Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Vertebrate limb bud development: moving towards integrative analysis of organogenesis

Key Points

  • Analyses of vertebrate limb bud development continue to provide fundamental insights into how vertebrate organogenesis is orchestrated.

  • Classical patterning signals coordinate specification and determination with proliferation and survival. The underlying interactions define self-regulatory and robust signalling systems that interlink multiple pathways.

  • A first integrative, data-driven model of limb organogenesis is presented, which should stimulate holistic and systems biology approaches for studying limb development and organogenesis more broadly.


The limb bud is of paradigmatic value to understanding vertebrate organogenesis. Recent genetic analysis in mice has revealed the existence of a largely self-regulatory limb bud signalling system that involves many of the pathways that are known to regulate morphogenesis. These findings contrast with the prevailing view that the main limb bud axes develop largely independently of one another. In this Review, we discuss models of limb development and attempt to integrate the current knowledge of the signalling interactions that govern limb skeletal development into a systems model. The resulting integrative model provides insights into how the specification and proliferative expansion of the anteroposterior and proximodistal limb bud axes are coordinately controlled in time and space.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Proximodistal limb bud axis development.
Figure 2: Anteroposterior limb bud axis development.
Figure 3: Interlinked feedback loops define a self-regulatory limb signalling system.
Figure 4: An integrative model for limb bud development.


  1. 1

    Fernandez-Teran, M. & Ros, M. A. The apical ectodermal ridge: morphological aspects and signaling pathways. Int. J. Dev. Biol. 52, 857–871 (2008).

    PubMed  Google Scholar 

  2. 2

    King, M., Arnold, J. S., Shanske, A. & Morrow, B. E. T-genes and limb bud development. Am. J. Med. Genet. A 140, 1407–1413 (2006).

    PubMed  Google Scholar 

  3. 3

    Zakany, J. & Duboule, D. The role of Hox genes during vertebrate limb development. Curr. Opin. Genet. Dev. 17, 359–366 (2007).

    CAS  PubMed  Google Scholar 

  4. 4

    Shubin, N., Tabin, C. & Carroll, S. Deep homology and the origins of evolutionary novelty. Nature 457, 818–823 (2009).

    CAS  PubMed  Google Scholar 

  5. 5

    Saunders, J. W. The proximo-distal sequence of origin of limb parts of the chick wing and the role of the ectoderm. J. Exp. Zool. 108, 363–404 (1948).

    PubMed  Google Scholar 

  6. 6

    Summerbell, D., Lewis, J. H. & Wolpert, L. Positional information in chick limb morphogenesis. Nature 244, 492–496 (1973).

    CAS  PubMed  Google Scholar 

  7. 7

    Niswander, L., Tickle, C., Vogel, A., Booth, I. & Martin, G. R. FGF-4 replaces the apical ectodermal ridge and directs outgrowth and patterning of the limb. Cell 75, 579–587 (1993).

    CAS  PubMed  Google Scholar 

  8. 8

    Lewandoski, M., Sun, X. & Martin, G. R. Fgf8 signalling from the AER is essential for normal limb development. Nature Genet. 26, 460–463 (2000).

    CAS  PubMed  Google Scholar 

  9. 9

    Mariani, F. V., Ahn, C. P. & Martin, G. R. Genetic evidence that FGFs have an instructive role in limb proximal-distal patterning. Nature 453, 401–405 (2008). An in-depth genetic analysis of four FGFs during mouse limb bud development that shows the contribution of each to AER signalling. AER-FGFs promote cell proliferation and regulate PD limb axis patterning.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Fallon, J. F. et al. FGF-2: apical ectodermal ridge growth factor for chick limb development. Science 264, 104–107 (1994).

    CAS  PubMed  Google Scholar 

  11. 11

    Cohn, M. J., Izpisúa-Belmonte, J. C., Abud, H., Heath, J. K. & Tickle, C. Fibroblast growth factors induce additional limb development from the flank of chick embryos. Cell 80, 739–746 (1995).

    CAS  PubMed  Google Scholar 

  12. 12

    Kawakami, Y. et al. WNT signals control FGF-dependent limb initiation and AER induction in the chick embryo. Cell 104, 891–900 (2001).

    CAS  PubMed  Google Scholar 

  13. 13

    Agarwal, P. et al. Tbx5 is essential for forelimb bud initiation following patterning of the limb field in the mouse embryo. Development 130, 623–633 (2003).

    CAS  PubMed  Google Scholar 

  14. 14

    Benazet, J. D. et al. A self-regulatory system of interlinked signaling feedback loops controls mouse limb patterning. Science 323, 1050–1053 (2009). In this study, mouse genetic models and mathematical modelling reveal the self-regulatory system of interlinked signalling feedback loops that controls key aspects of limb bud initiation, progression and termination.

    CAS  PubMed  Google Scholar 

  15. 15

    Sekine, K. et al. Fgf10 is essential for limb and lung formation. Nature Genet. 21, 138–141 (1999).Article

    CAS  PubMed  Google Scholar 

  16. 16

    Ohuchi, H. et al. The mesenchymal factor, FGF10, initiates and maintains the outgrowth of the chick limb bud through interaction with FGF8, an apical ectodermal factor. Development 124, 2235–2244 (1997).

    CAS  PubMed  Google Scholar 

  17. 17

    Sun, X., Mariani, F. V. & Martin, G. R. Functions of FGF signalling from the apical ectodermal ridge in limb development. Nature 418, 501–508 (2002).

    CAS  PubMed  Google Scholar 

  18. 18

    Dudley, A. T., Ros, M. A. & Tabin, C. J. A re-examination of proximodistal patterning during vertebrate limb development. Nature 418, 539–544 (2002).

    CAS  PubMed  Google Scholar 

  19. 19

    Mercader, N. et al. Opposing RA and FGF signals control proximodistal vertebrate limb development through regulation of Meis genes. Development 127, 3961–3970 (2000).

    CAS  PubMed  Google Scholar 

  20. 20

    Capdevila, J., Tsukui, T., Rodriquez Esteban, C., Zappavigna, V. & Izpisúa Belmonte, J. C. Control of vertebrate limb outgrowth by the proximal factor Meis2 and distal antagonism of BMPs by Gremlin. Mol. Cell 4, 839–849 (1999).

    CAS  PubMed  Google Scholar 

  21. 21

    Niederreither, K., Vermot, J., Schuhbaur, B., Chambon, P. & Dolle, P. Embryonic retinoic acid synthesis is required for forelimb growth and anteroposterior patterning in the mouse. Development 129, 3563–3574 (2002).

    CAS  PubMed  Google Scholar 

  22. 22

    Yashiro, K. et al. Regulation of retinoic acid distribution is required for proximodistal patterning and outgrowth of the developing mouse limb. Dev. Cell 6, 411–422 (2004).

    CAS  PubMed  Google Scholar 

  23. 23

    Galloway, J. L., Delgado, I., Ros, M. A. & Tabin, C. J. A reevaluation of X-irradiation-induced phocomelia and proximodistal limb patterning. Nature 460, 400–404 (2009). This study used molecular analysis in combination with lineage tracing to show the effects of X-ray irradiation on chicken limb buds. The resulting phenotypes had been previously interpreted in favour of the progress-zone model; this paper showed that they are not patterning defects but instead reflect the time-dependent loss of specified skeletal progenitors. This might also be true for other presumed patterning defects.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Zhao, X. et al. Retinoic acid promotes limb induction through effects on body axis extension but is unnecessary for limb patterning. Curr. Biol. 19, 1050–1057 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Tabin, C. & Wolpert, L. Rethinking the proximodistal axis of the vertebrate limb in the molecular era. Genes Dev. 21, 1433–1442 (2007).

    CAS  PubMed  Google Scholar 

  26. 26

    ten Berge, D., Brugmann, S. A., Helms, J. A. & Nusse, R. Wnt and FGF signals interact to coordinate growth with cell fate specification during limb development. Development 135, 3247–3257 (2008). An analysis of the role of e-WNT signalling in mouse limb buds and in cultured limb bud cells that shows that the interplay of FGFs and WNTs controls the proliferative expansion of the multipotent mesenchymal progenitors by maintaining them in an undifferentiated state. Cells that are no longer exposed to either of these signals will differentiate into chondrocytes, whereas continued exposure to WNTs but not FGFs diverts them to soft-tissue lineages.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Hill, T. P., Spater, D., Taketo, M. M., Birchmeier, W. & Hartmann, C. Canonical Wnt/β-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev. Cell 8, 727–738 (2005).

    CAS  PubMed  Google Scholar 

  28. 28

    Tickle, C. The number of polarizing region cells required to specifiy additional digits in the developing chick wing. Nature 289, 295–298 (1981).

    CAS  PubMed  Google Scholar 

  29. 29

    Wolpert, L. Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25, 1–47 (1969).

    CAS  PubMed  Google Scholar 

  30. 30

    Riddle, R. D., Johnson, R. L., Laufer, E. & Tabin, C. Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75, 1401–1416 (1993).

    CAS  PubMed  Google Scholar 

  31. 31

    Chiang, C. et al. Manifestation of the limb prepattern: limb development in the absence of sonic hedgehog function. Dev. Biol. 236, 421–435 (2001).

    CAS  PubMed  Google Scholar 

  32. 32

    Kraus, P., Fraidenraich, D. & Loomis, C. A. Some distal limb structures develop in mice lacking Sonic hedgehog signaling. Mech. Dev. 100, 45–58 (2001).

    CAS  PubMed  Google Scholar 

  33. 33

    Koshiba-Takeuchi, K. et al. Cooperative and antagonistic interactions between Sall4 and Tbx5 pattern the mouse limb and heart. Nature Genet. 38, 175–183 (2006).

    CAS  PubMed  Google Scholar 

  34. 34

    Montavon, T., Le Garrec, J. F., Kerszberg, M. & Duboule, D. Modeling Hox gene regulation in digits: reverse collinearity and the molecular origin of thumbness. Genes Dev. 22, 346–359 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Tarchini, B., Duboule, D. & Kmita, M. Regulatory constraints in the evolution of the tetrapod limb anterior–posterior polarity. Nature 443, 985–988 (2006).

    CAS  PubMed  Google Scholar 

  36. 36

    Capellini, T. D. et al. Pbx1/Pbx2 requirement for distal limb patterning is mediated by the hierarchical control of Hox gene spatial distribution and Shh expression. Development 133, 2263–2273 (2006).

    CAS  PubMed  Google Scholar 

  37. 37

    te Welscher, P., Fernandez-Teran, M., Ros, M. A. & Zeller, R. Mutual genetic antagonism involving GLI3 and dHAND prepatterns the vertebrate limb bud mesenchyme prior to SHH signaling. Genes Dev. 16, 421–426 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Rallis, C., Del Buono, J. & Logan, M. P. Tbx3 can alter limb position along the rostrocaudal axis of the developing embryo. Development 132, 1961–1970 (2005).

    CAS  PubMed  Google Scholar 

  39. 39

    Yang, Y. et al. Relationship between dose, distance and time in Sonic Hedgehog-mediated regulation of anteroposterior polarity in the chick limb. Development 124, 4393–4404 (1997).

    CAS  PubMed  Google Scholar 

  40. 40

    Wang, B., Fallon, J. F. & Beachy, P. A. Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell 100, 423–434 (2000).

    CAS  PubMed  Google Scholar 

  41. 41

    Hui, C. & Joyner, A. A mouse model of Greig cephalo-polysyndactyly syndrome: the extra-toesJ mutation contains an intragenic deletion of the Gli3 gene. Nature Genet. 3, 241–246 (1993).

    CAS  PubMed  Google Scholar 

  42. 42

    Schimmang, T., Lemaistre, M., Vortkamp, A. & Rüther, U. Expression of the zinc finger gene Gli3 is affected in the morphogenetic mouse mutant extra-toes (Xt). Development 116, 799–804 (1992).

    CAS  PubMed  Google Scholar 

  43. 43

    Litingtung, Y., Dahn, R. D., Li, Y., Fallon, J. F. & Chiang, C. Shh and Gli3 are dispensable for limb skeleton formation but regulate digit number and identity. Nature 418, 979–983 (2002).

    CAS  PubMed  Google Scholar 

  44. 44

    te Welscher, P. et al. Progression of vertebrate limb development through SHH-mediated counteraction of GLI3. Science 298, 827–830 (2002).

    CAS  PubMed  Google Scholar 

  45. 45

    Li, Y., Zhang, H., Litingtung, Y. & Chiang, C. Cholesterol modification restricts the spread of Shh gradient in the limb bud. Proc. Natl Acad. Sci. USA 103, 6548–6553 (2006).

    CAS  PubMed  Google Scholar 

  46. 46

    Ahn, S. & Joyner, A. L. Dynamic changes in the response of cells to positive hedgehog signaling during mouse limb patterning. Cell 118, 505–516 (2004).

    CAS  PubMed  Google Scholar 

  47. 47

    Harfe, B. D. et al. Evidence for an expansion-based temporal Shh gradient in specifying vertebrate digit identities. Cell 118, 517–528 (2004). Using recombinase-mediated cell lineage marking in mouse limb buds, this study established that descendants of Shh -expressing cells give rise to the two posterior-most digits and contribute to digit 3. It reveals that only specification of digit 2 depends on paracrine SHH signalling. In summary, AP identities are specified by a combination of temporally (posterior) and spatially graded (anterior) SHH signalling.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Scherz, P. J., McGlinn, E., Nissim, S. & Tabin, C. J. Extended exposure to Sonic hedgehog is required for patterning the posterior digits of the vertebrate limb. Dev. Biol. 308, 343–354 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Towers, M., Mahood, R., Yin, Y. & Tickle, C. Integration of growth and specification in chick wing digit-patterning. Nature 452, 882–886 (2008). The application of specific inhibitors of either SHH signal transduction or proliferation to chicken limb buds indicated that SHH controls both the specification and proliferation of digit progenitors. These dual functions of the SHH morphogen can be temporally uncoupled, which is discussed in this paper in relation to congenital malformations and limb evolution.

    CAS  PubMed  Google Scholar 

  50. 50

    Zhu, J. et al. Uncoupling Sonic hedgehog control of pattern and expansion of the developing limb bud. Dev. Cell 14, 624–632 (2008). In this study, conditional inactivation of Shh at specific time points during limb organogenesis provided evidence that SHH functions early and transiently in the specification of digit identities. Specification is followed by SHH-dependent proliferative expansion.

    CAS  PubMed  Google Scholar 

  51. 51

    Martin, P. Tissue patterning in the developing mouse limb. Int. J. Dev. Biol. 34, 323–336 (1990).

    CAS  PubMed  Google Scholar 

  52. 52

    Towers, M. & Tickle, C. Growing models of vertebrate limb development. Development 136, 179–190 (2009).

    CAS  PubMed  Google Scholar 

  53. 53

    Laufer, E., Nelson, C. E., Johnson, R. L., Morgan, B. A. & Tabin, C. Sonic hedgehog and Fgf-4 act through a signaling cascade and feedback loop to integrate growth and patterning of the developing limb bud. Cell 79, 993–1003 (1994).

    CAS  PubMed  Google Scholar 

  54. 54

    Niswander, L., Jeffrey, S., Martin, G. R. & Tickle, C. A positive feedback loop coordinates growth and patterning in the vertebrate limb. Nature 371, 609–612 (1994).

    CAS  PubMed  Google Scholar 

  55. 55

    Michos, O. et al. Gremlin-mediated BMP antagonism induces the epithelial–mesenchymal feedback signaling controlling metanephric kidney and limb organogenesis. Development 131, 3401–3410 (2004).

    CAS  PubMed  Google Scholar 

  56. 56

    Zuniga, A., Haramis, A. P., McMahon, A. P. & Zeller, R. Signal relay by BMP antagonism controls the SHH/FGF4 feedback loop in vertebrate limb buds. Nature 401, 598–602 (1999).

    CAS  PubMed  Google Scholar 

  57. 57

    Nissim, S., Hasso, S. M., Fallon, J. F. & Tabin, C. J. Regulation of Gremlin expression in the posterior limb bud. Dev. Biol. 299, 12–21 (2006).

    CAS  PubMed  Google Scholar 

  58. 58

    Scherz, P. J., Harfe, B. D., McMahon, A. P. & Tabin, C. J. The limb bud Shh–Fgf feedback loop is terminated by expansion of former ZPA cells. Science 305, 396–399 (2004).

    CAS  PubMed  Google Scholar 

  59. 59

    Verheyden, J. M. & Sun, X. An Fgf/Gremlin inhibitory feedback loop triggers termination of limb bud outgrowth. Nature 454, 638–641 (2008). This paper identified the FGF inhibitory loop in mouse limb buds that induces the shutdown of Grem1 expression and of the SHH–GREM1–FGF e–m feedback loop, which controls correct temporal self-termination of chicken and mouse limb bud outgrowth.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Zuniga, A. & Zeller, R. Gli3 (Xt) and formin (ld) participate in the positioning of the polarising region and control of posterior limb-bud identity. Development 126, 13–21 (1999).

    CAS  PubMed  Google Scholar 

  61. 61

    Tickle, C. & Munsterberg, A. Vertebrate limb development — the early stages in chick and mouse. Curr. Opin. Genet. Dev. 11, 476–481 (2001).

    CAS  PubMed  Google Scholar 

  62. 62

    Zeller, R. & Duboule, D. Dorso-ventral limb polarity and origin of the ridge: on the fringe of independence? Bioessays 19, 541–546 (1997).

    CAS  PubMed  Google Scholar 

  63. 63

    Arques, C. G., Doohan, R., Sharpe, J. & Torres, M. Cell tracing reveals a dorsoventral lineage restriction plane in the mouse limb bud mesenchyme. Development 134, 3713–3722 (2007).

    CAS  PubMed  Google Scholar 

  64. 64

    Vargesson, N., Clarke, J. D. W., Vincent, K., Coles, C. & Wolpert, L. Cell fate in the chick limb bud and relationship to gene expression. Development 124, 1909–1918 (1997).

    CAS  PubMed  Google Scholar 

  65. 65

    Selever, J., Liu, W., Lu, M. F., Behringer, R. R. & Martin, J. F. Bmp4 in limb bud mesoderm regulates digit pattern by controlling AER development. Dev. Biol. 276, 268–279 (2004).

    CAS  PubMed  Google Scholar 

  66. 66

    Drossopoulou, G. et al. A model for anteroposterior patterning of the vertebrate limb based on sequential long- and short-range Shh signalling and Bmp signalling. Development 127, 1337–1348 (2000).

    CAS  PubMed  Google Scholar 

  67. 67

    Dahn, R. D. & Fallon, J. F. Interdigital regulation of digit identity and homeotic transformation by modulated BMP signaling. Science 289, 438–441 (2000).

    CAS  PubMed  Google Scholar 

  68. 68

    Suzuki, T., Hasso, S. M. & Fallon, J. F. Unique SMAD1/5/8 activity at the phalanx-forming region determines digit identity. Proc. Natl Acad. Sci. USA 105, 4185–4190 (2008). An analysis of chicken leg buds at an advanced developmental stage that indicated that the PFRs located at the distal tip of each of the four digits are characterized by a unique signature of phospho-SMAD activities. Changes in phospho-SMAD activities correlated with altered digit identities.

    CAS  PubMed  Google Scholar 

  69. 69

    Sanz-Ezquerro, J. J. & Tickle, C. Fgf signaling controls the number of phalanges and tip formation in developing digits. Curr. Biol. 13, 1830–1836 (2003).

    CAS  PubMed  Google Scholar 

  70. 70

    Kawakami, Y. et al. Sall genes regulate region-specific morphogenesis in the mouse limb by modulating Hox activities. Development 136, 585–594 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Macias, D. et al. Role of BMP-2 and OP-1 (BMP-7) in programmed cell death and skeletogenesis during chick limb development. Development 124, 1109–1117 (1997).

    CAS  PubMed  Google Scholar 

  72. 72

    Bandyopadhyay, A. et al. Genetic analysis of the roles of BMP2, BMP4, and BMP7 in limb patterning and skeletogenesis. PLoS Genet. 2, e216 (2006).

    PubMed  PubMed Central  Google Scholar 

  73. 73

    Hockman, D. et al. A second wave of Sonic hedgehog expression during the development of the bat limb. Proc. Natl Acad. Sci. USA 105, 16982–16987 (2008).

    CAS  PubMed  Google Scholar 

  74. 74

    Shapiro, M. D., Hanken, J. & Rosenthal, N. Developmental basis of evolutionary digit loss in the Australian lizard Hemiergis. J. Exp. Zool. B Mol. Dev. Evol. 297, 48–56 (2003).

    PubMed  Google Scholar 

  75. 75

    Alberch, P. & Gale, E. A. Size dependence during the development of the amphibian foot. Colchicine-induced digital loss and reduction. J. Embryol. Exp. Morphol. 76, 177–197 (1983).

    CAS  PubMed  Google Scholar 

  76. 76

    Sakamoto, K. et al. Heterochronic shift in Hox-mediated activation of Sonic hedgehog leads to morphological changes during fin development. PLoS ONE 4, e5121 (2009).

    PubMed  PubMed Central  Google Scholar 

  77. 77

    Sagai, T. et al. Phylogenetic conservation of a limb-specific, cis-acting regulator of Sonic hedgehog (Shh). Mamm. Genome 15, 23–34 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Cohn, M. J. & Tickle, C. Developmental basis of limblessness and axial patterning in snakes. Nature 399, 474–479 (1999).

    CAS  PubMed  Google Scholar 

  79. 79

    Boot, M. J. et al. In vitro whole-organ imaging: 4D quantification of growing mouse limb buds. Nature Methods 5, 609–612 (2008).

    CAS  PubMed  Google Scholar 

  80. 80

    Vokes, S. A., Ji, H., Wong, W. H. & McMahon, A. P. A genome-scale analysis of the cis-regulatory circuitry underlying sonic hedgehog-mediated patterning of the mammalian limb. Genes Dev. 22, 2651–2663 (2008). This study is a first important step towards identifying the range of genes for which expression is controlled by SHH signalling during mouse limb bud development. Using an epitope-tagged GLI3R transgene, target cis -regulatory region genes and associated candidate genes were identified by combining chromatin immunoprecipitation with transcriptional profiling.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Tzchori, I. et al. LIM homeobox transcription factors integrate signaling events that control three-dimensional limb patterning and growth. Development 136, 1375–1385 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Mao, J., McGlinn, E., Huang, P., Tabin, C. J. & McMahon, A. P. Fgf-dependent Etv4/5 activity is required for posterior restriction of Sonic hedgehog and promoting outgrowth of the vertebrate limb. Dev. Cell 16, 600–606 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Zhang, Z., Verheyden, J. M., Hassell, J. A. & Sun, X. FGF-regulated Etv genes are essential for repressing Shh expression in mouse limb buds. Dev. Cell 16, 607–613 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Barna, M. & Niswander, L. Visualization of cartilage formation: insight into cellular properties of skeletal progenitors and chondrodysplasia syndromes. Dev. Cell 12, 931–941 (2007).

    CAS  PubMed  Google Scholar 

  85. 85

    De Robertis, E. M. Spemann's organizer and self-regulation in amphibian embryos. Nature Rev. Mol. Cell Biol. 7, 296–302 (2006).

    CAS  Google Scholar 

  86. 86

    Dessaud, E., McMahon, A. P. & Briscoe, J. Pattern formation in the vertebrate neural tube: a sonic hedgehog morphogen-regulated transcriptional network. Development 135, 2489–2503 (2008).

    CAS  PubMed  Google Scholar 

  87. 87

    Dessaud, E. et al. Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism. Nature 450, 717–720 (2007).

    CAS  PubMed  Google Scholar 

  88. 88

    Eaton, S. Release and trafficking of lipid-linked morphogens. Curr. Opin. Genet. Dev. 16, 17–22 (2006).

    CAS  PubMed  Google Scholar 

  89. 89

    Piddini, E. & Vincent, J. P. Interpretation of the wingless gradient requires signaling-induced self-inhibition. Cell 136, 296–307 (2009).

    CAS  PubMed  Google Scholar 

  90. 90

    Affolter, M. & Basler, K. The Decapentaplegic morphogen gradient: from pattern formation to growth regulation. Nature Rev. Genet. 8, 663–674 (2007).

    CAS  PubMed  Google Scholar 

  91. 91

    Kicheva, A. et al. Kinetics of morphogen gradient formation. Science 315, 521–525 (2007).

    CAS  PubMed  Google Scholar 

  92. 92

    Callejo, A., Torroja, C., Quijada, L. & Guerrero, I. Hedgehog lipid modifications are required for Hedgehog stabilization in the extracellular matrix. Development 133, 471–483 (2006).

    CAS  PubMed  Google Scholar 

  93. 93

    Grandel, H. & Schulte-Merker, S. The development of the paired fins in the zebrafish (Danio rerio). Mech. Dev. 79, 99–120 (1998).

    CAS  PubMed  Google Scholar 

  94. 94

    Gibert, Y., Gajewski, A., Meyer, A. & Begemann, G. Induction and prepatterning of the zebrafish pectoral fin bud requires axial retinoic acid signaling. Development 133, 2649–2659 (2006).

    CAS  PubMed  Google Scholar 

  95. 95

    Norton, W. H., Ledin, J., Grandel, H. & Neumann, C. J. HSPG synthesis by zebrafish Ext2 and Extl3 is required for Fgf10 signalling during limb development. Development 132, 4963–4973 (2005).

    CAS  PubMed  Google Scholar 

  96. 96

    Neumann, C. J., Grandel, H., Gaffield, W., Schulte-Merker, S. & Nusslein-Volhard, C. Transient establishment of anteroposterior polarity in the zebrafish pectoral fin bud in the absence of sonic hedgehog activity. Development 126, 4817–4826 (1999).

    CAS  PubMed  Google Scholar 

  97. 97

    Prykhozhij, S. V. & Neumann, C. J. Distinct roles of Shh and Fgf signaling in regulating cell proliferation during zebrafish pectoral fin development. BMC Dev. Biol. 8, 91 (2008).

    PubMed  PubMed Central  Google Scholar 

  98. 98

    Davis, M. C., Dahn, R. D. & Shubin, N. H. An autopodial-like pattern of Hox expression in the fins of a basal actinopterygian fish. Nature 447, 473–476 (2007).

    CAS  PubMed  Google Scholar 

  99. 99

    Freitas, R., Zhang, G. & Cohn, M. J. Biphasic Hoxd gene expression in shark paired fins reveals an ancient origin of the distal limb domain. PLoS ONE 2, e754 (2007).

    PubMed  PubMed Central  Google Scholar 

  100. 100

    Case, D. T., Hill, R. J., Merbs, C. F. & Fong, M. Polydactyly in the prehistoric American Southwest. Int. J. Osteoarcheol. 16, 221–235 (2006).

    Google Scholar 

  101. 101

    Heus, H. C. et al. A physical and transcriptional map of the preaxial polydactyly locus on chromosome 7q36. Genomics 57, 342–351 (1999).

    CAS  PubMed  Google Scholar 

  102. 102

    Lettice, L. A. et al. Disruption of a long-range cis-acting regulator for Shh causes preaxial polydactyly. Proc. Natl Acad. Sci. USA 99, 7548–7553 (2002).

    CAS  PubMed  Google Scholar 

  103. 103

    Lettice, L. A. et al. A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Hum. Mol. Genet. 12, 1725–1735 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104

    Lettice, L. A., Hill, A. E., Devenney, P. S. & Hill, R. E. Point mutations in a distant sonic hedgehog cis-regulator generate a variable regulatory output responsible for preaxial polydactyly. Hum. Mol. Genet. 17, 978–985 (2008).

    CAS  PubMed  Google Scholar 

  105. 105

    Park, K., Kang, J., Subedi, K. P., Ha, J.-H. & Park, C. Canine polydactyl mutations with heterogeneous origin in the conserved intronic sequence of Lmbr1 gene. Genetics 179, 2163–2172 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Sagai, T., Hosoya, M., Mizushina, Y., Tamura, M. & Shiroishi, T. Elimination of a long-range cis-regulatory module causes complete loss of limb-specific Shh expression and truncation of the mouse limb. Development 132, 797–803 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Lettice, L. A. & Hill, R. E. Preaxial polydactyly: a model for defective long-range regulation in congenital abnormalities. Curr. Opin. Genet. Dev. 15, 294–300 (2005).

    CAS  PubMed  Google Scholar 

  108. 108

    Amano, T. et al. Chromosomal dynamics at the Shh locus: limb bud-specific differential regulation of competence and active transcription. Dev. Cell 16, 47–57 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


We are indebted to C. Müller-Thompson, J. D. Benazet, A. Galli, C. Vaillant and the three reviewers for their critical input and discussions. We wish to apologize to all our colleagues whose important contributions could not be discussed and/or referenced owing to space limitations. Our research on limb development is supported by the Swiss National Science Foundation, the European Union Marie Curie Fellowship program and the University of Basel.

Author information



Corresponding author

Correspondence to Rolf Zeller.

Related links

Related links




preaxial polydactylies


Developmental Genetics research group, University of Basel



The process preceding determination during which a cell acquires its fate. The exposure of specified cells to different signals might alter their fates; the fate of specified cells is not fixed (unlike determined cells).


When cell fate is fixed so that the cell will initiate differentiation into the specified cell type even if the cell is isolated or transplanted into a different environment or tissue. Determination occurs before the appearance of cell-type-specific morphological characteristics, but is often closely followed by the initiation of differentiation.


The process in which the positions and identities of cells with different fates are laid down.

Apical ectodermal ridge

A specialized epithelium that is required for limb bud outgrowth. It runs along the distal tip of the limb bud and expresses several fibroblast growth factors. During the initiation of limb bud development, the ridge forms at the dorsoventral interface of the limb bud ectoderm.

Epithelial–mesenchymal feedback loop

Signalling interactions between an epithelium and the adjacent mesenchyme. These interactions of different signals from both compartments form a closed feedback loop. The development of many organs is controlled by epithelialmesenchymal feedback loops.

Fate mapping

Following the fates and progeny of cells during embryonic development by marking them with lipophilic dyes or recombinant retroviruses, or by using molecular genetic tools that result in permanent expression of an inert marker gene, such as β-galactosidase or GFP.


The fate of a cell is normally dependent on specific inductive signals. After their fate is determined, cells will normally follow a specific developmental sequence towards differentiation into a particular cell type.


When cells activate genes that result in the appearance of cell-type-specific characters. During embryonic development, groups of cells that have been determined will initiate differentiation into specific functional tissues.


A small group of embryonic cells that have the ability to influence the fate, survival and/or proliferative potential of other cells. Grafting organizer cells to ectopic positions will induce ectopic structures (for example, mirror-image duplications of digits). Organizer cells secrete signals or antagonists that can act as morphogens.


From the Greek for 'many fingers'. Limb skeletal phenotypes that result in the formation of additional digits. There are three types of polydactylies: postaxial (affecting the little finger), preaxial (affecting the thumb) and central (affecting the ring, middle and index fingers).


A small molecule that inhibits all hedgehog signal transduction by binding to the smoothened seven-transmembrane receptor.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zeller, R., López-Ríos, J. & Zuniga, A. Vertebrate limb bud development: moving towards integrative analysis of organogenesis. Nat Rev Genet 10, 845–858 (2009).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing