Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

State-of-the-art gene-based therapies: the road ahead

Key Points

  • Gene therapy approaches include gene addition, gene knockdown and gene alteration/correction.

  • Gene transfer vectors involve the use of non-viral DNA plasmids or are derived from the modification of natural viruses.

  • Vectors can be designed to express therapeutic protein coding and/or non-coding RNAs. Therapeutic non-coding RNAs include RNAi and microRNAs.

  • Improvements in gene transfer vector technologies are responsible for early clinical successes in treated inherited blindness, immunodeficiency syndromes and a neurodegenerative disease.

  • Some technical barriers still exist that limit the wide-scale implementation of gene therapy.

  • Improved vectors and a better understanding of vector–host interactions are two of the most important goals of gene therapy research.

  • The advancement in disease prediction using personalized genomics will ultimately influence the use of gene transfer in preventative medical applications.

Abstract

Improvements in the gene transfer vectors used in therapeutic trials have led to substantial clinical successes in patients with serious genetic conditions, such as immunodeficiency syndromes, blindness and some cancer types. Several barriers need to be overcome before this type of therapy becomes a widely accepted treatment for a broad group of medical diseases. However, recent progress in the field is finally realizing some of the promises made more than 20 years ago, providing optimism for additional successes in the near future.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The four barriers to successful gene therapy.
Figure 2: Adeno-associated virus capsid shuffling and directed evolution.
Figure 3: Robust minicircle production.
Figure 4: Combining stem cells and gene therapy: an example application.

Similar content being viewed by others

References

  1. Mingozzi, F. & High, K. A. Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nature Rev. Genet. (in the press).

  2. Davidson, B. L. & McCray, P. B. Jr. Current prospects for RNA interference-based therapies. Nature Rev. Genet. (in the press).

  3. Naldini, L. Ex vivo gene transfer and correction for cell-based therapies. Nature Rev. Genet. (in the press).

  4. Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S. & Gregory, P. D. Genome editing with engineered zinc finger nucleases. Nature Rev. Genet. 11, 636–646 (2010).

    CAS  PubMed  Google Scholar 

  5. Lu, Q. L. et al. The status of exon skipping as a therapeutic approach to duchenne muscular dystrophy. Mol. Ther. 19, 9–15 (2011).

    CAS  PubMed  Google Scholar 

  6. Janowski, B. A. & Corey, D. R. Minireview: switching on progesterone receptor expression with duplex RNA. Mol. Endocrinol. 24, 2243–2252 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhou, J. & Rossi, J. J. Aptamer-targeted cell-specific RNA interference. Silence 1, 4 (2010).

    PubMed  PubMed Central  Google Scholar 

  8. Thomas, C. E., Ehrhardt, A. & Kay, M. A. Progress and problems with the use of viral vectors for gene therapy. Nature Rev. Genet. 4, 346–358 (2003).

    CAS  PubMed  Google Scholar 

  9. Kennedy, S., Rettinger, S., Flye, M. W. & Ponder, K. P. Experiments in transgenic mice show that hepatocytes are the source for postnatal liver growth and do not stream. Hepatology 22, 160–168 (1995).

    CAS  PubMed  Google Scholar 

  10. Kay, M. A. et al. In vivo gene therapy of hemophilia B: sustained partial correction in factor IX-deficient dogs. Science 262, 117–119 (1993).

    CAS  PubMed  Google Scholar 

  11. Coroadinha, A. S. et al. Production of retroviral vectors: review. Curr. Gene Ther. 10, 456–473 (2010).

    CAS  PubMed  Google Scholar 

  12. Nienhuis, A. W. Development of gene therapy for blood disorders. Blood 111, 4431–4444 (2008).

    CAS  PubMed  Google Scholar 

  13. Cavazzana-Calvo, M. et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288, 669–672 (2000). This report describes the correction of X-linked SCID in children by gene therapy. It is deemed to be the first established gene therapy cure to be carried out in humans.

    CAS  PubMed  Google Scholar 

  14. Hacein-Bey-Abina, S. et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302, 415–419 (2003). These authors established that insertional mutagenesis participates in the formation of leukaemia in a subset of patients who were treated for X-linked SCID.

    CAS  PubMed  Google Scholar 

  15. Kohn, D. B. Update on gene therapy for immunodeficiencies. Clin. Immunol. 135, 247–254 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Boztug, K. et al. Stem-cell gene therapy for the Wiskott-Aldrich syndrome. N. Engl. J. Med. 363, 1918–1927 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ott, M. G. et al. Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nature Med. 12, 401–409 (2006).

    CAS  PubMed  Google Scholar 

  18. Aiuti, A. et al. Multilineage hematopoietic reconstitution without clonal selection in ADA-SCID patients treated with stem cell gene therapy. J. Clin. Invest. 117, 2233–2240 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Deichmann, A. et al. Vector integration is nonrandom and clustered and influences the fate of lymphopoiesis in SCID-X1 gene therapy. J. Clin. Invest. 117, 2225–2232 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bushman, F. D. Retroviral integration and human gene therapy. J. Clin. Invest. 117, 2083–2086 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Cavazzana-Calvo, M. et al. Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature 467, 318–322 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Winslow, M. M. et al. Suppression of lung adenocarcinoma progression by Nkx2-1. Nature (in the press).

  23. Cartier, N. et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 326, 818–823 (2009).

    CAS  PubMed  Google Scholar 

  24. Bushman, F. et al. Genome-wide analysis of retroviral DNA integration. Nature Rev. Microbiol. 3, 848–858 (2005).

    CAS  Google Scholar 

  25. DiGiusto, D. L. et al. RNA-based gene therapy for HIV with lentiviral vector-modified CD34+ cells in patients undergoing transplantation for AIDS-related lymphoma. Sci. Transl. Med. 2, 36ra43 (2010).

    PubMed  PubMed Central  Google Scholar 

  26. Mavilio, F. et al. Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells. Nature Med. 12, 1397–1402 (2006).

    CAS  PubMed  Google Scholar 

  27. Fine, J. D. Inherited epidermolysis bullosa: past, present, and future. Ann. N. Y Acad. Sci. 1194, 213–222 (2010).

    CAS  PubMed  Google Scholar 

  28. Titeux, M., Pendaries, V. & Hovnanian, A. Gene therapy for recessive dystrophic epidermolysis bullosa. Dermatol. Clin. 28, 361–366 (2010).

    CAS  PubMed  Google Scholar 

  29. Trobridge, G. D. Foamy virus vectors for gene transfer. Expert Opin. Biol. Ther. 9, 1427–1436 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Brunetti-Pierri, N. & Ng, P. Progress towards liver and lung-directed gene therapy with helper-dependent adenoviral vectors. Curr. Gene Ther. 9, 329–340 (2009).

    CAS  PubMed  Google Scholar 

  31. Zaiss, A. K., Machado, H. B. & Herschman, H. R. The influence of innate and pre-existing immunity on adenovirus therapy. J. Cell. Biochem. 108, 778–790 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Seiler, M. P., Cerullo, V. & Lee, B. Immune response to helper dependent adenoviral mediated liver gene therapy: challenges and prospects. Curr. Gene Ther. 7, 297–305 (2007).

    CAS  PubMed  Google Scholar 

  33. Sheridan, C. Gene therapy finds its niche. Nature Biotech. 29, 121–128 (2011).

    CAS  Google Scholar 

  34. Wu, H. & Curiel, D. T. Fiber-modified adenoviruses for targeted gene therapy. Methods Mol. Biol. 434, 113–132 (2008).

    CAS  PubMed  Google Scholar 

  35. McCaffrey, A. P. et al. The host response to adenovirus, helper-dependent adenovirus, and adeno-associated virus in mouse liver. Mol. Ther. 16, 931–941 (2008).

    CAS  PubMed  Google Scholar 

  36. Lasaro, M. O. & Ertl, H. C. New insights on adenovirus as vaccine vectors. Mol. Ther. 17, 1333–1339 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Barouch, D. H. Novel adenovirus vector-based vaccines for HIV-1. Curr. Opin. HIV AIDS 5, 386–390 (2010).

    PubMed  PubMed Central  Google Scholar 

  38. Gray, G., Buchbinder, S. & Duerr, A. Overview of STEP and Phambili trial results: two phase IIb test-of-concept studies investigating the efficacy of MRK adenovirus type 5 gag/pol/nef subtype B HIV vaccine. Curr. Opin. HIV AIDS 5, 357–361 (2010).

    PubMed  PubMed Central  Google Scholar 

  39. Zhou, Q., Brown, J., Kanarek, A., Rajagopal, J. & Melton, D. A. In vivo reprogramming of adult pancreatic exocrine cells to β-cells. Nature 455, 627–632 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ferber, S. et al. Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nature Med. 6, 568–572 (2000). The first study to show that diabetes mellitus can be corrected in mouse models of diabetes by using gene transfer to induce cell reprogramming in vivo.

    CAS  PubMed  Google Scholar 

  41. Samson, S. L. & Chan, L. Gene therapy for diabetes: reinventing the islet. Trends Endocrinol. Metab. 17, 92–100 (2006).

    CAS  PubMed  Google Scholar 

  42. Kojima, H. et al. NeuroD-betacellulin gene therapy induces islet neogenesis in the liver and reverses diabetes in mice. Nature Med. 9, 596–603 (2003).

    CAS  PubMed  Google Scholar 

  43. Wang, A. Y., Ehrhardt, A., Xu, H. & Kay, M. A. Adenovirus transduction is required for the correction of diabetes using Pdx-1 or Neurogenin-3 in the liver. Mol. Ther. 15, 255–263 (2007).

    CAS  PubMed  Google Scholar 

  44. Cannon, P. & June, C. Chemokine receptor 5 knockout strategies. Curr. Opin. HIV AIDS 6, 74–79 (2011).

    PubMed  PubMed Central  Google Scholar 

  45. Daya, S. & Berns, K. I. Gene therapy using adeno-associated virus vectors. Clin. Microbiol Rev. 21, 583–593 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Mueller, C. & Flotte, T. R. Clinical gene therapy using recombinant adeno-associated virus vectors. Gene Ther. 15, 858–863 (2008).

    CAS  PubMed  Google Scholar 

  47. Gao, G., Vandenberghe, L. H. & Wilson, J. M. New recombinant serotypes of AAV vectors. Curr. Gene Ther. 5, 285–297 (2005).

    CAS  PubMed  Google Scholar 

  48. Choi, V. W., McCarty, D. M. & Samulski, R. J. AAV hybrid serotypes: improved vectors for gene delivery. Curr. Gene Ther. 5, 299–310 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hauck, B. & Xiao, W. Characterization of tissue tropism determinants of adeno-associated virus type 1. J. Virol. 77, 2768–2774 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhong, L. et al. Next generation of adeno-associated virus 2 vectors: point mutations in tyrosines lead to high-efficiency transduction at lower doses. Proc. Natl Acad. Sci. USA 105, 7827–7832 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Li, W. et al. Engineering and selection of shuffled AAV genomes: a new strategy for producing targeted biological nanoparticles. Mol. Ther. 16, 1252–1260 (2008).

    CAS  PubMed  Google Scholar 

  52. Grimm, D. et al. In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses. J. Virol. 82, 5887–5911 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Maheshri, N., Koerber, J. T., Kaspar, B. K. & Schaffer, D. V. Directed evolution of adeno-associated virus yields enhanced gene delivery vectors. Nature Biotech. 24, 198–204 (2006).

    CAS  Google Scholar 

  54. Inagaki, K., Piao, C., Kotchey, N. M., Wu, X. & Nakai, H. Frequency and spectrum of genomic integration of recombinant adeno-associated virus serotype 8 vector in neonatal mouse liver. J. Virol. 82, 9513–9524 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Nakai, H. et al. Extrachromosomal recombinant adeno-associated virus vector genomes are primarily responsible for stable liver transduction in vivo. J. Virol. 75, 6969–6976 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Deyle, D. R. & Russell, D. W. Adeno-associated virus vector integration. Curr. Opin. Mol. Ther. 11, 442–447 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Nakai, H. et al. Large-scale molecular characterization of adeno-associated virus vector integration in mouse liver. J. Virol. 79, 3606–3614 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Donsante, A. et al. AAV vector integration sites in mouse hepatocellular carcinoma. Science 317, 477 (2007).

    CAS  PubMed  Google Scholar 

  59. Kay, M. A. AAV vectors and tumorigenicity. Nature Biotech. 25, 1111–1113 (2007).

    CAS  Google Scholar 

  60. Maguire, A. M. et al. Age-dependent effects of RPE65 gene therapy for Leber's congenital amaurosis: a phase 1 dose-escalation trial. Lancet 374, 1597–1605 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Maguire, A. M. et al. Safety and efficacy of gene transfer for Leber's congenital amaurosis. N. Engl. J. Med. 358, 2240–2248 (2008). This study describes improved vision in patients with inherited blindness who were treated using a recombinant AAV vector.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Millington-Ward, S. et al. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa. Mol. Ther. 11 Jan 2011 (doi:10.1038/mt.2010.293).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Chadderton, N. et al. Improved retinal function in a mouse model of dominant retinitis pigmentosa following AAV-delivered gene therapy. Mol. Ther. 17, 593–599 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Hadri, L. et al. SERCA2a gene transfer enhances eNOS expression and activity in endothelial cells. Mol. Ther. 18, 1284–1292 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Hajjar, R. J. et al. Design of a phase 1/2 trial of intracoronary administration of AAV1/SERCA2a in patients with heart failure. J. Card. Fail. 14, 355–367 (2008).

    CAS  PubMed  Google Scholar 

  66. Mingozzi, F. et al. AAV-1-mediated gene transfer to skeletal muscle in humans results in dose-dependent activation of capsid-specific T cells. Blood 114, 2077–2086 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Brantly, M. L. et al. Sustained transgene expression despite T lymphocyte responses in a clinical trial of rAAV1-AAT gene therapy. Proc. Natl Acad. Sci. USA 106, 16363–16368 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Manno, C. S. et al. AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood 101, 2963–2972 (2003).

    CAS  PubMed  Google Scholar 

  69. Kay, M. A. et al. Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nature Genet. 24, 257–261 (2000).

    CAS  PubMed  Google Scholar 

  70. Miyagoe-Suzuki, Y. & Takeda, S. Gene therapy for muscle disease. Exp. Cell Res. 316, 3087–3092 (2010).

    CAS  PubMed  Google Scholar 

  71. Wang, Z. et al. Sustained AAV-mediated dystrophin expression in a canine model of Duchenne muscular dystrophy with a brief course of immunosuppression. Mol. Ther. 15, 1160–1166 (2007).

    CAS  PubMed  Google Scholar 

  72. DiPrimio, N., McPhee, S. W. & Samulski, R. J. Adeno-associated virus for the treatment of muscle diseases: toward clinical trials. Curr. Opin. Mol. Ther. 12, 553–560 (2010).

    CAS  PubMed  Google Scholar 

  73. Muramatsu, S. et al. A phase I study of aromatic L-amino acid decarboxylase gene therapy for Parkinson's disease. Mol. Ther. 18, 1731–1735 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Fitzsimons, H. L. et al. Biodistribution and safety assessment of AAV2-GAD following intrasubthalamic injection in the rat. J. Gene Med. 12, 385–398 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Christine, C. W. et al. Safety and tolerability of putaminal AADC gene therapy for Parkinson disease. Neurology 73, 1662–1669 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Eberling, J. L. et al. Results from a phase I safety trial of hAADC gene therapy for Parkinson disease. Neurology 70, 1980–1983 (2008).

    CAS  PubMed  Google Scholar 

  77. Hadaczek, P. et al. Eight years of clinical improvement in MPTP-lesioned primates after gene therapy with AAV2-hAADC. Mol. Ther. 18, 1458–1461 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Varenika, V. et al. Controlled dissemination of AAV vectors in the primate brain. Prog. Brain Res. 175, 163–172 (2009).

    CAS  PubMed  Google Scholar 

  79. Fiandaca, M. S. et al. Real-time MR imaging of adeno-associated viral vector delivery to the primate brain. Neuroimage 47, T27–T35 (2009).

    PubMed  Google Scholar 

  80. Kells, A. P. et al. Efficient gene therapy-based method for the delivery of therapeutics to primate cortex. Proc. Natl Acad. Sci. USA 106, 2407–2411 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Snyder, R. O. et al. Correction of hemophilia B in canine and murine models using recombinant adeno-associated viral vectors. Nature Med. 5, 64–70 (1999). This report establishes that a single administration of recombinant AAV, by hepatic gene transfer, is safe and therapeutic in both small and large animal models of haemophilia B.

    CAS  PubMed  Google Scholar 

  82. Nichols, T. C. et al. Prevention of spontaneous bleeding in dogs with haemophilia A and haemophilia B. Haemophilia 16, 19–23 (2010).

    PubMed  PubMed Central  Google Scholar 

  83. Manno, C. S. et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nature Med. 12, 342–347 (2006). The first systemic administration of a recombinant AAV vector in humans. This resulted in therapeutic levels of coagulation factor IX that did not persist indefinitely because of an unexpected immune response.

    CAS  PubMed  Google Scholar 

  84. Ponder, K. P. Hemophilia gene therapy: a holy grail found. Mol. Ther. 19, 427–428 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Pringle, I. A., Hyde, S. C. & Gill, D. R. Non-viral vectors in cystic fibrosis gene therapy: recent developments and future prospects. Expert Opin. Biol. Ther. 9, 991–1003 (2009).

    CAS  PubMed  Google Scholar 

  86. Park, T. G., Jeong, J. H. & Kim, S. W. Current status of polymeric gene delivery systems. Adv. Drug Deliv. Rev. 58, 467–486 (2006).

    CAS  PubMed  Google Scholar 

  87. Al-Dosari, M. S. & Gao, X. Nonviral gene delivery: principle, limitations, and recent progress. AAPS J. 11, 671–681 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Hyde, S. C. et al. CpG-free plasmids confer reduced inflammation and sustained pulmonary gene expression. Nature Biotech. 26, 549–551 (2008).

    CAS  Google Scholar 

  89. Lam, A. P. & Dean, D. A. Progress and prospects: nuclear import of nonviral vectors. Gene Ther. 17, 439–447 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Dang, J. M. & Leong, K. W. Natural polymers for gene delivery and tissue engineering. Adv. Drug Deliv. Rev. 58, 487–499 (2006).

    CAS  PubMed  Google Scholar 

  91. Herweijer, H. & Wolff, J. A. Gene therapy progress and prospects: hydrodynamic gene delivery. Gene Ther. 14, 99–107 (2007).

    CAS  PubMed  Google Scholar 

  92. Liu, F., Song, Y. & Liu, D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther. 6, 1258–1266 (1999).

    CAS  PubMed  Google Scholar 

  93. Liu, D. & Knapp, J. E. Hydrodynamics-based gene delivery. Curr. Opin. Mol. Ther. 3, 192–197 (2001).

    CAS  PubMed  Google Scholar 

  94. Khorsandi, S. E. et al. Minimally invasive and selective hydrodynamic gene therapy of liver segments in the pig and human. Cancer Gene Ther. 15, 225–230 (2008).

    CAS  PubMed  Google Scholar 

  95. Wolff, J. A. & Budker, V. The mechanism of naked DNA uptake and expression. Adv. Genet. 54, 3–20 (2005).

    CAS  PubMed  Google Scholar 

  96. Andre, F. & Mir, L. M. DNA electrotransfer: its principles and an updated review of its therapeutic applications. Gene Ther. 11, S33–S42 (2004).

    CAS  PubMed  Google Scholar 

  97. Chen, Z. Y., He, C. Y., Ehrhardt, A. & Kay, M. A. Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo. Mol. Ther. 8, 495–500 (2003).

    CAS  PubMed  Google Scholar 

  98. Chen, Z. Y., Riu, E., He, C. Y., Xu, H. & Kay, M. A. Silencing of episomal transgene expression in liver by plasmid bacterial backbone DNA is independent of CpG methylation. Mol. Ther. 16, 548–556 (2008).

    CAS  PubMed  Google Scholar 

  99. Kay, M. A., He, C. Y. & Chen, Z. Y. A robust system for production of minicircle DNA vectors. Nature Biotech. 28, 1287–1289 (2010).

    CAS  Google Scholar 

  100. Gill, D. R., Pringle, I. A. & Hyde, S. C. Progress and prospects: the design and production of plasmid vectors. Gene Ther. 16, 165–171 (2009). This report summarizes the history and current status of non-viral DNA vectors for use in gene therapy applications.

    CAS  PubMed  Google Scholar 

  101. Ivics, Z. & Izsvak, Z. The expanding universe of transposon technologies for gene and cell engineering. Mob. DNA 1, 25 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Yant, S. R., Huang, Y., Akache, B. & Kay, M. A. Site-directed transposon integration in human cells. Nucleic Acids Res. 35, e50 (2007).

    PubMed  PubMed Central  Google Scholar 

  103. Hausl, M. A. et al. Hyperactive sleeping beauty transposase enables persistent phenotypic correction in mice and a canine model for hemophilia B. Mol. Ther. 18, 1896–1906 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Calos, M. P. The phiC31 integrase system for gene therapy. Curr. Gene Ther. 6, 633–645 (2006).

    CAS  PubMed  Google Scholar 

  105. Chalberg, T. W. et al. Integration specificity of phage phiC31 integrase in the human genome. J. Mol. Biol. 357, 28–48 (2006).

    CAS  PubMed  Google Scholar 

  106. Ehrhardt, A., Xu, H., Huang, Z., Engler, J. A. & Kay, M. A. A direct comparison of two nonviral gene therapy vectors for somatic integration: in vivo evaluation of the bacteriophage integrase phiC31 and the Sleeping Beauty transposase. Mol. Ther. 11, 695–706 (2005).

    CAS  PubMed  Google Scholar 

  107. Stone, D. & Lieber, A. New serotypes of adenoviral vectors. Curr. Opin. Mol. Ther. 8, 423–431 (2006).

    CAS  PubMed  Google Scholar 

  108. Boutin, S. et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum. Gene Ther. 21, 704–712 (2010).

    CAS  PubMed  Google Scholar 

  109. Erles, K., Sebokova, P. & Schlehofer, J. R. Update on the prevalence of serum antibodies (IgG and IgM) to adeno-associated virus (AAV). J. Med. Virol. 59, 406–411 (1999).

    CAS  PubMed  Google Scholar 

  110. Brown, B. D. et al. Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nature Biotech. 25, 1457–1467 (2007).

    CAS  Google Scholar 

  111. Brown, B. D., Venneri, M. A., Zingale, A., Sergi Sergi, L. & Naldini, L. Endogenous microRNA regulation suppresses transgene expression in hematopoietic lineages and enables stable gene transfer. Nature Med. 12, 585–591 (2006).

    CAS  PubMed  Google Scholar 

  112. Sharma, A., Tandon, M., Bangari, D. S. & Mittal, S. K. Adenoviral vector-based strategies for cancer therapy. Curr. Drug Ther. 4, 117–138 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Johnson, L. A. et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 114, 535–546 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Pule, M. A. et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nature Med. 14, 1264–1270 (2008).

    CAS  PubMed  Google Scholar 

  115. Bollard, C. M. et al. Administration of tumor-specific cytotoxic T lymphocytes engineered to resist TGF-β to patients with EBV-associated lymphomas. Blood Abstr. 116, 560 (2010).

    Google Scholar 

  116. Mok, T. S. et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 361, 947–957 (2009).

    CAS  PubMed  Google Scholar 

  117. Koski, A. et al. Treatment of cancer patients with a serotype 5/3 chimeric oncolytic adenovirus expressing GMCSF. Mol. Ther. 18, 1874–1884 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Burke, J. M. GM-CSF-armed, replication-competent viruses for cancer. Cytokine Growth Factor Rev. 21, 149–151 (2010).

    CAS  PubMed  Google Scholar 

  119. Kota, J. et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137, 1005–1017 (2009). The authors show that expressing a single recombinant miRNA from a gene transfer vector inhibits liver cancer.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Goyenvalle, A., Babbs, A., van Ommen, G. J., Garcia, L. & Davies, K. E. Enhanced exon-skipping induced by U7 snRNA carrying a splicing silencer sequence: promising tool for DMD therapy. Mol. Ther. 17, 1234–1240 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Franich, N. R. et al. AAV vector-mediated RNAi of mutant huntingtin expression is neuroprotective in a novel genetic rat model of Huntington's disease. Mol. Ther. 16, 947–956 (2008).

    CAS  PubMed  Google Scholar 

  122. Xia, H. et al. RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nature Med. 10, 816–820 (2004).

    CAS  PubMed  Google Scholar 

  123. McLean, C., Greene, C. M. & McElvaney, N. G. Gene targeted therapeutics for liver disease in α-1 antitrypsin deficiency. Biologics 3, 63–75 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Grimm, D. et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441, 537–541 (2006).

    CAS  PubMed  Google Scholar 

  125. Grimm, D. et al. Argonaute proteins are key determinants of RNAi efficacy, toxicity, and persistence in the adult mouse liver. J. Clin. Invest. 120, 3106–3119 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I would like to thank my previous mentors, past and current trainees, and colleagues for all they have taught me. I apologize for not being able to include many other important approaches and studies owing to a lack of space. This work was funded by grants from the US National Institutes of Health (National Heart, Lung and Blood Institute, National Institute of Diabetes and Digestive and Kidney Diseases, and National Institute of Allergy and Infectious Diseases) and the Juvenile Diabetes Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Kay.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

American Society of Gene and Cell Therapy

ClinicalTrials.gov

Glossary

Zinc finger nucleases

Engineered DNA-binding proteins that produce double-strand breaks at specific sequences. They can be used to correct or induce mutations in genomic DNA.

RNAi

(RNA interference). The process by which the introduction or expression within cells of dsRNA leads to the sequence-specific cleavage and degradation of a target mRNA and therefore to gene suppression.

miRNA sponges

Exogenously delivered or expressed non-coding RNAs that bind and inhibit microRNA function in a sequence-specific manner.

RNA aptamers

Short RNAs selected from large libraries that, owing to their three-dimensional structure, bind to and activate or interfere with protein function and/or direct a macromolecular cargo (for example, small interfering RNAs) into cells via a targeted receptor.

Pseudotyping

The use of an unnatural or unmatched envelope or capsid protein to package a viral genome.

Severe combined immune deficiency

(SCID). A lethal disease caused by the lack of B cell and T cell immunity. The disease is caused by a deficiency of one of several genes. It is commonly referred to as the 'bubble boy' disease.

X-linked adrenoleukodystrophy

An X-linked, neonatal, neuronal de-myelinating disorder.

RNA decoys

RNA molecules designed to bind and inhibit a biologically active RNA from binding to its target.

Epidermolysis bullosa

An inherited connective tissue disease resulting in mild to severe (fatal) skin blisters owing to a mutation in collagen or keratin genes.

Self-limiting toxicity

A toxicity reaction that resolves without intervention.

Ornithine transcarbamylase deficiency

Ornithine transcarbamylase is an enzyme in the urea cycle that is crucial for the conversion of ammonia to urea. Deficiency results in high blood ammonia levels, mental retardation and possible death.

Helper-dependent packaging system

A means of packaging adenoviral vectors that are devoid of all their genes. The pared-down adenoviral genome is expressed from a helper adenovirus that lacks a packaging signal; this permits the vector but not the helper virus to be packaged.

Leber's congenital amaurosis

An inherited and incurable blindness disorder.

Ambulatory vision

The degree of vision that allows one to see enough to get around a room without bumping into objects.

Image-guided vector placement

The use of imaging technologies, such as real-time magnetic resonance imaging, to pinpoint the delivery of a vector through a catheter.

Minicircle DNAs

Expression cassettes that are devoid of the plasmid DNA backbone.

Sleeping Beauty

An ancient inactive transposon isolated from salmon. The transposase was reactivated by introducing various mutations.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kay, M. State-of-the-art gene-based therapies: the road ahead. Nat Rev Genet 12, 316–328 (2011). https://doi.org/10.1038/nrg2971

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2971

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research