Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Genome-wide allele-specific analysis: insights into regulatory variation

Abstract

Functional genomics is rapidly progressing towards the elucidation of elements that are crucial for the cis-regulatory control of gene expression, and population-based studies of disease and gene expression traits are yielding widespread evidence of the influence of non-coding variants on trait variance. Recently, genome-wide allele-specific approaches that harness high-throughput sequencing technology have started to allow direct evaluation of how these cis-regulatory polymorphisms control gene expression and affect chromatin states. The emerging data is providing exciting opportunities for comprehensive characterization of the allele-specific events that govern human gene regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The advantage of allelic expression measurements in the presence of trans-acting feedback.
Figure 2: Targeted and global approaches to study allele-specific function.
Figure 3: Cis-regulatory SNP mapping by allelic expression.

Similar content being viewed by others

References

  1. Cookson, W., Liang, L., Abecasis, G., Moffatt, M. & Lathrop, M. Mapping complex disease traits with global gene expression. Nature Rev. Genet. 10, 184–194 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Yan, H., Yuan, W., Velculescu, V. E., Vogelstein, B. & Kinzler, K. W. Allelic variation in human gene expression. Science 297, 1143 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Knight, J. C., Keating, B. J., Rockett, K. A. & Kwiatkowski, D. P. In vivo characterization of regulatory polymorphisms by allele-specific quantification of RNA polymerase loading. Nature Genet. 33, 469–475 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Ge, B. et al. Global patterns of cis variation in human cells revealed by high-density allelic expression analysis. Nature Genet. 41, 1216–1222 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Hindorff, L. A. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl Acad. Sci. USA 106, 9362–9367 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gimelbrant, A., Hutchinson, J. N., Thompson, B. R. & Chess, A. Widespread monoallelic expression on human autosomes. Science 318, 1136–1140 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Milani, L. et al. Allele-specific gene expression patterns in primary leukemic cells reveal regulation of gene expression by CpG site methylation. Genome Res. 19, 1–11 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Maynard, N. D., Chen, J., Stuart, R. K., Fan, J. B. & Ren, B. Genome-wide mapping of allele-specific protein–DNA interactions in human cells. Nature Methods 5, 307–309 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Kerkel, K. et al. Genomic surveys by methylation-sensitive SNP analysis identify sequence-dependent allele-specific DNA methylation. Nature Genet. 40, 904–908 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Gunderson, K. L. Whole-genome genotyping on bead arrays. Methods Mol. Biol. 529, 197–213 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Lee, J. H. et al. A robust approach to identifying tissue-specific gene expression regulatory variants using personalized human induced pluripotent stem cells. PLoS Genet. 5, e1000718 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhang, K. et al. Digital RNA allelotyping reveals tissue-specific and allele-specific gene expression in human. Nature Methods 6, 613–618 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Verlaan, D. J. et al. Targeted screening of cis-regulatory variation in human haplotypes. Genome Res. 19, 118–127 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shoemaker, R., Deng, J., Wang, W. & Zhang, K. Allele-specific methylation is prevalent and is contributed by CpG-SNPs in the human genome. Genome Res. 23 Apr 2010 (doi:10.1101/gr.104695.109).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Heap, G. A. et al. Genome-wide analysis of allelic expression imbalance in human primary cells by high-throughput transcriptome resequencing. Hum. Mol. Genet. 19, 122–134 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Montgomery, S. B. et al. Transcriptome genetics using second generation sequencing in a Caucasian population. Nature 464, 773–777 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Pickrell, J. K. et al. Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature 464, 768–772 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wittkopp, P. J., Haerum, B. K. & Clark, A. G. Evolutionary changes in cis and trans gene regulation. Nature 430, 85–88 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Ameur, A., Rada-Iglesias, A., Komorowski, J. & Wadelius, C. Identification of candidate regulatory SNPs by combination of transcription-factor-binding site prediction, SNP genotyping and haploChIP. Nucleic Acids Res. 37, e85 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  20. McDaniell, R. et al. Heritable individual-specific and allele-specific chromatin signatures in humans. Science 328, 235–239 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Degner, J. F. et al. Effect of read-mapping biases on detecting allele-specific expression from RNA-sequencing data. Bioinformatics 25, 3207–3212 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fontanillas, P. et al. Key considerations for measuring allelic expression on a genomic scale using high-throughput sequencing. Mol. Ecol. 9 (Suppl. 1), 212–227 (2010).

    Article  Google Scholar 

  23. Cheung, V. G. et al. Monozygotic twins reveal germline contribution to allelic expression differences. Am. J. Hum. Genet. 82, 1357–1360 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Plagnol, V. et al. Extreme clonality in lymphoblastoid cell lines with implications for allele specific expression analyses. PLoS ONE 3, e2966 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dimas, A. S. et al. Common regulatory variation impacts gene expression in a cell type-dependent manner. Science 325, 1246–1250 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Emilsson, V. et al. Genetics of gene expression and its effect on disease. Nature 452, 423–428 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Kasowski, M. et al. Variation in transcription factor binding among humans. Science 328, 232–235 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Verlaan, D. J. et al. Allele-specific chromatin remodeling in the ZPBP2/GSDMB/ORMDL3 locus associated with the risk of asthma and autoimmune disease. Am. J. Hum. Genet. 85, 377–393 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fogarty, M. P., Xiao, R., Prokunina-Olsson, L., Scott, L. J. & Mohlke, K. L. Allelic expression imbalance at high-density lipoprotein cholesterol locus MMABMVK. Hum. Mol. Genet. 19, 1921–1929 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McCarroll, S. A. et al. Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn's disease. Nature Genet. 40, 1107–1112 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Gaulton, K. J. et al. A map of open chromatin in human pancreatic islets. Nature Genet. 42, 255–259 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Pastinen, T. et al. Mapping common regulatory variants to human haplotypes. Hum. Mol. Genet. 14, 3963–3971 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Hom, G. et al. Association of systemic lupus erythematosus with C8orf13BLK and ITGAM–ITGAX. N. Engl. J. Med. 358, 900–909 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank T. Kwan for critical reading of the manuscript. T.P. holds a Canada Research Chair and is supported by grants from Genome Canada, Genome Quebec and the Canadian Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Glossary

Clonal read

NGS produces, in principle, independent reads from each molecule in the input sample. However, in some cases, the amplification of molecules yields copies of the same short read, which can potentially bias allelic read counts.

DNase I hypersensitivity

The susceptibility of a genomic region to digestion by DNase I. Promoter, enhancer and other active regulatory DNA sequences are more easily digested than inactive non-coding sequences.

Expression quantitative trait locus

A locus at which gene expression variance in a population —typically measured by microarrays or by RNA-seq — correlates significantly with genotype. This locus can be near the measured gene (cis) or elsewhere in the genome (trans).

Histone modification

Regulatory elements in actively transcribed versus repressed loci have differences in post-translational modifications (for example, methylation or acetylation of lysines) of histones that can be identified by ChIP using modification-specific antibodies.

Padlock probe

An oligonucleotide with 5′ and 3′ sequences that are specific for target regions of the genome and are separated by generic sequence. After binding to its target, the probe can be circularized by ligase, and the generic sequence portion is used to amplify or capture the probes.

Standing genetic variation

Allelic variation that is currently segregating within a population; as opposed to alleles that appear by new mutation events.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pastinen, T. Genome-wide allele-specific analysis: insights into regulatory variation. Nat Rev Genet 11, 533–538 (2010). https://doi.org/10.1038/nrg2815

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2815

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing