Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nucleosome positioning and gene regulation: advances through genomics

Key Points

  • Eukaryotes possess promoter and termination regions that are largely nucleosome free.

  • Nucleosomes are positioned at canonical distances from the transcription start site (TSS).

  • In Saccharomyces cerevisiae, the TSS resides at the nucleosome border, suggesting that the transcription machinery must contend with the +1 nucleosome before initiation. In metazoans, the TSS resides in the NFR, suggesting that RNA polymerase II contends with the first nucleosome after initiation.

  • Genomic DNA sequences, such as periodic AA and TT dinucleotides, promote nucleosome formation, whereas poly (dA:dT) tracks promote nucleosome-free regions (NFRs). These sequences can be spread out and difficult to discern, but pave a continuous thermodynamic landscape of nucleosome occupancy across the genome.

  • Nucleosomes at the 5′ end of genes are enriched with histone variants (H2A.Z and H3.3) and post-translational modifications (for example, H3Ac, H4Ac and H3K4me3), some of which might make nucleosomes more dynamic.

  • A speculative model is proposed in which the TSS at many genes is directed in part by the first nucleosome downstream of the promoter NFR.

  • Chromatin remodelling complexes slide, remodel and evict nucleosomes to regulate DNA access and, ultimately, gene expression.


Knowing the precise locations of nucleosomes in a genome is key to understanding how genes are regulated. Recent 'next generation' ChIP–chip and ChIP–Seq technologies have accelerated our understanding of the basic principles of chromatin organization. Here we discuss what high-resolution genome-wide maps of nucleosome positions have taught us about how nucleosome positioning demarcates promoter regions and transcriptional start sites, and how the composition and structure of promoter nucleosomes facilitate or inhibit transcription. A detailed picture is starting to emerge of how diverse factors, including underlying DNA sequences and chromatin remodelling complexes, influence nucleosome positioning.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Nucleosome structure.
Figure 2: Nucleosomal landscape of yeast genes.
Figure 3: Phasing information and rotational setting.
Figure 4: Sequence-based packing versus statistical packing.
Figure 5: Mechanistic differences between transcription initiation in budding yeast and metazoans.
Figure 6: Mechanisms that allow DNA accessibility.


  1. 1

    Kornberg, R. D. & Klug, A. The nucleosome. Sci. Am. 244, 52–64 (1981).

    CAS  PubMed  Google Scholar 

  2. 2

    Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Kamakaka, R. T. & Biggins, S. Histone variants: deviants? Genes Dev. 19, 295–310 (2005).

    CAS  PubMed  Google Scholar 

  4. 4

    Sarma, K. & Reinberg, D. Histone variants meet their match. Nature Rev. Mol. Cell. Biol. 6, 139–149 (2005).

    CAS  Google Scholar 

  5. 5

    Lee, C. K., Shibata, Y., Rao, B., Strahl, B. D. & Lieb, J. D. Evidence for nucleosome depletion at active regulatory regions genome-wide. Nature Genet. 36, 900–905

  6. 6

    Sekinger, E. A., Moqtaderi, Z. & Struhl, K. Intrinsic histone–DNA interactions and low nucleosome density are important for preferential accessibility of promoter regions in yeast. Mol. Cell 18, 735–748 (2005). An early study that showed, using in vitro reconstituted nucleosomes at specific loci, that NFRs and nucleosomes positioned nearby might be dictated largely by intrinsic DNA sequence preference rather than by trans -acting factors.

    CAS  PubMed  Google Scholar 

  7. 7

    Bernstein, B. E., Liu, C. L., Humphrey, E. L., Perlstein, E. O. & Schreiber, S. L. Global nucleosome occupancy in yeast. Genome Biol. 5, R62 (2004).

    PubMed  PubMed Central  Google Scholar 

  8. 8

    Guillemette, B. et al. Variant histone H2A.Z is globally localized to the promoters of inactive yeast genes and regulates nucleosome positioning. PLoS Biol. 3, e384 (2005).

    PubMed  PubMed Central  Google Scholar 

  9. 9

    Schwabish, M. A. & Struhl, K. Evidence for eviction and rapid deposition of histones upon transcriptional elongation by RNA polymerase II. Mol. Cell. Biol. 24, 10111–10117 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Zanton, S. J. & Pugh, B. F. Full and partial genome-wide assembly and disassembly of the yeast transcription machinery in response to heat shock. Genes Dev. 20, 2250–2265 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Zhang, H., Roberts, D. N. & Cairns, B. R. Genome-wide dynamics of Htz1, a histone H2A variant that poises repressed/basal promoters for activation through histone loss. Cell 123, 219–231 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Kurdistani, S. K., Tavazoie, S. & Grunstein, M. Mapping global histone acetylation patterns to gene expression. Cell 117, 721–733 (2004).

    CAS  Google Scholar 

  13. 13

    Vogelauer, M., Wu, J., Suka, N. & Grunstein, M. Global histone acetylation and deacetylation in yeast. Nature 408, 495–498 (2000).

    CAS  PubMed  Google Scholar 

  14. 14

    Bernstein, B. E. et al. Methylation of histone H3 Lys 4 in coding regions of active genes. Proc. Natl Acad. Sci. USA 99, 8695–8700 (2002).

    CAS  PubMed  Google Scholar 

  15. 15

    Yuan, G. C. et al. Genome-scale identification of nucleosome positions in S. cerevisiae. Science 309, 626–630 (2005). The first high-resolution genome-wide study to reveal a NFR and a canonical arrangement of nucleosomes, including the DNA sequences that contribute to this arrangement.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007). One of the most extensive catalogues of the positions of post-translationally modified nucleosomes throughout the human genome. The study used ChIP–Seq and reports on patterns associated with each nucleosome modification.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Mavrich, T. N. et al. Nucleosome organization in the Drosophila genome. Nature 453, 358–362 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Lee, W. et al. A high-resolution atlas of nucleosome occupancy in yeast. Nature Genet. 39, 1235–1244 (2007).

    CAS  PubMed  Google Scholar 

  19. 19

    Albert, I. et al. Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature 446, 572–576 (2007). This paper provides the first report of the use of ChIP–Seq to develop high-resolution maps of nucleosome positions, which allowed the rotational and translational context of DNA regulatory elements to be determined.

    CAS  Google Scholar 

  20. 20

    Mavrich, T. N. et al. A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome. Genome Res. 18, 1073–1083 (2008). This paper provides evidence that sequence-based nucleosome positioning is largely restricted to promoter regions, and that adjacent positions are dictated largely by packing principles.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Mito, Y., Henikoff, J. G. & Henikoff, S. Histone replacement marks the boundaries of cis-regulatory domains. Science 315, 1408–1411 (2007).

    CAS  Google Scholar 

  22. 22

    Schones, D. E. et al. Dynamic regulation of nucleosome positioning in the human genome. Cell 132, 887–898 (2008).

    CAS  Google Scholar 

  23. 23

    Shivaswamy, S. et al. Dynamic remodeling of individual nucleosomes across a eukaryotic genome in response to transcriptional perturbation. PLoS Biol. 6, e65 (2008).

    PubMed  PubMed Central  Google Scholar 

  24. 24

    Valouev, A. et al. A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome Res. 18, 1051–1063 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Ito, T., Bulger, M., Pazin, M. J., Kobayashi, R. & Kadonaga, J. T. ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90, 145–155 (1997).

    CAS  PubMed  Google Scholar 

  26. 26

    Varga-Weisz, P. D. et al. Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature 388, 598–602 (1997).

    CAS  PubMed  Google Scholar 

  27. 27

    Saha, A., Wittmeyer, J. & Cairns, B. R. Mechanisms for nucleosome movement by ATP-dependent chromatin remodeling complexes. Results Probl. Cell Differ. 41, 127–148 (2006).

    CAS  PubMed  Google Scholar 

  28. 28

    Gangaraju, V. K. & Bartholomew, B. Mechanisms of ATP-dependent chromatin remodeling. Mutat. Res. 618, 3–17 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Kagalwala, M. N., Glaus, B. J., Dang, W., Zofall, M. & Bartholomew, B. Topography of the ISW2–nucleosome complex: insights into nucleosome spacing and chromatin remodeling. EMBO J. 23, 2092–2104 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Ferreira, H. & Owen-Hughes, T. Lighting up nucleosome spacing. Nature Struct. Mol. Biol. 13, 1047–1049 (2006).

    CAS  Google Scholar 

  31. 31

    Rippe, K. et al. DNA sequence- and conformation-directed positioning of nucleosomes by chromatin-remodeling complexes. Proc. Natl Acad. Sci. USA 104, 15635–15640 (2007).

    CAS  PubMed  Google Scholar 

  32. 32

    Blank, T. A. & Becker, P. B. Electrostatic mechanism of nucleosome spacing. J. Mol. Biol. 252, 305–313 (1995).

    CAS  PubMed  Google Scholar 

  33. 33

    Fan, Y. et al. H1 linker histones are essential for mouse development and affect nucleosome spacing in vivo. Mol. Cell. Biol. 23, 4559–4572 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Fan, Y. et al. Histone H1 depletion in mammals alters global chromatin structure but causes specific changes in gene regulation. Cell 123, 1199–1212 (2005).

    CAS  PubMed  Google Scholar 

  35. 35

    Malik, H. S. & Henikoff, S. Phylogenomics of the nucleosome. Nature Struct. Biol. 10, 882–891 (2003).

    CAS  PubMed  Google Scholar 

  36. 36

    Cosgrove, M. S. & Wolberger, C. How does the histone code work? Biochem. Cell Biol. 83, 468–476 (2005).

    CAS  PubMed  Google Scholar 

  37. 37

    Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Li, B., Carey, M. & Workman, J. L. The role of chromatin during transcription. Cell 128, 707–719 (2007).

    CAS  Google Scholar 

  39. 39

    Lieb, J. D. & Clarke, N. D. Control of transcription through intragenic patterns of nucleosome composition. Cell 123, 1187–1190 (2005).

    CAS  PubMed  Google Scholar 

  40. 40

    Kiyama, R. & Trifonov, E. N. What positions nucleosomes? A model. FEBS Lett. 523, 7–11 (2002).

    CAS  PubMed  Google Scholar 

  41. 41

    Kornberg, R. D. Chromatin structure: a repeating unit of histones and DNA. Science 184, 868–871 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Ioshikhes, I. P., Albert, I., Zanton, S. J. & Pugh, B. F. Nucleosome positions predicted through comparative genomics. Nature Genet. 38, 1210–1215 (2006).

    CAS  PubMed  Google Scholar 

  43. 43

    Rando, O. J. & Ahmad, K. Rules and regulation in the primary structure of chromatin. Curr. Opin. Cell Biol. 19, 250–256 (2007).

    CAS  Google Scholar 

  44. 44

    Gupta, S. et al. Predicting human nucleosome occupancy from primary sequence. PLoS Comput. Biol. 4, e1000134 (2008).

    PubMed  PubMed Central  Google Scholar 

  45. 45

    Satchwell, S. C., Drew, H. R. & Travers, A. A. Sequence periodicities in chicken nucleosome core DNA. J. Mol. Biol. 191, 659–675 (1986).

    CAS  PubMed  Google Scholar 

  46. 46

    Segal, E. et al. A genomic code for nucleosome positioning. Nature 442, 772–778 (2006). Together with Reference 42, this study provides evidence that at least some genomic sequences favour nucleosome assembly, which can be used to approximately predict nucleosome positions.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Wang, J. P. & Widom, J. Improved alignment of nucleosome DNA sequences using a mixture model. Nucleic Acids Res. 33, 6743–6755 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Miele, V., Vaillant, C., d' Aubenton-Carafa, Y., Thermes, C. & Grange, T. DNA physical properties determine nucleosome occupancy from yeast to fly. Nucleic Acids Res. 36, 3746–3756 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Peckham, H. E. et al. Nucleosome positioning signals in genomic DNA. Genome Res. 17, 1170–1177 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Trifonov, E. N. Sequence-dependent deformational anisotropy of chromatin DNA. Nucleic Acids Res. 8, 4041–4053 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Widom, J. Role of DNA sequence in nucleosome stability and dynamics. Q. Rev. Biophys. 34, 269–324 (2001).

    CAS  PubMed  Google Scholar 

  52. 52

    Wang, J. P. et al. Preferentially quantized linker DNA lengths in Saccharomyces cerevisiae. PLoS Comput. Biol. 4, e1000175 (2008).

    PubMed  PubMed Central  Google Scholar 

  53. 53

    Field, Y. et al. Distinct modes of regulation by chromatin encoded through nucleosome positioning signals. PLoS Comput. Biol. 4, e1000216 (2008).

    PubMed  PubMed Central  Google Scholar 

  54. 54

    Yuan, G. C. & Liu, J. S. Genomic sequence is highly predictive of local nucleosome depletion. PLoS Comput. Biol. 4, e13 (2008).

    PubMed  PubMed Central  Google Scholar 

  55. 55

    Whitehouse, I., Rando, O. J., Delrow, J. & Tsukiyama, T. Chromatin remodelling at promoters suppresses antisense transcription. Nature 450, 1031–1035 (2007).

    CAS  PubMed  Google Scholar 

  56. 56

    Whitehouse, I. & Tsukiyama, T. Antagonistic forces that position nucleosomes in vivo. Nature Struct. Mol. Biol. 13, 633–640 (2006).

    CAS  Google Scholar 

  57. 57

    Radwan, A., Younis, A., Luykx, P. & Khuri, S. Prediction and analysis of nucleosome exclusion regions in the human genome. BMC Genomics 9, 186 (2008).

    PubMed  PubMed Central  Google Scholar 

  58. 58

    Iyer, V. & Struhl, K. Poly(dA:dT), a ubiquitous promoter element that stimulates transcription via its intrinsic DNA structure. EMBO J. 14, 2570–2579 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Anderson, J. D. & Widom, J. Poly(dA–dT) promoter elements increase the equilibrium accessibility of nucleosomal DNA target sites. Mol. Cell. Biol. 21, 3830–3839 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Nelson, H. C., Finch, J. T., Luisi, B. F. & Klug, A. The structure of an oligo(dA).oligo(dT) tract and its biological implications. Nature 330, 221–226 (1987).

    CAS  PubMed  Google Scholar 

  61. 61

    Struhl, K. Naturally occurring poly(dA–dT) sequences are upstream promoter elements for constitutive transcription in yeast. Proc. Natl Acad. Sci. USA 82, 8419–8423 (1985).

    CAS  PubMed  Google Scholar 

  62. 62

    Raisner, R. M. et al. Histone variant H2A.Z marks the 5′ ends of both active and inactive genes in euchromatin. Cell 123, 233–248 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Mito, Y., Henikoff, J. G. & Henikoff, S. Genome-scale profiling of histone H3.3 replacement patterns. Nature Genet. 37, 1090–1097 (2005).

    CAS  Google Scholar 

  64. 64

    Arigo, J. T., Eyler, D. E., Carroll, K. L. & Corden, J. L. Termination of cryptic unstable transcripts is directed by yeast RNA-binding proteins Nrd1 and Nab3. Mol. Cell 23, 841–851 (2006).

    CAS  PubMed  Google Scholar 

  65. 65

    Thiebaut, M., Kisseleva-Romanova, E., Rouge-maille, M., Boulay, J. & Libri, D. Transcription termination and nuclear degradation of cryptic unstable transcripts: a role for the Nrd1–Nab3 pathway in genome surveillance. Mol. Cell 23, 853–864 (2006).

    CAS  PubMed  Google Scholar 

  66. 66

    Thompson, D. M. & Parker, R. Cytoplasmic decay of intergenic transcripts in Saccharomyces cerevisiae. Mol. Cell. Biol. 27, 92–101 (2007).

    CAS  PubMed  Google Scholar 

  67. 67

    Petesch, S. J. & Lis, J. T. Rapid, transcription-independent loss of nucleosomes over a large chromatin domain at Hsp70 loci. Cell 134, 74–84 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Venters, B. J. & Pugh, B. F. A canonical promoter organization of the transcription machinery and its regulators in the Saccharomyces genome. Genome Res. 5 Jan 2009 (doi:10.1101/gr.084970.108).

    Google Scholar 

  69. 69

    Juven-Gershon, T., Hsu, J. Y., Theisen, J. W. & Kadonaga, J. T. The RNA polymerase II core promoter — the gateway to transcription. Curr. Opin. Cell Biol. 20, 253–259 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Smale, S. T. & Kadonaga, J. T. The RNA polymerase II core promoter. Annu. Rev. Biochem. 72, 449–479 (2003).

    CAS  Google Scholar 

  71. 71

    Thomas, M. C. & Chiang, C. M. The general transcription machinery and general cofactors. Crit. Rev. Biochem. Mol. Biol. 41, 105–178 (2006).

    CAS  Google Scholar 

  72. 72

    David, L. et al. A high-resolution map of transcription in the yeast genome. Proc. Natl Acad. Sci. USA 103, 5320–5325 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Zhang, Z. & Dietrich, F. S. Mapping of transcription start sites in Saccharomyces cerevisiae using 5′ SAGE. Nucleic Acids Res. 33, 2838–2851 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Kuehner, J. N. & Brow, D. A. Quantitative analysis of in vivo initiator selection by yeast RNA polymerase II supports a scanning model. J. Biol. Chem. 281, 14119–14128 (2006).

    CAS  PubMed  Google Scholar 

  75. 75

    Hassan, A. H. et al. Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell 111, 369–379 (2002).

    CAS  PubMed  Google Scholar 

  76. 76

    Jacobson, R. H., Ladurner, A. G., King, D. S. & Tjian, R. Structure and function of a human TAF(II)250 double bromodomain module. Science 288, 1422–1425 (2000).

    CAS  PubMed  Google Scholar 

  77. 77

    Matangkasombut, O., Buratowski, R. M., Swilling, N. W. & Buratowski, S. Bromodomain factor 1 corresponds to a missing piece of yeast TFIID. Genes Dev. 14, 951–962 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Vermeulen, M. et al. Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 131, 58–69 (2007).

    CAS  PubMed  Google Scholar 

  79. 79

    Pugh, B. F. & Tjian, R. Mechanism of transcriptional activation by Sp1: evidence for coactivators. Cell 61, 1187–1197 (1990).

    CAS  PubMed  Google Scholar 

  80. 80

    Sermwittayawong, D. & Tan, S. SAGA binds TBP via its Spt8 subunit in competition with DNA: implications for TBP recruitment. EMBO J. 25, 3791–3800 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Nikolov, D. B. et al. Crystal structure of a TFIIB–TBP–TATA-element ternary complex. Nature 377, 119–128 (1995).

    CAS  PubMed  Google Scholar 

  82. 82

    Hausner, W., Wettach, J., Hethke, C. & Thomm, M. Two transcription factors related with the eucaryal transcription factors TATA-binding protein and transcription factor IIB direct promoter recognition by an archaeal RNA polymerase. J. Biol. Chem. 271, 30144–30148 (1996).

    CAS  PubMed  Google Scholar 

  83. 83

    Bushnell, D. A., Westover, K. D., Davis, R. E. & Kornberg, R. D. Structural basis of transcription: an RNA polymerase II–TFIIB cocrystal at 4.5 Angstroms. Science 303, 983–988 (2004).

    CAS  PubMed  Google Scholar 

  84. 84

    Pardee, T. S., Bangur, C. S. & Ponticelli, A. S. The N-terminal region of yeast TFIIB contains two adjacent functional domains involved in stable RNA polymerase II binding and transcription start site selection. J. Biol. Chem. 273, 17859–17864 (1998).

    CAS  PubMed  Google Scholar 

  85. 85

    Ghazy, M. A., Brodie, S. A., Ammerman, M. L., Ziegler, L. M. & Ponticelli, A. S. Amino acid substitutions in yeast TFIIF confer upstream shifts in transcription initiation and altered interaction with RNA polymerase II. Mol. Cell. Biol. 24, 10975–10985 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Li, Y., Flanagan, P. M., Tschochner, H. & Kornberg, R. D. RNA polymerase II initiation factor interactions and transcription start site selection. Science 263, 805–807 (1994).

    CAS  PubMed  Google Scholar 

  87. 87

    Geiduschek, E. P. & Kassavetis, G. A. The RNA polymerase III transcription apparatus. J. Mol. Biol. 310, 1–26 (2001).

    CAS  PubMed  Google Scholar 

  88. 88

    Giardina, C. & Lis, J. T. DNA melting on yeast RNA polymerase II promoters. Science 261, 759–762 (1993).

    CAS  PubMed  Google Scholar 

  89. 89

    Muse, G. W. et al. RNA polymerase is poised for activation across the genome. Nature Genet. 39, 1507–1511 (2007).

    CAS  PubMed  Google Scholar 

  90. 90

    Zeitlinger, J. et al. RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo. Nature Genet. 39, 1512–1516 (2007).

    CAS  PubMed  Google Scholar 

  91. 91

    Guenther, M. G., Levine, S. S., Boyer, L. A., Jaenisch, R. & Young, R. A. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130, 77–88 (2007). This study showed that most genes in human embryonic stem cells seem to have a stalled RNA polymerase II at their 5′ ends (although such sites might actually have low occupancy levels).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92

    Polach, K. J. & Widom, J. Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation. J. Mol. Biol. 254, 130–149 (1995).

    CAS  PubMed  Google Scholar 

  93. 93

    Polach, K. J. & Widom, J. A model for the cooperative binding of eukaryotic regulatory proteins to nucleosomal target sites. J. Mol. Biol. 258, 800–812 (1996).

    CAS  PubMed  Google Scholar 

  94. 94

    Anderson, J. D. & Widom, J. Sequence and position-dependence of the equilibrium accessibility of nucleosomal DNA target sites. J. Mol. Biol. 296, 979–987 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Adams, C. C. & Workman, J. L. Binding of disparate transcriptional activators to nucleosomal DNA is inherently cooperative. Mol. Cell. Biol. 15, 1405–1421 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Smith, C. L. & Peterson, C. L. ATP-dependent chromatin remodeling. Curr. Top. Dev. Biol. 65, 115–148 (2005).

    CAS  Google Scholar 

  97. 97

    Eisen, J. A., Sweder, K. S. & Hanawalt, P. C. Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Res. 23, 2715–2723 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98

    Cairns, B. R. Chromatin remodeling complexes: strength in diversity, precision through specialization. Curr. Opin. Genet. Dev. 15, 185–190 (2005).

    CAS  PubMed  Google Scholar 

  99. 99

    Gutierrez, J. L., Chandy, M., Carrozza, M. J. & Workman, J. L. Activation domains drive nucleosome eviction by SWI/SNF. EMBO J. 26, 730–740 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Kobor, M. S. et al. A protein complex containing the conserved Swi2/Snf2-related ATPase Swr1p deposits histone variant H2A.Z into euchromatin. PLoS Biol. 2, e131 (2004).

    PubMed  PubMed Central  Google Scholar 

  101. 101

    Mizuguchi, G. et al. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303, 343–348 (2004).

    CAS  Google Scholar 

  102. 102

    Krogan, N. J. et al. A Snf2 family ATPase complex required for recruitment of the histone H2A variant Htz1. Mol. Cell 12, 1565–1576 (2003).

    CAS  PubMed  Google Scholar 

  103. 103

    Konev, A. Y. et al. CHD1 motor protein is required for deposition of histone variant H3.3 into chromatin in vivo. Science 317, 1087–1090 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104

    Martinez-Campa, C. et al. Precise nucleosome positioning and the TATA box dictate requirements for the histone H4 tail and the bromodomain factor Bdf1. Mol. Cell 15, 69–81 (2004).

    CAS  PubMed  Google Scholar 

  105. 105

    Lomvardas, S. & Thanos, D. Nucleosome sliding via TBP DNA binding in vivo. Cell 106, 685–696 (2001).

    CAS  PubMed  Google Scholar 

  106. 106

    Kwon, H., Imbalzano, A. N., Khavari, P. A., Kingston, R. E. & Green, M. R. Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex. Nature 370, 477–481 (1994).

    CAS  PubMed  Google Scholar 

  107. 107

    Cote, J., Peterson, C. L. & Workman, J. L. Perturbation of nucleosome core structure by the SWI/SNF complex persists after its detachment, enhancing subsequent transcription factor binding. Proc. Natl Acad. Sci. USA 95, 4947–4952 (1998).

    CAS  PubMed  Google Scholar 

  108. 108

    Burns, L. G. & Peterson, C. L. The yeast SWI–SNF complex facilitates binding of a transcriptional activator to nucleosomal sites in vivo. Mol. Cell. Biol. 17, 4811–4819 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109

    Suganuma, T. et al. ATAC is a double histone acetyltransferase complex that stimulates nucleosome sliding. Nature Struct. Mol. Biol. 15, 364–372 (2008).

    CAS  Google Scholar 

  110. 110

    Hassan, A. H., Neely, K. E. & Workman, J. L. Histone acetyltransferase complexes stabilize SWI/SNF binding to promoter nucleosomes. Cell 104, 817–827 (2001).

    CAS  PubMed  Google Scholar 

  111. 111

    Dion, M. F., Altschuler, S. J., Wu, L. F. & Rando, O. J. Genomic characterization reveals a simple histone H4 acetylation code. Proc. Natl Acad. Sci. USA 102, 5501–5506 (2005).

    CAS  PubMed  Google Scholar 

  112. 112

    Wang, X. & Hayes, J. J. Acetylation mimics within individual core histone tail domains indicate distinct roles in regulating the stability of higher-order chromatin structure. Mol. Cell. Biol. 28, 227–236 (2008).

    CAS  PubMed  Google Scholar 

  113. 113

    Liu, C. L. et al. Single nucleosome mapping of histone modifications in S. cerevisiae. PLoS Biol. 3, e328 (2005). This study showed that acetylation of histones at specific residues does not elicit a specific transcriptional response, indicating that acetylation might have cumulative effects rather than being encoded.

    PubMed  PubMed Central  Google Scholar 

  114. 114

    Pokholok, D. K. et al. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122, 517–527 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115

    Shahbazian, M. D. & Grunstein, M. Functions of site-specific histone acetylation and deacetylation. Annu. Rev. Biochem. 76, 75–100 (2007).

    CAS  PubMed  Google Scholar 

  116. 116

    Santisteban, M. S., Kalashnikova, T. & Smith, M. M. Histone H2A.Z regulates transcription and is partially redundant with nucleosome remodeling complexes. Cell 103, 411–422 (2000).

    CAS  PubMed  Google Scholar 

  117. 117

    Hogan, G. J., Lee, C. K. & Lieb, J. D. Cell cycle-specified fluctuation of nucleosome occupancy at gene promoters. PLoS Genet. 2, e158 (2006).

    PubMed  PubMed Central  Google Scholar 

  118. 118

    Boeger, H., Griesenbeck, J., Strattan, J. S. & Kornberg, R. D. Removal of promoter nucleosomes by disassembly rather than sliding in vivo. Mol. Cell 14, 667–673 (2004).

    CAS  Google Scholar 

  119. 119

    Korber, P., Luckenbach, T., Blaschke, D. & Horz, W. Evidence for histone eviction in trans upon induction of the yeast PHO5 promoter. Mol. Cell. Biol. 24, 10965–10974 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120

    Reinke, H. & Horz, W. Histones are first hyperacetylated and then lose contact with the activated PHO5 promoter. Mol. Cell 11, 1599–1607 (2003).

    CAS  PubMed  Google Scholar 

  121. 121

    Adkins, M. W., Howar, S. R. & Tyler, J. K. Chromatin disassembly mediated by the histone chaperone Asf1 is essential for transcriptional activation of the yeast PHO5 and PHO8 genes. Mol. Cell 14, 657–666 (2004).

    CAS  Google Scholar 

  122. 122

    Moreira, J. M. & Holmberg, S. Transcriptional repression of the yeast CHA1 gene requires the chromatin-remodeling complex RSC. EMBO J. 18, 2836–2844 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123

    Zhao, J., Herrera-Diaz, J. & Gross, D. S. Domain-wide displacement of histones by activated heat shock factor occurs independently of Swi/Snf and is not correlated with RNA polymerase II density. Mol. Cell. Biol. 25, 8985–8999 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124

    Zhang, H. & Reese, J. C. Exposing the core promoter is sufficient to activate transcription and alter coactivator requirement at RNR3. Proc. Natl Acad. Sci. USA 104, 8833–8838 (2007).

    CAS  PubMed  Google Scholar 

  125. 125

    Almer, A., Rudolph, H., Hinnen, A. & Horz, W. Removal of positioned nucleosomes from the yeast PHO5 promoter upon PHO5 induction releases additional upstream activating DNA elements. EMBO J. 5, 2689–2696 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126

    Cartwright, I. L. & Elgin, S. C. Nucleosomal instability and induction of new upstream protein–DNA associations accompany activation of four small heat shock protein genes in Drosophila melanogaster. Mol. Cell. Biol. 6, 779–791 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127

    Armstrong, J. A. & Emerson, B. M. NF-E2 disrupts chromatin structure at human β-globin locus control region hypersensitive site 2 in vitro. Mol. Cell. Biol. 16, 5634–5644 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128

    Bu, P., Evrard, Y. A., Lozano, G. & Dent, S. Y. Loss of Gcn5 acetyltransferase activity leads to neural tube closure defects and exencephaly in mouse embryos. Mol. Cell. Biol. 27, 3405–3416 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129

    Shilatifard, A. Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu. Rev. Biochem. 75, 243–269 (2006).

    CAS  PubMed  Google Scholar 

  130. 130

    Whittle, C. M. et al. The genomic distribution and function of histone variant HTZ-1 during C. elegans embryogenesis. PLoS Genet. 4, e1000187 (2008).

    PubMed  PubMed Central  Google Scholar 

  131. 131

    Davey, C. A., Sargent, D. F., Luger, K., Maeder, A. W. & Richmond, T. J. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution. J. Mol. Biol. 319, 1097–1113 (2002).

    CAS  PubMed  Google Scholar 

Download references


We thank S. Tan for providing the image for Fig. 1a. Support from National Institutes of Health grant HG004160 is gratefully acknowledged.

Author information



Corresponding author

Correspondence to B. Franklin Pugh.

Related links

Related links


B.F. Pugh's laboratory homepage

Penn State Genome Cartography project

UCSC Genome Bioinformatics


Chromatin remodelling complex

An ATP-dependent enzyme that is catalysed by different types of ATPase to alter nucleosome structure. The net effect of all chromatin remodelling enzymes is to modify nucleosome position or to increase accessibility of nucleosomal DNA.

Nucleosome-free region

(NFR). An 140 bp region lacking nucleosomes that is found at the beginning and end of genes. Many regions might not be completely nucleosome free, but are depleted of nucleosomes compared with the surrounding region. Certain environmental conditions can cause nucleosomes to occupy an NFR; for example, when genes are repressed.


A method for detecting the location of proteins throughout a genome using chromatin-immunoprecipitation followed by microarray analysis.


A method for detecting the location of proteins throughout a genome using chromatin-immunoprecipitation followed by high-throughput DNA sequencing.


The distribution of nucleosomes around a particular coordinate in a population of cells.

Rotational setting

The local orientation of the DNA helix on the histone surface.

Translational setting

The nucleosomal DNA midpoint position relative to a chromosomal locus.

Linker DNA

A short length of DNA located between nucleosomes. Long linker DNA can be considered to be a nucleosome-free region (NFR) — the DNA length cut-off for the two classes is arbitrary. However, NFRs tend to be sites of RNA and DNA polymerase loading and unloading.

Pre-initiation complex

(PIC). This assembly is found at the promoter and before the complex has initiated transcription. It includes the general transcription factors (TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH), the mediator, the RNA polymerase II complex, and activator or co-activator proteins (including SAGA).

Support vector machine classifier

A widely used method of classifying training data (for example, nucleosomal compared with non-nucleosomal genomic DNA), which can then be used to make predictions de novo.

Hidden Markov modelling

A method of identifying unknown or hidden states (for example, nucleosome positions) from observable states (for example, measured nucleosome positions).

Cryptic transcription

A low level of presumably unregulated transcription that originates from nucleosome-free regions. The transcripts are usually rapidly degraded.

SAGA complex

A multisubunit multifunctional complex that delivers TATA-binding protein (TBP) to promoters (by Spt3 and Spt8 subunits), acetylates nucleosomes (by the Gcn5 subunit) and is associated with activities that remodel (by Chd1) and deubiquitylate (by Ubp8) nucleosomes.


A multisubunit general transcription factor composed of TATA-binding protein (TBP) and 15 other subunits (TBP-associated factors).

Core promoter element

A widely used DNA sequence element that helps position the transcription initiation complex, and is typically located within 60 bp of the transcription start site.

General transcription factor

A protein that is widely considered to be required to set up a transcription initiation complex at all promoters (examples include TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH).

TATA-binding protein

(TBP). This protein is important for assembling the transcription initiation complex.

Initiator element

(INR element). A DNA sequence that specifies the transcription start site (consensus abbreviations include: K = G or T; Y = C or T; W = A or T; N = G, A, T or C).

Histone chaperone

A member of a class of proteins that help to deposit histones onto DNA, but are not components of nucleosomes.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jiang, C., Pugh, B. Nucleosome positioning and gene regulation: advances through genomics. Nat Rev Genet 10, 161–172 (2009).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing