Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Phenomics: the next challenge

Key Points

  • The area of phenomics is the acquisition of high-dimensional phenotypic data on an organism-wide scale.

  • Phenotypes are the characteristics of organisms that are of the most interest. Useful explanations of important outcomes such as disease can be obtained by studying phenotypes.

  • Phenomic data allow a better understanding of the genotype–phenotype map, that is, of the pathways that connect genotypes to phenotypes. Phenomics is also a necessary complement to genomics.

  • The dimensionality of phenomes is high and so analyses of phenomic data call for new concepts and techniques.

  • Nonlinear models that integrate information across the phenotypic hierarchy are necessary to integrate phenomic information.

  • Gathering phenomic data is currently expensive and time consuming; technical advances can increase phenomic throughput and lower costs.

  • The development of phenomic capabilities requires collaborations between scientists with diverse expertise.

  • Accelerating our ability to gather phenomic data should be a priority for funding.

Abstract

A key goal of biology is to understand phenotypic characteristics, such as health, disease and evolutionary fitness. Phenotypic variation is produced through a complex web of interactions between genotype and environment, and such a 'genotype–phenotype' map is inaccessible without the detailed phenotypic data that allow these interactions to be studied. Despite this need, our ability to characterize phenomes — the full set of phenotypes of an individual — lags behind our ability to characterize genomes. Phenomics should be recognized and pursued as an independent discipline to enable the development and adoption of high-throughput and high-dimensional phenotyping.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Causation scenarios.
Figure 2: Quantitation of eye colour.

Similar content being viewed by others

References

  1. Lewin, R. Proposal to sequence the human genome stirs debate. Science 232, 1598–1600 (1986).

    Article  CAS  PubMed  Google Scholar 

  2. Angier, N. Great 15-year project to decipher genes stirs opposition. New York Times (5 Jun 1990).

  3. Schork, N. J. Genetics of complex disease — approaches, problems, and solutions. Am. J. Respir. Crit. Care Med. 156, S103–S109 (1997). This was perhaps the earliest call for phenomics.

    Article  CAS  PubMed  Google Scholar 

  4. Schilling, C. H., Edwards, J. S. & Palsson, B. O. Toward metabolic phenomics: analysis of genomic data using flux balances. Biotechnol. Prog. 15, 288–295 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Houle, D. in The Character Concept in Evolutionary Biology (ed. Wagner, G.) 109–140 (Academic Press, 2001).

    Book  Google Scholar 

  6. Bilder, R. M. et al. Phenomics: the systematic study of phenotypes on a genome-wide scale. Neuroscience 164, 30–42 (2009). An exceptionally well-reasoned justification for phenomic analyses.

    Article  CAS  PubMed  Google Scholar 

  7. Freimer, N. & Sabatti, C. The human phenome project. Nature Genet. 34, 15–21 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Bassingthwaighte, J. B. Strategies for the physiome project. Ann. Biomed. Eng. 28, 1043–1058 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Soulé, M. Phenetics of natural populations I. Phenetic relationships of insular populations of the side-blotched lizard. Evolution 21, 584–591 (1967).

    Article  PubMed  Google Scholar 

  10. Galton, F. Hereditary Genius (Macmillan and Co., London, 1869).

    Book  Google Scholar 

  11. Fisher, R. The correlation between relatives on the supposition of Mendelian inheritance. Trans. R. Soc. Edinb. Earth Sci. 52, 399–433 (1918).

    Article  Google Scholar 

  12. Snow, J. On the Mode of Communication of Cholera. (John Churchill, London, 1860).

    Google Scholar 

  13. Pearson, K. Mathematical contributions to the theory of evolution. XI. On the influence of natural selection on the variability and correlation of organs. Philos. Trans. R. Soc. Lond. A 200, 1–66 (1903).

    Article  Google Scholar 

  14. Wright, S. Correlation and causation. J. Agric. Res. 20, 557–585 (1921).

    Google Scholar 

  15. Jansen, R. C. & Nap, J. P. Genetical genomics: the added value from segregation. Trends Genet. 17, 388–391 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Jansen, R. C. Studying complex biological systems using multifactorial perturbation. Nature Rev. Genet. 4, 145–151 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Rockman, M. V. Reverse engineering the genotype–phenotype map with natural genetic variation. Nature 456, 738–744 (2008). A stimulating review of how to find links between parts of the genotype–phenotype map.

    Article  CAS  PubMed  Google Scholar 

  18. Wagner, G. P. et al. Pleiotropic scaling of gene effects and the 'cost of complexity'. Nature 452, 470–472 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. He, X. L. & Zhang, J. Z. Toward a molecular understanding of pleiotropy. Genetics 173, 1885–1891 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, Z., Liao, B. & Zhang, J. Genomic patterns of pleiotropy and the evolution of complexity. Proc. Natl Acad. Sci. USA 107, 18034–18039 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sokolowski, M. B. Foraging strategies of Drosophila melanogaster: a chromosomal analysis. Behav. Genet. 10, 291–302 (1980).

    Article  CAS  PubMed  Google Scholar 

  22. Kent, C. F., Daskalchuk, T., Cook, L., Sokolowski, M. B. & Greenspan, R. J. The Drosophila foraging gene mediates adult plasticity and gene–environment interactions in behaviour, metabolites, and gene expression in response to food deprivation. PLoS Genet. 5, e1000609 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lango Allen, H. et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467, 832–838 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Park, J. et al. Estimation of effect size distribution from genome-wide association studies and implications for future discoveries. Nature Genet. 42, 570–575 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Teslovich, T. M. et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466, 707–713 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Maher, B. Personal genomes: the case of the missing heritability. Nature 456, 18–21 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Yang, J. et al. Common SNPs explain a large proportion of the heritability for human height. Nature Genet. 42, 565–569 (2010). This study shows that the appearance of 'missing heritability' is created by stringent statistical testing of individual associations and that known SNPs can explain almost all of the variation in human height.

    Article  CAS  PubMed  Google Scholar 

  29. Goldstein, D. B. Common genetic variation and human traits. N. Engl. J. Med. 360, 1696–1698 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Kimura, M. & Crow, J. F. The number of alleles that can be maintained in a finite population. Genetics 49, 725–738 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bulmer, M. G. The Mathematical Theory of Quantitative Genetics. (Oxford Univ. Press, 1980).

    Google Scholar 

  32. Hill, W. G. Understanding and using quantitative genetic variation. Philos. Trans. R. Soc. B 365, 73–85 (2010).

    Article  Google Scholar 

  33. Li, S. X. et al. Cumulative effects and predictive value of common obesity-susceptibility variants identified by genome-wide association studies. American Journal of Clinical Nutrition 91, 184–190 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Lango, H. et al. Assessing the combined impact of 18 common genetic variants of modest effect sizes on type 2 diabetes risk. Diabetes 57, 3129–3135 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Meigs, J. B. et al. Genotype score in addition to common risk factors for prediction of type 2 diabetes. N. Engl. J. Med. 359, 2208–2219 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wacholder, S. et al. Performance of common genetic variants in breast-cancer risk models. N. Engl. J. Med. 362, 986–993 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Talmud, P. J. et al. Utility of genetic and non-genetic risk factors in prediction of type 2 diabetes: Whitehall II prospective cohort study. BMJ 340, b4838 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sparsø, T. et al. Combined analysis of 19 common validated type 2 diabetes susceptibility gene variants shows moderate discriminative value and no evidence of gene–gene interaction. Diabetologia 52, 1308–1314 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Buchanan, A. V., Weiss, K. M. & Fullerton, S. M. Dissecting complex disease: the quest for the philosopher's stone? Int. J. Epidemiol. 35, 562–571 (2006).

    Article  PubMed  Google Scholar 

  40. Robson, L. J. & Gwynne, D. T. Measuring sexual selection on females in sex-role-reversed Mormon crickets (Anabrus simplex, Orthoptera: Tettigoniidae). J. Evol. Biol. 23, 1528–1537 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution 37, 1210–1226 (1983).

    Article  PubMed  Google Scholar 

  42. Houle, D. Numbering the hairs on our heads: the shared challenge and promise of phenomics. Proc. Natl Acad. Sci. USA 107, 1793–1799 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Plomin, R., Haworth, C. M. A. & Davis, O. S. P. Common disorders are quantitative traits. Nature Rev. Genet. 10, 872–878 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Gottesman, I. & Gould, T. D. The endophenotype concept in psychiatry: etymology and strategic intentions. Am. J. Psychiatry 160, 636–645 (2003). An insightful review on the utility of intermediate phenotypes or biomarkers to predict psychiatric disorders.

    Article  PubMed  Google Scholar 

  45. Kingsolver, J. G., Gomulkiewicz, R. & Carter, P. A. Variation, selection and evolution of function-valued traits. Genetica 112–113, 87–104 (2001). A review of a powerful approach to studying the class of phenotypes that are continuous functions of time or position.

    Article  PubMed  Google Scholar 

  46. Martens, H. & Martens, M. Multivariate Analysis of Quality: An Introduction. (J. Wiley and Sons, Chichester, UK, 2001).

    Google Scholar 

  47. Tibshirani, R. Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B 58, 267–288 (1996).

    Google Scholar 

  48. Mezey, J. G. & Houle, D. The dimensionality of genetic variation for wing shape in Drosophila melanogaster. Evolution 59, 1027–1038 (2005).

    Article  PubMed  Google Scholar 

  49. Sewalem, A., Kistemaker, G. J., Miglior, F. & Van Doormaal, B. J. Analysis of the relationship between type traits and functional survival in Canadian Holsteins using a Weibull proportional hazards model. J. Dairy Sci. 87, 3938–3946 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Ochs, M. F. Knowledge-based data analysis comes of age. Brief. Bioinformatics 11, 30–39 (2010).

    Article  PubMed  Google Scholar 

  51. Zhu, J. et al. An integrative genomics approach to the reconstruction of gene networks in segregating populations. Cytogenet. Genome Res. 105, 363–374 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Li, R. H. et al. Structural model analysis of multiple quantitative traits. PLoS Genet. 2, 1046–1057 (2006).

    CAS  Google Scholar 

  53. Burnham, K. P. & Anderson, D. R. Model Selection and Multi-model Inference: A Practical Information-Theoretic Approach. (Springer, New York, 2002).

    Google Scholar 

  54. Claeskens, G. & Hjort, N. L. The focused information criterion. J. Am. Stat. Assoc. 98, 900–916 (2003).

    Article  Google Scholar 

  55. Wold, S., Martens, H. & Wold, H. The multivariate calibration-problem in chemistry solved by the PLS method. Lect. Notes Math. 973, 286–293 (1983).

    Article  Google Scholar 

  56. Bureau, A. et al. Identifying SNPs predictive of phenotype using random forests. Genet. Epidemiol. 28, 171–182 (2005). The introduction of a powerful non-parametric technique to QTL mapping.

    Article  PubMed  Google Scholar 

  57. Breiman, L. Statistical modeling: the two cultures. Stat. Sci. 16, 199–215 (2001). A clear introduction to several powerful techniques for the statistical modelling of high-dimensional data.

    Article  Google Scholar 

  58. Hill, W. G. Understanding and using quantitative genetic variation. Philo. Trans. R. Soc. B 365, 73–85 (2010).

    Article  Google Scholar 

  59. Rajasingh, H., Gjuvsland, A. B., Vage, D. I. & Omholt, S. W. When parameters in dynamic models become phenotypes: a case study on flesh pigmentation in the Chinook salmon (Oncorhynchus tshawytscha). Genetics 179, 1113–1118 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hunter, P. J. & Borg, T. K. Integration from proteins to organs: the Physiome Project. Nature Rev. Mol. Cell Biol. 4, 237–243 (2003).

    Article  CAS  Google Scholar 

  61. Omholt, S. W., Plahte, E., Oyehaug, L. & Xiang, K. Gene regulatory networks generating the phenomena of additivity, dominance and epistasis. Genetics 155, 969–980 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Gjuvsland, A. B., Hayes, B. J., Meuwissen, T. H., Plahte, E. & Omholt, S. W. Nonlinear regulation enhances the phenotypic expression of trans-acting genetic polymorphisms. BMC Syst. Biol. 1, 32 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gjuvsland, A. B., Plahte, E. & Omholt, S. W. Threshold-dominated regulation hides genetic variation in gene expression networks. BMC Syst. Biol. 1, 57 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Peccoud, J. et al. The selective values of alleles in a molecular network model are context dependent. Genetics 166, 1715–1725 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Welch, S. M., Dong, Z., Roe, J. L. & Das, S. Flowering time control: gene network modelling and the link to quantitative genetics. Aust. J. Agric. Res. 56, 919–936 (2005).

    Article  Google Scholar 

  66. Cooper, M., van Eeuwijk, F. A., Hammer, G. L., Podlich, D. W. & Messina, C. Modeling QTL for complex traits: detection and context for plant breeding. Curr. Opin. Plant Biol. 12, 231–240 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Cooper, M., Podlich, D. W. & Smith, O. S. Gene-to-phenotype models and complex trait genetics. Aust. J. Agric. Res. 56, 895–918 (2005).

    Article  Google Scholar 

  68. Salazar-Ciudad, I. & Jernvall, J. A computational model of teeth and the developmental origins of morphological variation. Nature 464, 583–586 (2010). A developmental model that produces three-dimensional predictions of tooth morphology and can mimic the variation observed in seal teeth.

    Article  CAS  PubMed  Google Scholar 

  69. Gjuvsland, A. B., Hayes, B. J., Omholt, S. W. & Carlborg, O. Statistical epistasis is a generic feature of gene regulatory networks. Genetics 175, 411–420 (2006).

    Article  PubMed  Google Scholar 

  70. Gjuvsland, A. B., Plahte, E., Ådnøy, T. & Omholt, S. W. Allele interaction — single locus genetics meets regulatory biology. PLoS ONE 5, e9379 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hunter, P. et al. A vision and strategy for the virtual physiological human in 2010 and beyond. Philos. Trans. R. Soc. A 368, 2595–2614 (2010).

    Article  Google Scholar 

  72. Hunter, P. J. & Viceconti, M. The VPH–Physiome Project: standards and tools for multiscale modeling in clinical applications. IEEE Rev. Biomed. Eng. 2, 40–53 (2009).

    Article  Google Scholar 

  73. Nash, M. & Hunter, P. Computational mechanics of the heart. J. Elast. 61, 113–141 (2000).

    Article  Google Scholar 

  74. Wouters, B. J., Lowenberg, B. & Delwel, R. A decade of genome-wide gene expression profiling in acute myeloid leukemia: flashback and prospects. Blood 113, 291–298 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Golub, T. R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Kliebenstein, D. Quantitative genomics: analyzing intraspecific variation using global gene expression polymorphisms or eQTLs. Annu. Rev. Plant Biol. 60, 93–114 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Chu, T. J., Glymour, C., Scheines, R. & Spirtes, P. A statistical problem for inference to regulatory structure from associations of gene expression measurements with microarrays. Bioinformatics 19, 1147–1152 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Sindelka, R., Sidova, M., Svec, D. & Kubista, M. Spatial expression profiles in the Xenopus laevis oocytes measured with qPCR tomography. Methods 51, 87–91 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. de Godoy, L. M. F. et al. Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature 455, 1251–1254 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Choudhary, C. & Mann, M. Decoding signalling networks by mass spectrometry-based proteomics. Nature Rev. Mol. Cell Biol. 11, 427–439 (2010).

    Article  CAS  Google Scholar 

  81. Sawada, Y. et al. Widely targeted metabolomics based on large-scale MS/MS data for elucidating metabolite accumulation patterns in plants. Plant Cell Physiol. 50, 37–47 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Mayr, M. Metabolomics ready for the prime time? Circ. Cardiovasc. Genet. 1, 58–65 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Holmes, E. et al. Human metabolic phenotype diversity and its association with diet and blood pressure. Nature 453, 396–400 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shah, S. H. et al. Association of a peripheral blood metabolic profile with coronary artery disease and risk of subsequent cardiovascular events. Circ. Cardiovasc. Genet. 3, 207–214 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Walter, T. et al. Visualization of image data from cells to organisms. Nature Methods 7, 479–479 (2010).

    Article  CAS  Google Scholar 

  86. Montes, J. M., Melchinger, A. E. & Reif, J. C. Novel throughput phenotyping platforms in plant genetic studies. Trends Plant Sci. 12, 433–436 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Nagel, K. A. et al. Temperature responses of roots: impact on growth, root system architecture and implications for phenotyping. Funct. Plant Biol. 36, 947–959 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Vyssotski, A. L. et al. Miniature neurologgers for flying pigeons: multichannel EEG and action and field potentials in combination with GPS recording. J. Neurophysiol. 95, 1263–1273 (2006).

    Article  PubMed  Google Scholar 

  89. Simon, J. C. & Dickinson, M. H. A new chamber for studying the behavior of Drosophila. PLoS ONE 5, e8793 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Rodriguez-Munoz, R., Bretman, A., Slate, J., Walling, C. A. & Tregenza, T. Natural and sexual selection in a wild insect population. Science 328, 1269–1272 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Carlbring, P. et al. Internet vs. paper and pencil administration of questionnaires commonly used in panic/agoraphobia research. Comput. Human Behav. 23, 1421–1434 (2007).

    Article  Google Scholar 

  92. Ohya, Y. et al. High-dimensional and large-scale phenotyping of yeast mutants. Proc. Natl Acad. Sci. USA 102, 19015–19020 (2005). This study describes an automated imaging system that measures over 400 morphological parameters of yeast cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chung, K. H., Crane, M. M. & Lu, H. Automated on-chip rapid microscopy, phenotyping and sorting of C. elegans. Nature Methods 5, 637–643 (2008). This paper describes a system for the rapid, automated manipulation and measurement of nematode worms.

    Article  CAS  PubMed  Google Scholar 

  94. Jain, K. The Hand Book of Biomarkers. (Springer, New York, 2010).

    Book  Google Scholar 

  95. Govindaraju, D. R. et al. Genetics of the Framingham Heart Study population. Adv. Genet. 62, 33–65 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Wang, T. J. et al. Multiple biomarkers for the prediction of first major cardiovascular events and death. N. Engl. J. Med. 355, 2631–2639 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Harris, T. B. et al. Age, Gene/Environment Susceptibility-Reykjavik Study: multidisciplinary applied phenomics. Am. J. Epidemiol. 165, 1076–1087 (2007).

    Article  PubMed  Google Scholar 

  98. Psaty, B. M. et al. Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. Design of prospective meta-analyses of genome-wide association studies from 5 cohorts. Circ. Cardiovasc. Genet. 2, 73–80 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Byars, S. G., Ewbank, D., Govindaraju, D. R. & Stearns, S. C. Natural selection in a contemporary human population. Proc. Natl Acad. Sci. USA 107, 1787–1792 (2010). The first comprehensive review of selection in contemporary human populations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Slattery, M. L. & Kerber, R. A. A comprehensive evaluation of family history and breast cancer risk. The Utah Population Database. JAMA 270, 1563–1568 (1993).

    Article  CAS  PubMed  Google Scholar 

  101. Chute, C. G., Beck, S. A., Fisk, T. B. & Mohr, D. N. The Enterprise Data Trust at Mayo Clinic: a semantically integrated warehouse of biomedical data. JAMA 17, 131–135 (2010).

    Google Scholar 

  102. Olsen, J. et al. The Danish National Birth Cohort — its background, structure and aim. Scand. J. Public Health 29, 300–307 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Mailman, M. D. et al. The NCBI dbGaP database of genotypes and phenotypes. Nature Genet. 39, 1181–1186 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Crane, M. M., Chung, K., Stirman, J. & Lu, H. Microfluidics-enabled phenotyping, imaging, and screening of multicellular organisms. Lab Chip 10, 1509–1517 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Giljohann, D. A. & Mirkin, C. A. Drivers of biodiagnostic development. Nature 462, 461–464 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rzhetsky, A., Wajngurt, D., Park, N. & Zheng, T. Probing genetic overlap among complex human phenotypes. Proc. Natl Acad. Sci. USA 104, 11694–11699 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pautler, R. G. Mouse MRI: concepts and applications in physiology. Physiology 19, 168–175 (2004).

    Article  PubMed  Google Scholar 

  108. How, O. J. et al. Influence of substrate supply on cardiac efficiency, as measured by pressure-volume analysis in ex vivo mouse hearts. Am. J. Physiol. Heart Circ. Physiol. 288, H2979–H2985 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Han, J. C. et al. A unique micromechanocalorimeter for simultaneous measurement of heat rate and force production of cardiac trabeculae carneae. J. Appl. Physiol. 107, 946–951 (2009).

    Article  PubMed  Google Scholar 

  110. Young, A. A., Legrice, I. J., Young, M. A. & Smaill, B. H. Extended confocal microscopy of myocardial laminae and collagen network. J. Microsc. 192, 139–150 (1998).

    Article  CAS  PubMed  Google Scholar 

  111. Lakatta, E. G. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises. Part I: aging arteries: a 'set up' for vascular disease. Circulation 107, 139–146 (2003).

    Article  PubMed  Google Scholar 

  112. Lakatta, E. G. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises. Part II: the aging heart in health: links to heart disease. Circulation 107, 346–354 (2003).

    Article  PubMed  Google Scholar 

  113. Lakatta, E. G. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises. Part III: cellular and molecular clues to heart and arterial aging. Circulation 107, 490–497 (2003).

    Article  PubMed  Google Scholar 

  114. Finch, C. E. The Biology of Human Longevity: Inflammation, Nutrition, and Aging in the Evolution of Lifespans. (Academic Press, 2007).

    Google Scholar 

  115. Wilkinson, D. J. Stochastic modelling for quantitative description of heterogeneous biological systems. Nature Rev. Genet. 10, 122–133 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Burns, J. in Towards a Theoretical Biology Vol. 3, (ed. Waddington, C. H.) 47–51 (Edinburgh Univ. Press, 1970).

    Google Scholar 

  117. Waddington, C. H. The Strategy of the Genes. (Macmillan, New York, 1957).

    Google Scholar 

  118. Lewontin, R. The Genetic Basis of Evolutionary Change. (Columbia Univ. Press, New York, 1974).

    Google Scholar 

  119. Davey Smith, G. & Ebrahim, S. 'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease? Int. J. Epidemiol. 32, 1–22 (2003).

    Article  Google Scholar 

  120. Preiss, D. & Sattar, N. Lipids, lipid modifying agents and cardiovascular risk: a review of the evidence. Clin. Endocrinol. 70, 815–828 (2009).

    Article  CAS  Google Scholar 

  121. Emerging Risk Factors Collaboration et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA 302, 1993–2000 (2009).

    Article  PubMed Central  Google Scholar 

  122. Pennacchio, L. A. et al. An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing. Science 294, 169–173 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Kathiresan, S. et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nature Genet. 40, 189–197 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240, 1285–1293 (1988).

    Article  CAS  PubMed  Google Scholar 

  125. Liu, F. et al. Digital quantification of human eye color highlights genetic association of three new loci. PLoS Genet. 6, e1000934 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Atwell, S. et al. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465, 627–631 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Jumbo-Lucioni, P. et al. Systems genetics analysis of body weight and energy metabolism traits in Drosophila melanogaster. BMC Genomics 11, 297 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the National Institutes of Health and National Science Foundation, USA, and the Research Council of Norway's eVITA programme. We thank H. Martens, E. Marquez and S. Schwinn for comments. D.R.G. is indebted to C. Lee for support.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Database of Genotypes and Phenotypes (dbGaP)

The Mouse Phenome Database (MPD)

Online Mendelian Inheritance in Man (OMIM)

FURTHER INFORMATION

Australian Plant Phenomics Facility

Canine Phenome Project

Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium

Consortium for Neuropsychiatric Phenomics (CNP)

Drosophila Genetic Reference Panel (DGRP)

Drosophila Population Genomics Project (DPGP)

European Mouse Disease Clinic (EUMODIC)

European Mouse Phenotyping Resource of Standardised Screens (EMPRESS)

Europhenome Mouse Phenotyping Resource

International Plant Phenomics Network (IPPN)

Jülich Plant Phenotyping Centre (JPPC)

National BioResource Project for the Rat in Japan (NBRP)

National Institutes of Health Clinical and Translational Science Awards

Personal Genome Project

The Virtual Physiological Human Initiative (VPH)

UK Biobank

USC Nordborg Laboratory GWA studies in Arabidopsis thaliana

Glossary

Pleiotropy

The ability of a single genetic change to affect more than one phenotype.

Metabolic syndrome

The tendency for obesity, diabetes, increased blood pressure, triglycerides and cholesterol to co-occur.

Observational study

A study in which conclusions are drawn from differences between subjects that are not under the control of the investigator.

Odds ratio

The ratio of the probability that an event will occur in one group to the probability that it will occur in another, for example, diseased versus healthy groups. It is a measure of effect size for binary variables.

Heritability

The proportion of the observed phenotypic variation that is attributable to genetic variation.

Effect size

The magnitude of the inferred effect of one variable on another. The effect size of a SNP is the difference in phenotype between genotypes with and without one of the nucleotides.

Prospective study

An observational study in which phenotypes are measured at the beginning of the study and the fate of individuals is tracked over subsequent time intervals.

Stabilizing selection

A type of natural selection that favours intermediate phenotypes.

Directional selection

A type of natural selection in which fitness increases monotonically with increasing or decreasing phenotype.

Endophenotype

A phenotype correlated with or possibly causally related to a disease state. In psychiatric research, endophenotype is synonymous with biomarker.

Biomarker

A phenotype that is objectively measured and used as an indicator of other biological processes.

Function-valued trait

A phenotype that is a continuous function, such as a surface or a time course. It is also known as an infinite dimensional trait.

Over-fitting

The prediction by a statistical model of error instead of the relationship of interest. An over-fitted model has poor predictive power.

Ridge and LASSO regression

Regression techniques that choose models that both fit well and minimize the number of predictor variables (LASSO) or their total effects (Ridge).

Cross-validation

The process of choosing a statistical model based on its ability to predict data that are not used to fit the model. It is commonly accomplished by splitting one data set into two, with one part used for training and the other for validation.

Dimensionality

The number of orthogonal directions in a space defined by multiple phenotypic measurements that have independent variation.

Partial least-squares regression

A statistical technique that identifies the combinations of variables in one set that best predict the variables in another set.

Random forest

An algorithm that classifies observations into categories using a family of hierarchical rules randomly chosen from a large family of such rules.

Support vector machine

A set of machine-learning algorithms for finding the polynomial functions of predictors that best separate a data set into two categories.

Positron emission tomography

This produces three-dimensional images through time of the concentration of a biologically interesting molecule such as glucose labelled with a radionuclide.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Houle, D., Govindaraju, D. & Omholt, S. Phenomics: the next challenge. Nat Rev Genet 11, 855–866 (2010). https://doi.org/10.1038/nrg2897

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2897

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research