Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viewpoint
  • Published:

Missing heritability and strategies for finding the underlying causes of complex disease

Subjects

Abstract

Although recent genome-wide studies have provided valuable insights into the genetic basis of human disease, they have explained relatively little of the heritability of most complex traits, and the variants identified through these studies have small effect sizes. This has led to the important and hotly debated issue of where the 'missing heritability' of complex diseases might be found. Here, seven leading geneticists offer their opinion about where this heritability is likely to lie, what this could tell us about the underlying genetic architecture of common diseases and how this could inform research strategies for uncovering genetic risk factors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cooper, G. M., Zerr, T., Kidd, J. M., Eichler, E. E. & Nickerson, D. A. Systematic assessment of copy number variant detection via genome-wide SNP genotyping. Nature Genet. 40, 1199–1203 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. McCarroll, S. A. et al. Integrated detection and population-genetic analysis of SNPs and copy number variation. Nature Genet. 40, 1166–1174 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Redon, R. et al. Global variation in copy number in the human genome. Nature 444, 444–454 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kidd, J. M. et al. Mapping and sequencing of structural variation from eight human genomes. Nature 453, 56–64 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Conrad, D. F. et al. Origins and functional impact of copy number variation in the human genome. Nature 464, 704–712 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Sebat, J. et al. Large-scale copy number polymorphism in the human genome. Science 305, 525–528 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Itsara, A. et al. Population analysis of large copy number variants and hotspots of human genetic disease. Am. J. Hum. Genet. 84, 148–161 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Henrichsen, C. N. et al. Segmental copy number variation shapes tissue transcriptomes. Nature Genet. 41, 424–429 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Mefford, H. C. & Eichler, E. E. Duplication hotspots, rare genomic disorders, and common disease. Curr. Opin. Genet. Dev. 19, 196–204 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Alkan, C. et al. Personalized copy number and segmental duplication maps using next-generation sequencing. Nature Genet. 41, 1061–1067 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. The Wellcome Trust Case Control Consortium. Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature 464, 713–720 (2010).

  12. Min-Oo, G. et al. Pyruvate kinase deficiency in mice protects against malaria. Nature Genet. 35, 357–362 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Diez, E. et al. Birc1e is the gene within the Lgn1 locus associated with resistance to Legionella pneumophila. Nature Genet. 33, 55–60 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Valdar, W. et al. Genome-wide genetic association of complex traits in heterogeneous stock mice. Nature Genet. 38, 879–887 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Wanstrat, A. & Wakeland, E. The genetics of complex autoimmune diseases: non-MHC susceptibility genes. Nature Immunol. 2, 802–809 (2001).

    Article  Google Scholar 

  16. Leamy, L. J., Routman, E. J. & Cheverud, J. M. An epistatic genetic basis for fluctuating asymmetry of mandible size in mice. Evolution 56, 642–653 (2002).

    Article  PubMed  Google Scholar 

  17. Fijneman, R. J., de Vries, S. S., Jansen, R. C. & Demant, P. Complex interactions of new quantitative trait loci, Sluc1, Sluc2, Sluc3, and Sluc4, that influence the susceptibility to lung cancer in the mouse. Nature Genet. 14, 465–467 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Flint, J., De Fries, J. C. & Henderson, N. D. Little epistasis for anxiety-related measures in the DeFries strains of laboratory mice. Mamm. Genome 15, 77–82 (2004).

    Article  PubMed  Google Scholar 

  19. Wright, S. Evolution in Mendelian populations. Genetics 16, 97–159 (1931).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hill, W. G., Goddard, M. E. & Visscher, P. M. Data and theory point to mainly additive genetic variance for complex traits. PLoS Genet. 4, e1000008 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wray, N. R. & Visscher, P. M. Narrowing the boundaries of the genetic architecture of schizophrenia. Schizophr. Bull. 36, 14–23 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Visscher, P. M., Hill, W. G. & Wray, N. R. Heritability in the genomics era — concepts and misconceptions. Nature Rev. Genet. 9, 255–266 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. International Schizophrenia Consortium et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460, 748–752 (2009).

  24. Dickson, S. P., Wang, K., Krantz, I., Hakonarson, H. & Goldstein, D. B. Rare variants create synthetic genome-wide associations. PLoS Biol. 8, e1000294 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kong, A. et al. Parental origin of sequence variants associated with complex diseases. Nature 462, 868–874 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kong, A. et al. Sequence variants in the RNF212 gene associate with genome-wide recombination rate. Science 319, 1398–1401 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Wallace, C. et al. The imprinted DLK1-MEG3 gene region on chromosome 14q32.2 alters susceptibility to type 1 diabetes. Nature Genet. 42, 68–71 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Nadeau, J. H. Transgenerational genetic effects on phenotypic variation and disease risk. Hum. Mol. Genet. 18, R202–R210 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kong, A. et al. Detection of sharing by descent, long-range phasing and haplotype imputation. Nature Genet. 40, 1068–1075 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Feinberg, A. P. Genome-scale approaches to the epigenetics of common human disease. Virchows Arch. 456, 13–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Frazer, K. A., Murray, S. S., Schork, N. J. & Topol, E. J. Human genetic variation and its contribution to complex traits. Nature Rev. Genet. 10, 241–251 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Bodmer, W. & Bonilla, C. Common and rare variants in multifactorial susceptibility to common diseases. Nature Genet. 40, 695–701 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Gorlov, I. P., Gorlova, O. Y., Sunyaev, S. R., Spitz, M. R. & Amos, C. I. Shifting paradigm of association studies: value of rare single-nucleotide polymorphisms. Am. J. Hum. Genet. 82, 100–112 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li, B. & Leal, S. M. Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am. J. Hum. Genet. 83, 311–321 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cohen, J. C. et al. Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science 305, 869–872 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Madsen, B. E. & Browning, S. R. A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genet. 5, e1000384 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Morris, A. P. & Zeggini, E. An evaluation of statistical approaches to rare variant analysis in genetic association studies. Genet. Epidemiol. 34, 188–193 (2010).

    Article  PubMed  Google Scholar 

  38. Nicoloso, M. S. et al. Single-nucleotide polymorphisms inside microRNA target sites influence tumor susceptibility. Cancer Res. 70, 2789–2798 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gao, H., Granka, J. M. & Feldman, M. W. On the classification of epistatic interactions. Genetics 184, 827–837 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bateson, W. Mendel's Principles of Heredity (Cambridge Univ. Press, 1909).

    Book  Google Scholar 

  41. Moore, J. H. & Williams, S. M. Epistasis and its implications for personal genetics. Am. J. Hum. Genet. 85, 309–320 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Phillips, P. C. Epistasis — the essential role of gene interactions in the structure and evolution of genetic systems. Nature Rev. Genet. 9, 855–867 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Tyler, A. L., Asselbergs, F. W., Williams, S. M. & Moore, J. H. Shadows of complexity: what biological networks reveal about epistasis and pleiotropy. Bioessays 31, 220–227 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Cordell, H. J. Detecting gene–gene interactions that underlie human diseases. Nature Rev. Genet. 10, 392–404 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Moore, J. H., Asselbergs, F. W. & Williams, S. M. Bioinformatics challenges for genome-wide association studies. Bioinformatics 26, 445–455 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hayden, E. C. Life is complicated. Nature 464, 664–667 (2010).

    Article  CAS  Google Scholar 

  47. Hough, S. Predicting the Unpredictable: The Tumultuous Science of Earthquake Prediction (Princeton Univ. Press, 2010).

    Book  Google Scholar 

  48. Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shao, H. et al. Genetic architecture of complex traits: large phenotypic effects and pervasive epistasis. Proc. Natl Acad. Sci. USA 105, 19910–19914 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rassoulzadegan, M. et al. RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature 441, 469–474 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Lam, M.-Y. J., Heaney, J. D., Youngren, K. K., Kawasoe, J. H. & Nadeau, J. H. Trans-generational epistasis between Dnd1Ter and other modifier genes controls susceptibility to testicular germ cell tumors. Hum. Mol. Genet. 16, 2233–2240 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Heaney, J. D., Lam, M.-Y. J., Michelson, M. V. & Nadeau, J. H. Loss of the transmembrane but not the soluble kit ligand isoform increases testicular germ cell tumor susceptibility in mice. Cancer Res. 68, 5193–5197 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wagner, K. D. et al. RNA induction and inheritance of epigenetic cardiac hypertrophy in the mouse. Dev. Cell 14, 962–969 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Grandjean, V. et al. The miR-124–Sox9 paramutation: RNA-mediated epigenetic control of embryonic and adult growth. Development 136, 3647–3655 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Hammoud, S. S. et al. Distinctive chromatin in human sperm packages genes for embryo development. Nature 460, 473–478 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Youngren, K. K. et al. The Ter mutation in the dead-end gene causes germ cell loss and testicular germ cell cancer. Nature 435, 360–365 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kedde, M. et al. RNA-binding protein Dnd1 inhibits microRNAs access to target mRNA. Cell 131, 1273–1286 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Morgan, H. D., Dean, W., Coker, H. A., Reik, W. & Petersen-Mahrt, S. K. Activation-induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues. J. Biol. Chem. 279, 52353–52360 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Popp, C. et al. Genome-wide erasure of DNA methylation in mouse primordial germ cell is affected by AID deficiency. Nature 463, 1101–1106 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kedersha, N. & Anderson, P. Chapter 4 Regulation of translation by stress granules and processing bodies. Prog. Mol. Biol. Transl. Sci. 90C, 155–185 (2009).

    Article  Google Scholar 

  61. Nelson, V. R. & Nadeau, J. H. Transgenerational genetic effects of the paternal chromosome on daughter phenotypes. Epigenomics (in the press).

Download references

Acknowledgements

E.E.E. thanks G. Cooper for helpful suggestions. J.F. is supported by the Wellcome Trust. J.H.M. is supported by US National Institutes of Health R01s LM009012, LM010098 and AI59694.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

Evan E. Eichler is a scientific advisory board member for Pacific Biosciences. Augustine Kong is an employee of deCODE genetics.

Related links

Related links

FURTHER INFORMATION

Evan E. Eichler's homepage

Jonathan Flint's homepage

Greg Gibson's homepage

Suzanne M. Leal's homepage

Jason H. Moore's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eichler, E., Flint, J., Gibson, G. et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet 11, 446–450 (2010). https://doi.org/10.1038/nrg2809

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2809

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing