nature 315, 496–498 (1985).

    CAS  PubMed  Google Scholar 

  10. 10

    Cattanach, B. M. Parental origin effects in mice. J. Embryol. Exp. Morphol. 97, 137–150 (1986).

    PubMed  Google Scholar 

  11. 11

    Surani, M. A. & Barton, S. C. Development of gynogenetic eggs in the mouse: implications for parthenogenetic embryos. Science 222, 1034–1036 (1983).

    CAS  PubMed  Google Scholar 

  12. 12

    McGrath, J. & Solter, D. Nuclear transplantation in mouse embryos. J. Exp. Zool. 228, 355–362 (1983).

    CAS  PubMed  Google Scholar 

  13. 13

    McGrath, J. & Solter, D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37, 179–183 (1984).

    CAS  PubMed  Google Scholar 

  14. 14

    Surani, M. A., Barton, S. C. & Norris, M. L. Development of reconstituted mouse eggs suggest imprinting of the genome during gametogenesis. Nature 308, 548–550 (1984).

    CAS  PubMed  Google Scholar 

  15. 15

    McGrath, J. & Solter, D. Maternal Thp lethality is a nuclear, not cytoplasmic defect. Nature 308, 550–551 (1984).

    CAS  PubMed  Google Scholar 

  16. 16

    Mann, J. & Lovell-Badge, R. H. Inviability of parthenogenones is deterined by pronuclei not egg cytoplasm. Nature 310, 66–67 (1984).

    CAS  PubMed  Google Scholar 

  17. 17

    Fundele, R. H. et al. Temporal and spatial selection against parthenogenetic cells during development of fetal chimeras. Development 108, 203–211 (1990).

    CAS  PubMed  Google Scholar 

  18. 18

    Barton, S. C., Ferguson-Smith, A. C., Fundele, R. & Surani, M. A. Influence of paternally imprinted genes on development. Development 113, 679–687 (1991).

    CAS  PubMed  Google Scholar 

  19. 19

    Kono, T. et al. Birth of parthenogenetic mice that can develop to adulthood. Nature 428, 860–864 (2004).

    CAS  Google Scholar 

  20. 20

    Kawahara, M. et al. High-frequency generation of viable mice from engineered bi-maternal embryos. Nature Biotech. 25, 1045–1050 (2007).

    CAS  Google Scholar 

  21. 21

    Barlow, D. P., Stoger, R., Herrmann, B. G., Saito, K. & Schweifer N. The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature 349, 84–87 (1991).

    CAS  Google Scholar 

  22. 22

    Zwart, R., Sleutels, F., Wutz, A., Schinkel, A. H. & Barlow, D. P. Bidirectional action of the Igf2r imprint control element on upstream and downstream imprinted genes. Genes Dev. 15, 2361–2366 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    DeChiara, T. M., Robertson, E. J. & Efstratiadis, A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64, 849–859 (1991).

    CAS  Google Scholar 

  24. 24

    Ferguson-Smith, A. C., Cattanach, B. M., Barton, S. C., Beechey, C. V. & Surani, M. A. Embryological and molecular investigations of parental imprinting on mouse chromosome 7. Nature 351, 667–670 (1991).

    CAS  PubMed  Google Scholar 

  25. 25

    Smits G. et al. Conservation of the H19 noncoding RNA and H19-IGF2 imprinting mechanism in therians. Nature Genet. 40, 971–976 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Bartolomei, M. S., Zemel, S. & Tilghman, S. M. Parental imprinting of the mouse H19 gene. Nature 351, 153–155 (1991).

    CAS  PubMed  Google Scholar 

  27. 27

    Ferron, S. et al. Postnatal loss of Dlk1 imprinting in stem cells and niche astrocytes regulates neurogenesis. Nature (in the press).

  28. 28

    Plass, C. et al. Identification of Grf1 on mouse chromosome 9 as an imprinted gene by RLGS-M. Nature Genet. 14, 106–109 (1996).

    CAS  Google Scholar 

  29. 29

    Frost, J. & Moore, G. The importance of imprinting in the human placenta. PLoS Genet. 6, e1001015 (2010).

    PubMed  PubMed Central  Google Scholar 

  30. 30

    Babak, T. et al. Global survey of genomic imprinting by transcriptome sequencing. Current Biol. 18, 1735–1741 (2008).

    CAS  Google Scholar 

  31. 31

    Wang, X. et al. Transcriptome-wide identification of novel imprinted genes in neonatal mouse brain. PLoS ONE. 3, e3839 (2008).

    PubMed  PubMed Central  Google Scholar 

  32. 32

    Gregg, C. et al. High-resolution analysis of parent-of-origin allelic expression in the mouse brain. Science 329, 643–648 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Luedi, P. P., Hartemink, A. J. & Jirtle, R. L. Genome-wide prediction of imprinted murine genes. Genome Res. 15, 875–884 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Brideau, C. M., Eilertson, K. E., Hagarman, J. A., Bustamante, C. D. & Soloway, P. D. Successful computational prediction of novel imprinted genes from epigenomic features. Mol. Cell. Biol. 30, 3357–3370 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Wood, A. J. et al. A screen for retrotransposed imprinted genes reveals an association between X chromosome homology and maternal germ-line methylation. PLoS Genet. 3, e20 (2006).

    PubMed  Google Scholar 

  36. 36

    Monk, D. et al. Limited evolutionary conservation of imprinting in the human placenta. Proc. Natl Acad. Sci. USA 103, 6623–6628 (2006).

    CAS  PubMed  Google Scholar 

  37. 37

    Li, J. et al. L3mbtl, the mouse orthologue of the imprinted L3MBTL, displays a complex pattern of alternative splicing and escapes genomic imprinting. Genomics 86, 489–494 (2005).

    CAS  PubMed  Google Scholar 

  38. 38

    Engel, E. A new genetic concept: uniparental disomy and its potential effect, isodisomy. Am. J. Med. Genet. 6, 137–143 (1980).

    CAS  PubMed  Google Scholar 

  39. 39

    Lim, D. et al. Clinical and molecular genetic features of Beckwith-Wiedemann syndrome associated with assisted reproductive technologies. Hum. Reprod. 24, 741–747 (2010).

    Google Scholar 

  40. 40

    Nicholls, R. D., Knoll, J. H., Butler, M. G., Karam, S. & Lalande, M. Genetic imprinting suggested by maternal heterodisomy in nondeletion Prader-Willi syndrome. Nature 342, 281–285 (1989).

    CAS  Google Scholar 

  41. 41

    Weksberg, R., Shen, D. R., Fei, Y. L., Song, Q. L. & Squire, J. Disruption of insulin-like growth factor 2 imprinting in Beckwith-Wiedemann syndrome. Nature Genet. 5, 143–150 (1993).

    CAS  PubMed  Google Scholar 

  42. 42

    Buiting, K. et al. Inherited microdeletions in the Angelman and Prader-Willi syndromes define an imprinting centre on human chromosome 15. Nature Genet. 9, 395–400 (1995).

    CAS  PubMed  Google Scholar 

  43. 43

    Lee, M., Hu, R., Johnson, L. & Feinberg, A. Human KVLQT1 gene shows tissue-specific imprinting and encompasses Beckwith-Wiedemann syndrome chromosomal rearrangements. Nature Genet. 15, 181–185 (1997).

    PubMed  Google Scholar 

  44. 44

    Ogata, T., Kagami, M. & Ferguson-Smith, A. C. Molecular mechanisms regulating phenotypic outcome in paternal and maternal uniparental disomy for chromosome 14. Epigenetics 3, 181–187 (2008).

    PubMed  Google Scholar 

  45. 45

    Reik, W. & Maher, E. Imprinting in clusters: lessons from Beckwith-Wiedemann syndrome. Trends Genet. 13, 330–334 (1997).

    CAS  PubMed  Google Scholar 

  46. 46

    Buiting, K. Prader-Willi and Angelman Syndrome. Am. J. Med. Genet. C Semin. Med. Genet. 154, 365–376 (2010).

    Google Scholar 

  47. 47

    Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Ferguson-Smith, A. C., Sasaki, H., Cattanach, B. M. & Surani, M. A. Parental-origin-specific epigenetic modification of the mouse H19 gene. Nature 362, 751–755 (1993).

    CAS  PubMed  Google Scholar 

  49. 49

    Stöger, R. et al. Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal. Cell 73, 61–71 (1993).

    PubMed  Google Scholar 

  50. 50

    Bartolomei, M. S., Webber, A. L., Brunkow, M. E. & Tilghman, S. M. Epigenetic mechanisms underlying the imprinting of the mouse H19 gene. Genes Dev. 7, 1663–1673 (1993).

    CAS  PubMed  Google Scholar 

  51. 51

    Li, E., Beard, C. & Jaenisch, R. Role for DNA methylation in genomic imprinting. Nature 366, 362–365 (1993).

    CAS  PubMed  Google Scholar 

  52. 52

    Edwards, C. A. & Ferguson-Smith, A. C. Mechanisms regulating imprinted genes in clusters. Curr. Opin. Cell Biol. 19, 281–289 (2007).

    CAS  Google Scholar 

  53. 53

    Sutcliffe, J. S. et al. Deletions of a differentially methylated CpG island at the SNRPN gene define a putative imprinting control region. Nature Genet. 8, 52–58 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Wutz, A. et al. Imprinted expression of the Igf2r gene depends on an intronic CpG island. Nature 389, 745–749 (1997).

    CAS  PubMed  Google Scholar 

  55. 55

    Thorvaldsen, J. L., Duran, K. L. & Bartolomei, M. S. Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes Dev. 12, 3693–3702 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Smilinich, N. J. et al. A maternally methylated CpG island in KvLQT1 is associated with an antisense paternal transcript and loss of imprinting in Beckwith-Wiedemann syndrome. Proc. Natl Acad. Sci. USA. 96, 8064–8069 (1999).

    CAS  PubMed  Google Scholar 

  57. 57

    Lin, S.-P. et al. Asymmetric regulation of imprinting on the maternal and paternal chromosomes at the Dlk1-Gtl2 imprinted cluster on mouse chromosome 12. Nature Genet. 35, 97–102 (2003).

    CAS  PubMed  Google Scholar 

  58. 58

    Williamson, C. M. et al. Identification of an imprinting control region affecting the expression of all transcripts in the Gnas cluster. Nature Genet. 38, 350–355 (2006).

    CAS  PubMed  Google Scholar 

  59. 59

    Bourc'his, D. & Bestor, T. H. Origins of extreme sexual dimorphism in genomic imprinting. Cytogenet. Genome Res. 113, 36–40 (2006).

    CAS  PubMed  Google Scholar 

  60. 60

    Lees-Murdock, D. L. & Walsh, C. P. DNA methylation reprogramming in the germ line. Epigenetics 3, 5–13 (2008).

    PubMed  Google Scholar 

  61. 61

    Hajkova, P. et al. Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature 452, 877–881 (2008).

    CAS  Google Scholar 

  62. 62

    Lucifero, D., Mann, M. R., Bartolomei, M. S. & Trasler, J. M. Gene-specific timing and epigenetic memory in oocyte imprinting. Hum. Mol. Genet. 13, 839–849 (2004).

    CAS  Google Scholar 

  63. 63

    Kaneda, M. et al. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 429, 900–903 (2004).

    CAS  Google Scholar 

  64. 64

    Bourc'his, D., Xu, G. L., Lin, C. S., Bollman, B. & Bestor, T. H. Dnmt3L and the establishment of maternal genomic imprints. Science 294, 2536–2539 (2001).

    CAS  Google Scholar 

  65. 65

    Jia, D., Jurkowska, R. Z., Zhang, X., Jeltsch, A. & Cheng, X. Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 449, 248–251 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Bourc'his, D. & Bestor, T. H. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431, 96–99 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Barlow, D. P. Methylation and imprinting: from host defense to gene regulation? Science 260, 309–310 (1993).

    CAS  PubMed  Google Scholar 

  68. 68

    Chotalia, M. et al. Transcription is required for establishment of germline methylation marks at imprinted genes. Genes Dev. 23, 105–117 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Ooi, S. K. et al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448, 714–717 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Ciccone, D. N. et al. KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature 461, 415–418 (2009).

    CAS  Google Scholar 

  71. 71

    Hemberger, M., Dean, W. & Reik, W. Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington's canal. Nature Rev. Mol. Cell Biol. 10, 526–537 (2009).

    CAS  Google Scholar 

  72. 72

    Iqbal, K., Jin, S. G., Pfeifer, G. P. & Szabó, P. E. Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc. Natl Acad. Sci. USA. 108, 3642–3647 (2011).

    CAS  PubMed  Google Scholar 

  73. 73

    Wossidlo, M. et al. 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nature Commun. 2, 241 (2011).

    Google Scholar 

  74. 74

    Albert, M. & Peters, A. H. Genetic and epigenetic control of early mouse development. Curr. Opin. Genet. Dev. 19, 113–121 (2009).

    CAS  PubMed  Google Scholar 

  75. 75

    Li, X. et al. A maternal zygotic effect gene Zfp57 maintains both maternal and paternal imprints. Dev. Cell 15, 547–557 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Nakamura, T. et al. PGC7/Stella protects against DNA demethylation in early embryogenesis. Nature Cell Biol. 9, 64–71 (2007).

    CAS  Google Scholar 

  77. 77

    Sleutels, F., Zwart, R. & Barlow, D. P. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 415, 810–813 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Nagano, T. et al. The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science 322, 1717–1720 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Rougeulle, C., Cardoso, C., Fontés, M., Colleaux, L. & Lalande, M. An imprinted antisense RNA overlaps UBE3A and a second maternally expressed transcript. Nature Genet. 19, 15–16 (1998).

    CAS  PubMed  Google Scholar 

  80. 80

    Mancini-Dinardo, D., Steele, S. J., Levorse, J. M., Ingram, R. S. & Tilghman, S. M. Elongation of the Kcnq1ot1 transcript is required for genomic imprinting of neighboring genes. Genes Dev. 20, 1268–1282 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Szabó, P., Tang, S. H., Rentsendorj, A., Pfeifer, G. P. & Mann, J. R. Maternal-specific footprints at putative CTCF sites in the H19 imprinting control region give evidence for insulator function. Curr. Biol. 10, 607–610 (2000).

    PubMed  Google Scholar 

  82. 82

    Bell, A. C., & Felsenfeld, G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405, 482–485 (2000).

    CAS  Google Scholar 

  83. 83

    Hark, A. T. et al. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature. 405, 486–489 (2000).

    CAS  PubMed  Google Scholar 

  84. 84

    Engel N., West, A. G., Felsenfeld, G. & Bartolomei, M. S. Antagonism between DNA hypermethylation and enhancer-blocking activity at the H19 DMD is uncovered by CpG mutations. Nature Genet. 36, 883–888 (2004).

    CAS  Google Scholar 

  85. 85

    Murrell, A., Heeson, S. & Reik, W. Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops. Nature Genet. 36, 889–893 (2004).

    CAS  Google Scholar 

  86. 86

    Da Rocha, S., Edwards, C., Ito, M., Ogata, T. & Ferguson-Smith, A. C. Genomic imprinting at the mammalian Dlk1-Dio3 domain. Trends Genet. 24, 306–316 (2008).

    PubMed  Google Scholar 

  87. 87

    Killian, J., Buckley, T., Stewart, N., Munday, B. & Jirtle, R. M6P/IGF2R imprinting evolution in mammals . Mol. Cell 5, 707–716 (2000).

    CAS  Google Scholar 

  88. 88

    Sato, S., Yoshida, W., Soejima, H., Nakabayashi, K. & Hata, K. Methylation dynamics of IG-DMR and Gtl2-DMR during murine embryonic and placental development. Genomics 18 May 2011 (doi:10.1016/j.ygeno.2011.05.003).

    CAS  PubMed  Google Scholar 

  89. 89

    Henckel, A. et al. Histone methylation is mechanistically linked to DNA methylation at imprinting control regions in mammals. Hum. Mol. Genet. 18, 3375–3383 (2009).

    CAS  Google Scholar 

  90. 90

    Regha, K. et al. Active and repressive chromatin are interspersed without spreading in an imprinted gene cluster in the mammalian genome. Mol. Cell 27, 353–366 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    McEwen, K. R. & Ferguson-Smith, A. C. Distinguishing epigenetic marks of developmental and imprinting regulation. Epigenetics Chromatin 3, 2 (2010).

    PubMed  PubMed Central  Google Scholar 

  92. 92

    Mann, J. R., Gadi, I., Harbison, M. L., Abbondanzo, S. J. & Stewart, C. L. Androgenetic mouse embryonic stem cells are pluripotent and cause skeletal defects in chimeras: implications for genetic imprinting. Cell 62, 251–260 (1990).

    CAS  PubMed  Google Scholar 

  93. 93

    Allen, N. D. et al. Distribution of parthenogenetic cells in the mouse brain and their influence on brain development and behavior. Proc. Natl Acad. Sci. USA. 92, 10782–10786 (1995).

    CAS  PubMed  Google Scholar 

  94. 94

    Coan, P., Burton, G. & Ferguson-Smith, A. C. Imprinted genes in the placenta. Placenta 26, S10–S20 (2005).

    PubMed  Google Scholar 

  95. 95

    Plagge, A. et al. The imprinted signaling protein XLαs is required for postnatal adaptation to feeding. Nature Genet. 36, 818–826 (2004).

    CAS  PubMed  Google Scholar 

  96. 96

    Garfield, A. S. et al. Distinct physiological and behavioural functions for parental alleles of imprinted Grb10. Nature 469, 534–538 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97

    Chen, M. et al. Central nervous system imprinting of the G protein Gsα and its role in metabolic regulation. Cell Metab. 9, 548–555 (2009).

    PubMed  PubMed Central  Google Scholar 

  98. 98

    Plass, C. et al. Identification of Grf1 on mouse chromosome 9 as an imprinted gene by RLGS-M. Nature Genet. 14, 106–109 (1996).

    CAS  Google Scholar 

  99. 99

    O'Neill, M. J., Ingram, R. S., Vrana, P. B. & Tilghman, S. M. Allelic expression of IGF2 in marsupials and birds. Dev. Genes Evol. 210, 18–20 (2000).

    CAS  PubMed  Google Scholar 

  100. 100

    Rapkins, R. W. et al. Recent assembly of an imprinted domain from non-imprinted components. PLoS Genet. 2, e182 (2006).

    PubMed  PubMed Central  Google Scholar 

  101. 101

    Edwards, C. et al. The evolution of the imprinted Dlk1-Dio3 domain in mammals. PLoS Biol. 6, e135 (2008).

    PubMed  PubMed Central  Google Scholar 

  102. 102

    Renfree, M. B., Hore, T. A., Shaw, G., Graves, J. A. & Pask, A. J. Evolution of genomic imprinting: insights from marsupials and monotremes. Annu. Rev. Genomics Hum. Genet. 10, 241–262 (2009).

    CAS  PubMed  Google Scholar 

  103. 103

    Moore, T. & Haig, D. Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet. 7, 45–49 (1991).

    CAS  PubMed  Google Scholar 

  104. 104

    Keverne, E. B. & Curley, J. P. Epigenetics, brain evolution and behavior. Frontiers in Neuroendocrinol. 29, 398–412 (2008).

    CAS  Google Scholar 

  105. 105

    Rowe, H. M. et al. KAP1 controls endogenous retroviruses in embryonic stem cells. Nature 463, 237–240 (2010).

    CAS  PubMed  Google Scholar 

  106. 106

    Martens, J. H. et al. The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J. 24, 800–812 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Watanabe, T. et al. Role for piRNAs and a novel RNA in de novo DNA methylation of the imprinted mouse Rasgrf1 locus. Science 332, 848–852 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Glass, J. L., Fazzari, M. J., Ferguson-Smith, A. C. & Greally, J. M. CG dinucleotide periodicities recognized by the Dnmt3a-Dnmt3L complex are distinctive at retroelements and imprinted domains. Mamm. Genome 20, 633–643 (2009).

    CAS  Google Scholar 

  109. 109

    Wallace, C. et al. The imprinted DLK1-MEG3 gene region on chromosome 14q32.2 alters susceptibility to type 1 diabetes. Nature Genet. 42, 68–71 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110

    Kong, A. et al. Parental origin of sequence variants that segregate with complex diseases. Nature 462, 868–874 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111

    Lubinsky, M., Herrmann J., Kosseff, A. L. & Opitz, J. M. Autosomal-dominant sex-dependent transmission of the Wiedemann-Beckwith syndrome. Lancet. 1, 932 (1974).

    CAS  PubMed  Google Scholar 

  112. 112

    Cattanach, B. M. & Beechey, C. V. in Chromosomes Today (eds Fredga, K., Kihlman, B. & Bennett, M.) 135–148 (Unwin Hyman, London, 1990).

    Google Scholar 

  113. 113

    Kanduri, C. et al. Functional association of CTCF with the insulator upstream of the H19 gene is parent of origin-specific and methylation-sensitive. Curr. Biol. 10, 853–856 (2000).

    CAS  PubMed  Google Scholar 

Download references


The author acknowledges the many scientists whose research has contributed to the genetic, embryological and epigenetic studies on parental-origin effects and genomic imprinting, and apologizes to those whose work it has not been possible to mention or cite in the confines of this Timeline article. The author is grateful to previous and current members of the Ferguson-Smith team for their contributions to the ideas presented here, and thanks the colleagues with whom she has spent many a long hour debating and discussing the past, present and future of genomic imprinting and epigenetic processes.

Author information



Corresponding author

Correspondence to Anne C. Ferguson-Smith.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links


Anne C. Ferguson-Smith's homepage

Catalogue of Imprinting Effects

Epigenesys (EU Network of Excellence)

International Human Epigenome Consortium

MouseBook imprinting catalogue

Medical Research Council Harwell Genomic Imprinting homepage

University of Cambridge Centre for Trophoblast Research


Choroid plexus

A rich network of blood vessels located in the brain that is responsible for the production of cerebrospinal fluid.

Coccid insects

Scale insects of the order Hemiptera.

Complete hydatidiform mole

A product of conception that has two paternally derived genomes and is devoid of maternally inherited chromosomes. It develops as a rapidly growing mass, is derived from cells that would normally contribute to the placenta and lacks fetal tissue.

CCCTC-binding factor

(CTCF). A highly conserved zinc finger protein that influences chromatin organization and architecture and is implicated in diverse regulatory functions including transcriptional activation, repression and insulation.


A cytogenetic term to describe chromosomes or chromosomal regions that remain condensed and heavily stained during interphase.

Histone modifications

Reversible post-translational modifications, such as methylation and acetylation, that occur on the amino-terminal tails of core histone proteins.


Two of the three layers of membrane that protect the brain and the spinal cord; cerebrospinal fluid circulates between these two layers.

LTR retrotransposons

A long terminal repeat (LTR)-containing class of genetic element that can replicate and insert into a host genome through an RNA intermediate.

Neurogenic niche

A specific microenvironment in which neural stem cells can respond to endogenous and exogenous cues and can undergo self-renewal, proliferation and/or differentiation.

Ovarian teratomas

A tumour, derived from egg cells, which consists of cells that resemble fetal tissue-derived cells.


A stage of meiosis in which the chromosome homologues are closely synapsed. This is the stage when crossing-over between the homologous chromosomes occurs.


The haploid nucleus from a male or female gamete.

Reciprocal translocation

The interchange of genetic material between two chromosomes that are non-homologous.

Robertsonian translocation

A chromosomal abnormality in which two acrocentric chromosomes become joined by a common centromere.

Sciarid flies

Dipteran insects of the genus Sciara, also known as fungus gnats.

Uniparental disomy

A cellular or organismal phenomenon in which both chromosome homologues are derived from one parent with none derived from the other parent. It can be the result of fertilization involving a disomic gamete and a gamete that is nullisomic for the homologue.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ferguson-Smith, A. Genomic imprinting: the emergence of an epigenetic paradigm. Nat Rev Genet 12, 565–575 (2011).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing