Transposable elements and the evolution of regulatory networks

Abstract

The control and coordination of eukaryotic gene expression rely on transcriptional and post-transcriptional regulatory networks. Although progress has been made in mapping the components and deciphering the function of these networks, the mechanisms by which such intricate circuits originate and evolve remain poorly understood. Here I revisit and expand earlier models and propose that genomic repeats, and in particular transposable elements, have been a rich source of material for the assembly and tinkering of eukaryotic gene regulatory systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Transposable elements can influence gene expression in many ways.
Figure 2: Building regulatory systems with transposable elements.
Figure 3: DNA-binding proteins and transcription factors derived from transposases.

References

  1. 1

    Britten, R. J. & Kohne, D. E. Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science 161, 529–540 (1968).

    CAS  PubMed  Google Scholar 

  2. 2

    Wicker, T. et al. A unified classification system for eukaryotic transposable elements. Nature Rev. Genet. 8, 973–982 (2007).

    CAS  Article  Google Scholar 

  3. 3

    Brookfield, J. F. The ecology of the genome — mobile DNA elements and their hosts. Nature Rev. Genet. 6, 128–136 (2005).

    CAS  Article  Google Scholar 

  4. 4

    Kidwell, M. G. & Lisch, D. R. Perspective: transposable elements, parasitic DNA, and genome evolution. Evolution Int. J. Org. Evolution 55, 1–24 (2001).

    CAS  Article  Google Scholar 

  5. 5

    Feschotte, C. & Pritham, E. J. DNA transposons and the evolution of eukaryotic genomes. Annu. Rev. Genet. 41, 331–368 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6

    Deininger, P. L., Moran, J. V., Batzer, M. A. & Kazazian, H. H. Jr. Mobile elements and mammalian genome evolution. Curr. Opin. Genet. Dev. 13, 651–658 (2003).

    CAS  PubMed  Article  Google Scholar 

  7. 7

    Gould, S. J. & Vrba, E. S. Exaptation — a missing term in the science of form. Paleobiology 8, 4–15 (1983).

    Article  Google Scholar 

  8. 8

    Brosius, J. Retroposons — seeds of evolution. Science 251, 753 (1991).

    CAS  PubMed  Article  Google Scholar 

  9. 9

    Britten, R. J. Cases of ancient mobile element DNA insertions that now affect gene regulation. Mol. Phylogenet. Evol. 5, 13–17 (1996).

    CAS  PubMed  Article  Google Scholar 

  10. 10

    Miller, W. J., McDonald, J. F., Nouaud, D. & Anxolabehere, D. Molecular domestication — more than a sporadic episode in evolution. Genetica 107, 197–207 (1999).

    CAS  PubMed  Article  Google Scholar 

  11. 11

    Silva, J. C., Shabalina, S. A., Harris, D. G., Spouge, J. L. & Kondrashovi, A. S. Conserved fragments of transposable elements in intergenic regions: evidence for widespread recruitment of MIR- and L2-derived sequences within the mouse and human genomes. Genet. Res. 82, 1–18 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12

    Lowe, C. B., Bejerano, G. & Haussler, D. Thousands of human mobile element fragments undergo strong purifying selection near developmental genes. Proc. Natl Acad. Sci. USA 104, 8005–8010 (2007).

    CAS  Article  Google Scholar 

  13. 13

    Mikkelsen, T. S. et al. Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences. Nature 447, 167–177 (2007).

    CAS  Article  Google Scholar 

  14. 14

    Bejerano, G., Haussler, D. & Blanchette, M. Into the heart of darkness: large-scale clustering of human non-coding DNA. Bioinformatics 20 (Suppl. 1), i40–i48 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15

    Xie, X., Kamal, M. & Lander, E. S. A family of conserved noncoding elements derived from an ancient transposable element. Proc. Natl Acad. Sci. USA 103, 11659–11664 (2006).

    CAS  PubMed  Article  Google Scholar 

  16. 16

    Bejerano, G. et al. A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature 441, 87–90 (2006).

    CAS  Article  Google Scholar 

  17. 17

    Kamal, M., Xie, X. & Lander, E. S. A large family of ancient repeat elements in the human genome is under strong selection. Proc. Natl Acad. Sci. USA 103, 2740–2745 (2006).

    CAS  Article  Google Scholar 

  18. 18

    Nishihara, H., Smit, A. F. & Okada, N. Functional noncoding sequences derived from SINEs in the mammalian genome. Genome Res. 16, 864–874 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19

    Santangelo, A. M. et al. Ancient exaptation of a CORE-SINE retroposon into a highly conserved mammalian neuronal enhancer of the proopiomelanocortin gene. PLoS Genet. 3, 1813–1826 (2007).

    CAS  PubMed  Article  Google Scholar 

  20. 20

    Maside, X., Bartolome, C. & Charlesworth, B. S-element insertions are associated with the evolution of the HSP70 genes in Drosophila melanogaster. Curr. Biol. 12, 1686–1691 (2002).

    CAS  PubMed  Article  Google Scholar 

  21. 21

    Schlenke, T. A. & Begun, D. J. Strong selective sweep associated with a transposon insertion in Drosophila simulans. Proc. Natl Acad. Sci. USA 101, 1626–1631 (2004).

    CAS  PubMed  Article  Google Scholar 

  22. 22

    Chung, H. et al. Cis-regulatory elements in the Accord retrotransposon result in tissue-specific expression of the Drosophila melanogaster insecticide resistance gene Cyp6g1. Genetics 175, 1071–1077 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23

    Siepel, A. et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15, 1034–1050 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24

    Inada, D. C. et al. Conserved noncoding sequences in the grasses. Genome Res. 13, 2030–2041 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25

    Brosius, J. The contribution of RNAs and retroposition to evolutionary novelties. Genetica 118, 99–116 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26

    Marino-Ramirez, L., Lewis, K. C., Landsman, D. & Jordan, I. K. Transposable elements donate lineage-specific regulatory sequences to host genomes. Cytogenet. Genome Res. 110, 333–341 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27

    Jordan, I. K., Rogozin, I. B., Glazko, G. V. & Koonin, E. V. Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet. 19, 68–72 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28

    van de Lagemaat, L. N., Landry, J. R., Mager, D. L. & Medstrand, P. Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet. 19, 530–536 (2003).

    CAS  Article  Google Scholar 

  29. 29

    Marino-Ramirez, L. & Jordan, I. K. Transposable element derived DNaseI-hypersensitive sites in the human genome. Biol. Direct 1, 20 (2006).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  30. 30

    Gentles, A. J. et al. Evolutionary dynamics of transposable elements in the short-tailed opossum Monodelphis domestica. Genome Res. 17, 992–1004 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31

    Ni, J. Z. et al. Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense-mediated decay. Genes Dev. 21, 708–718 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32

    Wray, G. A. et al. The evolution of transcriptional regulation in eukaryotes. Mol. Biol. Evol. 20, 1377–1419 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33

    Hambor, J. E., Mennone, J., Coon, M. E., Hanke, J. H. & Kavathas, P. Identification and characterization of an Alu-containing, T-cell-specific enhancer located in the last intron of the human CD8 alpha gene. Mol.Cell Biol. 13, 7056–7070 (1993).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34

    Zhou, Y. H., Zheng, J. B., Gu, X., Saunders, G. F. & Yung, W. K. Novel PAX6 binding sites in the human genome and the role of repetitive elements in the evolution of gene regulation. Genome Res. 12, 1716–1722 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35

    Medstrand, P. et al. Impact of transposable elements on the evolution of mammalian gene regulation. Cytogenet. Genome Res. 110, 342–352 (2005).

    CAS  PubMed  Article  Google Scholar 

  36. 36

    Thornburg, B. G., Gotea, V. & Makalowski, W. Transposable elements as a significant source of transcription regulating signals. Gene 365, 104–110 (2006).

    CAS  Article  Google Scholar 

  37. 37

    Polak, P. & Domany, E. Alu elements contain many binding sites for transcription factors and may play a role in regulation of developmental processes. BMC Genomics 7, 133 (2006).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  38. 38

    Johnson, R. et al. Identification of the REST regulon reveals extensive transposable element-mediated binding site duplication. Nucleic Acids Res. 34, 3862–3877 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39

    Wang, T. et al. Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53. Proc. Natl Acad. Sci. USA 104, 18613–18618 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40

    Wessler, S. R., Bureau, T. E. & White, S. E. LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr. Opin. Genet. Dev. 5, 814–821 (1995).

    CAS  PubMed  Article  Google Scholar 

  41. 41

    Ferrigno, O. et al. Transposable B2 SINE elements can provide mobile RNA polymerase II promoters. Nature Genet. 28, 77–81 (2001).

    CAS  PubMed  Google Scholar 

  42. 42

    Romanish, M. T., Lock, W. M., van de Lagemaat, L. N., Dunn, C. A. & Mager, D. L. Repeated recruitment of LTR retrotransposons as promoters by the anti-apoptotic locus NAIP during mammalian evolution. PLoS Genet. 3, e10 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  43. 43

    Borchert, G. M., Lanier, W. & Davidson, B. L. RNA polymerase III transcribes human microRNAs. Nature Struct. Mol. Biol. 13, 1097–1101 (2006).

    CAS  Article  Google Scholar 

  44. 44

    Britten, R. J. & Davidson, E. H. Gene regulation for higher cells: a theory. Science 165, 349–357 (1969).

    CAS  Article  Google Scholar 

  45. 45

    Britten, R. J. & Davidson, E. H. Repetitive and non-repetitive DNA sequences and a speculation on the origins of evolutionary novelty. Q. Rev. Biol. 46, 111–138 (1971).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46

    Peaston, A. E. et al. Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev. Cell 7, 597–606 (2004).

    CAS  Article  Google Scholar 

  47. 47

    Bringaud, F. et al. Members of a large retroposon family are determinants of post-transcriptional gene expression in Leishmania. PLoS Pathog. 3, 1291–1307 (2007).

    CAS  PubMed  Article  Google Scholar 

  48. 48

    Wilkins, A. S. The Evolution of Developmental Pathways (Sinauer, Sunderland, Massachusetts, 2002).

    Google Scholar 

  49. 49

    Davidson, E. H. The Regulatory Genome: Gene Regulatory Networks in Development and Evolution (Academic, New York, 2006).

    Google Scholar 

  50. 50

    Mattick, J. S. A new paradigm for developmental biology. J. Exp. Biol. 210, 1526–1547 (2007).

    PubMed  Article  Google Scholar 

  51. 51

    Chen, K. & Rajewsky, N. The evolution of gene regulation by transcription factors and microRNAs. Nature Rev. Genet. 8, 93–103 (2007).

    CAS  Article  Google Scholar 

  52. 52

    Grewal, S. I. & Jia, S. Heterochromatin revisited. Nature Rev. Genet. 8, 35–46 (2007).

    CAS  Article  Google Scholar 

  53. 53

    Slotkin, R. K. & Martienssen, R. Transposable elements and the epigenetic regulation of the genome. Nature Rev. Genet. 8, 272–285 (2007).

    CAS  Article  Google Scholar 

  54. 54

    Aravin, A. A., Hannon, G. J. & Brennecke, J. The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science 318, 761–764 (2007).

    CAS  Article  Google Scholar 

  55. 55

    He, L. & Hannon, G. J. MicroRNAs: small RNAs with a big role in gene regulation. Nature Rev. Genet. 5, 522–531 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56

    Smalheiser, N. R. & Torvik, V. I. Mammalian microRNAs derived from genomic repeats. Trends Genet. 21, 322–326 (2005).

    CAS  Article  Google Scholar 

  57. 57

    Piriyapongsa, J., Marino-Ramirez, L. & Jordan, I. K. Origin and evolution of human microRNAs from transposable elements. Genetics 176, 1323–1337 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58

    Smalheiser, N. R. & Torvik, V. I. Alu elements within human mRNAs are probable microRNA targets. Trends Genet. 22, 532–536 (2006).

    CAS  PubMed  Article  Google Scholar 

  59. 59

    Feschotte, C., Jiang, N. & Wessler, S. R. Plant transposable elements: where genetics meets genomics. Nature Rev. Genet. 3, 329–341 (2002).

    CAS  PubMed  Article  Google Scholar 

  60. 60

    Sijen, T. & Plasterk, R. H. Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature 426, 310–314 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61

    Piriyapongsa, J. & Jordan, I. K. A family of human microRNA genes from miniature inverted-repeat transposable elements. PLoS ONE 2, e203 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  62. 62

    Levine, M. & Tjian, R. Transcription regulation and animal diversity. Nature 424, 147–151 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63

    Volff, J. N. Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes. Bioessays 28, 913–922 (2006).

    CAS  PubMed  Article  Google Scholar 

  64. 64

    Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    CAS  Article  Google Scholar 

  65. 65

    Pace, J. K. & Feschotte, C. The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage. Genome Res. 17, 422–432 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66

    Zdobnov, E. M., Campillos, M., Harrington, E. D., Torrents, D. & Bork, P. Protein coding potential of retroviruses and other transposable elements in vertebrate genomes. Nucleic Acids Res. 33, 946–954 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67

    Casola, C., Lawing, A. M., Betran, E. & Feschotte, C. PIF-like transposons are common in Drosophila and have been repeatedly domesticated to generate new host genes. Mol. Biol. Evol. 24, 1872–1888 (2007).

    CAS  PubMed  Article  Google Scholar 

  68. 68

    Campillos, M., Doerks, T., Shah, P. K. & Bork, P. Computational characterization of multiple gag-like human proteins. Trends Genet. 22, 585–589 (2006).

    CAS  PubMed  Article  Google Scholar 

  69. 69

    Muehlbauer, G. J. et al. A hAT superfamily transposase recruited by the cereal grass genome. Mol. Genet. Genomics 275, 553–563 (2006).

    CAS  PubMed  Article  Google Scholar 

  70. 70

    Craig, N. L., Craigie, R., Gellert, M. & Lambowitz, A. M. Mobile DNA II, (American Society for Microbiology, Washington, 2002).

    Google Scholar 

  71. 71

    Makarova, K. S., Aravind, L. & Koonin, E. V. SWIM, a novel Zn-chelating domain present in bacteria, archaea and eukaryotes. Trends Biochem. Sci. 27, 384–386 (2002).

    CAS  PubMed  Article  Google Scholar 

  72. 72

    Ros, F. & Kunze, R. Regulation of activator/dissociation transposition by replication and DNA methylation. Genetics 157, 1723–1733 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Aravind, L. The BED finger, a novel DNA-binding domain in chromatin-boundary-element-binding proteins and transposases. Trends Biochem. Sci. 25, 421–423 (2000).

    CAS  PubMed  Article  Google Scholar 

  74. 74

    Siegmund, T. & Lehmann, M. The Drosophila Pipsqueak protein defines a new family of helix-turn-helix DNA-binding proteins. Dev. Genes Evol. 212, 152–157 (2002).

    CAS  PubMed  Article  Google Scholar 

  75. 75

    Roussigne, M. et al. The THAP domain: a novel protein motif with similarity to the DNA-binding domain of P element transposase. Trends Biochem. Sci. 28, 66–69 (2003).

    CAS  PubMed  Article  Google Scholar 

  76. 76

    Kapitonov, V. V. & Jurka, J. Harbinger transposons and an ancient HARBI1 gene derived from a transposase. DNA Cell Biol. 23, 311–324 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77

    Babu, M. M., Iyer, L. M., Balaji, S. & Aravind, L. The natural history of the WRKY-GCM1 zinc fingers and the relationship between transcription factors and transposons. Nucleic Acids Res. 34, 6505–6520 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. 78

    Tudor, M., Lobocka, M., Goodwell, M., Pettitt, J. & O'Hare, K. The pogo transposable element family of Drosophila melanogaster. Mol. Gen. Genet. 232, 126–134 (1992).

    CAS  PubMed  Article  Google Scholar 

  79. 79

    Franz, G., Loukeris, T. G., Dialektaki, G., Thompson, C. R. & Savakis, C. Mobile Minos elements from Drosophila hydei encode a two-exon transposase with similarity to the paired DNA-binding domain. Proc. Natl Acad. Sci. USA 91, 4746–4750 (1994).

    CAS  PubMed  Article  Google Scholar 

  80. 80

    Breitling, R. & Gerber, J. K. Origin of the paired domain. Dev. Genes Evol. 210, 644–650 (2000).

    CAS  PubMed  Article  Google Scholar 

  81. 81

    Quesneville, H., Nouaud, D. & Anxolabehere, D. Recurrent recruitment of the THAP DNA-binding domain and molecular domestication of the P-transposable element. Mol. Biol. Evol. 22, 741–746 (2005).

    CAS  PubMed  Article  Google Scholar 

  82. 82

    Casola, C., Hucks, D. & Feschotte, C. Convergent domestication of pogo-like transposases into centromere-binding proteins in fission yeast and mammals. Mol. Biol. Evol., 25, 29–41 (2008).

    CAS  PubMed  Article  Google Scholar 

  83. 83

    Piriyapongsa, J., Rutledge, M. T., Patel, S., Borodovsky, M. & Jordan, I. K. Evaluating the protein coding potential of exonized transposable element sequences. Biol. Direct 2, 31 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  84. 84

    Cowan, R. K., Hoen, D. R., Schoen, D. J. & Bureau, T. E. MUSTANG is a novel family of domesticated transposase genes found in diverse angiosperms. Mol. Biol. Evol. 22, 2084–2089 (2005).

    CAS  Article  Google Scholar 

  85. 85

    Lin, R. et al. Transposase-derived transcription factors regulate light signalling in Arabidopsis. Science 318, 1302–1305 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86

    Cordaux, R., Udit, S., Batzer, M. A. & Feschotte, C. Birth of a chimeric primate gene by capture of the transposase gene from a mobile element. Proc. Natl Acad. Sci. USA 103, 8101–8106 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. 87

    Liu, D. et al. The human SETMAR protein preserves most of the activities of the ancestral Hsmar1 transposase. Mol. Cell Biol. 27, 1125–1132 (2007).

    PubMed  Article  CAS  Google Scholar 

  88. 88

    Miskey, C. et al. The ancient mariner sails again: transposition of the human Hsmar1 element by a reconstructed transposase and activities of the SETMAR protein on transposon ends. Mol. Cell Biol. 27, 4589–4600 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. 89

    Pathak, R. U., Rangaraj, N., Kallappagoudar, S., Mishra, K. & Mishra, R. K. Boundary element-associated factor 32B connects chromatin domains to the nuclear matrix. Mol. Cell Biol. 27, 4796–4806 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. 90

    Cam, H. P., Noma, K. I., Ebina, H., Levin, H. L. & Grewal, S. I. Host genome surveillance for retrotransposons by transposon-derived proteins. Nature 451, 431–436 (2008).

    CAS  Article  Google Scholar 

  91. 91

    Hudson, M. E., Lisch, D. R. & Quail, P. H. The FHY3 and FAR1 genes encode transposase-related proteins involved in regulation of gene expression by the phytochrome A-signaling pathway. Plant J. 34, 453–471 (2003).

    CAS  Article  Google Scholar 

  92. 92

    Raizada, M. N., Brewer, K. V. & Walbot, V. A maize MuDR transposon promoter shows limited autoregulation. Mol. Genet. Genomics 265, 82–94 (2001).

    CAS  PubMed  Article  Google Scholar 

  93. 93

    Cui, H. & Fedoroff, N. V. Inducible DNA demethylation mediated by the maize Suppressor-mutator transposon-encoded TnpA protein. Plant Cell 14, 2883–2899 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. 94

    Atkinson, P. W., Warren, W. D. & O'Brochta, D. A. The hobo transposable element of Drosophila can be cross-mobilized in houseflies and excises like the Ac element of maize. Proc. Natl Acad. Sci. USA 90, 9693–9697 (1993).

    CAS  PubMed  Article  Google Scholar 

  95. 95

    Rezsohazy, R., van Luenen, H. G. A. M., Durbin, R. M. & Plasterk, R. H. A. Tc7, a Tc1-hitch hiking transposon in Caenorhabditis elegans. Nucleic Acids Res. 25, 4048–4054 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. 96

    Lampe, D. J., Walden, K. K. & Robertson, H. M. Loss of transposase–DNA interaction may underlie the divergence of mariner family transposable elements and the ability of more than one mariner to occupy the same genome. Mol. Biol. Evol. 18, 954–961 (2001).

    CAS  PubMed  Article  Google Scholar 

  97. 97

    Feschotte, C., Osterlund, M. T., Peeler, R. & Wessler, S. R. DNA-binding specificity of rice mariner-like transposases and interactions with Stowaway MITEs. Nucleic Acids Res. 33, 2153–2165 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. 98

    Wallace, M. R. et al. A de novo Alu insertion results in neurofibromatosis type 1. Nature 353, 864–866 (1991).

    CAS  PubMed  Article  Google Scholar 

  99. 99

    Girard, L. & Freeling, M. Regulatory changes as a consequence of transposon insertion. Dev. Genet. 25, 291–296 (1999).

    CAS  PubMed  Article  Google Scholar 

  100. 100

    Simons, C., Pheasant, M., Makunin, I. V. & Mattick, J. S. Transposon-free regions in mammalian genomes. Genome Res. 16, 164–172 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. 101

    Lerman, D. N. & Feder, M. E. Naturally occurring transposable elements disrupt hsp70 promoter function in Drosophila melanogaster. Mol. Biol. Evol. 22, 776–783 (2005).

    CAS  PubMed  Article  Google Scholar 

  102. 102

    Walser, J. C., Chen, B. & Feder, M. E. Heat-shock promoters: targets for evolution by P transposable elements in Drosophila. PLoS Genet. 2, e165 (2006).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  103. 103

    Ackerman, H., Udalova, I., Hull, J. & Kwiatkowski, D. Evolution of a polymorphic regulatory element in interferon-gamma through transposition and mutation. Mol. Biol. Evol. 19, 884–890 (2002).

    CAS  PubMed  Article  Google Scholar 

  104. 104

    Martin, C. & Lister, C. Genome juggling by transposons: Tam3-induced rearrangements in Antirrhinum majus. Dev. Genet. 10, 438–451 (1989).

    CAS  PubMed  Article  Google Scholar 

  105. 105

    Koga, A., Iida, A., Hori, H., Shimada, A. & Shima, A. Vertebrate DNA transposon as a natural mutator: the medaka fish Tol2 element contributes to genetic variation without recognizable traces. Mol. Biol. Evol. 23, 1414–1419 (2006).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

I owe many thanks to C. Casola, J-M. Deragon, J. Fondon, I. K. Jordan, A. Pires da Silva, E. Pritham and D. Voytas for discussions and comments during the preparation of this article. I also thank the two anonymous reviewers for their constructive comments and useful suggestions. The author apologizes to many colleagues whose relevant work and original articles could not be cited owing to space limitations. Research in the C. F. laboratory is supported by grants from the US National Institutes of Health.

Author information

Affiliations

Authors

Related links

Related links

DATABASES

Entrez Conserved Domains 

BED

CENPB

Myb-like

Paired box

PSQ

THAP

WRKY

FURTHER INFORMATION

Cédric Feschotte's homepage

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Feschotte, C. Transposable elements and the evolution of regulatory networks. Nat Rev Genet 9, 397–405 (2008). https://doi.org/10.1038/nrg2337

Download citation

Further reading