Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic links between diet and lifespan: shared mechanisms from yeast to humans

Key Points

  • Dietary restriction — the limitation of available nutrients without malnutrition — can extend the lifespan of every species that has been tested, including mammals. Dietary restriction also reduces the incidence of and/or slows the progression of many age-related pathologies.

  • Dietary restriction has been modelled in yeast by reducing glucose concentration in the medium from 2% to 0.5% (moderate dietary restriction). Studies using this system have revealed a genetic pathway that controls dietary-restriction-induced longevity, which is dependent on increased mitochondrial respiration and sirtuin 2 (SIR2) genes.

  • A more severe form of dietary restriction in yeast, 0.05% glucose (severe dietary restriction), causes lifespan extension that is not dependent on SIR2 genes or on increased mitochondrial respiration. Instead, this form of dietary restriction may function through reduced target of rapamycin (TOR) and/or AKT signalling.

  • Few genes that mediate metazoan dietary restriction have been identified, but candidate genes that are known to be involved in both lifespan control and nutrient sensing include those encoding TOR, AMP-dependent protein kinase (AMPK), insulin signalling proteins and sirtuins.

  • Genes that have been clearly identified as required for metazoan dietary-restriction-induced longevity include skn-1 and pha-4 (in worms), Sir2 (in flies) and the growth hormone receptor gene (in mice).

  • Invertebrate studies have shown that neurons are crucial mediators of the dietary-restriction response in worms and flies.

  • A possible role of the mammalian hypothalamus in the response to dietary restriction is proposed in this Review. This is suggested by the clear demonstration of the importance of central neuronal signalling for dietary restriction in lower organisms and the many parallels between the genetics of invertebrate lifespan control and the genetics of hypothalamic energy sensing, as well as data suggesting that central hormonal axes under hypothalamic control have a role in mammalian dietary restriction.

Abstract

Caloric restriction is the only known non-genetic intervention that robustly extends lifespan in mammals. This regimen also attenuates the incidence and progression of many age-dependent pathologies. Understanding the genetic mechanisms that underlie dietary-restriction-induced longevity would therefore have profound implications for future medical treatments aimed at tackling conditions that are associated with the ageing process. Until recently, however, almost nothing was known about these mechanisms in metazoans. Recent advances in our understanding of the genetic bases of energy sensing and lifespan control in yeast, invertebrates and mammals have begun to solve this puzzle. Evidence is mounting that the brain has a crucial role in sensing dietary restriction and promoting longevity in metazoans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conserved lifespan control pathways.
Figure 2: Responses to moderate and severe dietary restriction (DR) in yeast.
Figure 3: Potential parallel mechanisms of longevity control induced by dietary restriction (DR) in yeast and metazoans.
Figure 4: Homeostatic energy balance is maintained by the hypothalamus.
Figure 5: A neural basis for longevity induced by dietary restriction (DR).

Similar content being viewed by others

References

  1. Lin, S. J. et al. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418, 344–348 (2002). The first demonstration that DR increases respiration as an essential step in longevity.

    Article  CAS  PubMed  Google Scholar 

  2. Klass, M. R. Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech. Ageing Dev. 6, 413–429 (1977).

    Article  CAS  PubMed  Google Scholar 

  3. Loeb, J. & Northrop, J. H. On the influence of food and temperature upon the duration of life. J. Biol. Chem. 32, 103–121 (1917).

    CAS  Google Scholar 

  4. McCay, C. M., Crowell, M. F. & Maynard, L. A. The effect of retarded growth upon the length of life span and upon the ultimate body size. J. Nutr. 10, 63–79 (1935).

    Article  CAS  Google Scholar 

  5. Mattison, J. A., Roth, G. S., Lane, M. A. & Ingram, D. K. Dietary restriction in aging nonhuman primates. Interdiscip. Top. Gerontol. 35, 137–158 (2007).

    CAS  PubMed  Google Scholar 

  6. Mattson, M. P. & Wan, R. Beneficial effects of intermittent fasting and caloric restriction on the cardiovascular and cerebrovascular systems. J. Nutr. Biochem. 16, 129–137 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Klebanov, S. Can short-term dietary restriction and fasting have a long-term anticarcinogenic effect? Interdiscip. Top. Gerontol. 35, 176–192 (2007).

    CAS  PubMed  Google Scholar 

  8. Wang, J. et al. Caloric restriction attenuates β-amyloid neuropathology in a mouse model of Alzheimer's disease. FASEB J. 19, 659–661 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Maswood, N. et al. Caloric restriction increases neurotrophic factor levels and attenuates neurochemical and behavioral deficits in a primate model of Parkinson's disease. Proc. Natl Acad. Sci. USA 101, 18171–18176 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Anson, R. M. et al. Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake. Proc. Natl Acad. Sci. USA 100, 6216–6220 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Koubova, J. & Guarente, L. How does calorie restriction work? Genes Dev. 17, 313–321 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Gems, D., Pletcher, S. & Partridge, L. Interpreting interactions between treatments that slow aging. Aging Cell 1, 1–9 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Lin, S. J., Defossez, P. A. & Guarente, L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289, 2126–2128 (2000). The first identification of genes that are required for DR longevity in yeast.

    Article  CAS  PubMed  Google Scholar 

  14. Smith, E. D., Kennedy, B. K. & Kaeberlein, M. Genome-wide identification of conserved longevity genes in yeast and worms. Mech. Ageing Dev. 128, 106–111 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Guarente, L. & Kenyon, C. Genetic pathways that regulate ageing in model organisms. Nature 408, 255–262 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Kaeberlein, M., Kirkland, K. T., Fields, S. & Kennedy, B. K. Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol. 2, e296 (2004). The first report that yeast DR proceeds independently of SIR2 under some circumstances.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kaeberlein, M. et al. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310, 1193–1196 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Easlon, E. et al. The dihydrolipoamide acetyltransferase is a novel metabolic longevity factor and is required for calorie restriction-mediated life span extension. J. Biol. Chem. 282, 6161–6171 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Lin, S. J., Ford, E., Haigis, M., Liszt, G. & Guarente, L. Calorie restriction extends yeast life span by lowering the level of NADH. Genes. Dev. 18, 12–16 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Anderson, R. M., Bitterman, K. J., Wood, J. G., Medvedik, O. & Sinclair, D. A. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature 423, 181–185 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lamming, D. W. et al. HST2 mediates SIR2-independent life-span extension by calorie restriction. Science 309, 1861–1864 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Kaeberlein, M. et al. Comment on “HST2 mediates SIR2-independent life-span extension by calorie restriction”. Science 312, 1312 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Tsuchiya, M. et al. Sirtuin-independent effects of nicotinamide on lifespan extension from calorie restriction in yeast. Aging Cell 5, 505–514 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Longo, V. D. & Kennedy, B. K. Sirtuins in aging and age-related disease. Cell 126, 257–268 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Sinclair, D. A. & Guarente, L. Extrachromosomal rDNA circles — a cause of aging in yeast. Cell 91, 1033–1042 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Johnson, F. B., Sinclair, D. A. & Guarente, L. Molecular biology of aging. Cell 96, 291–302 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Guarente, L. SIR2 and aging — the exception that proves the rule. Trends Genet. 17, 391–392 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Kaeberlein, M. et al. Increased life span due to calorie restriction in respiratory-deficient yeast. PLoS Genet. 1, e69 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lin, S. J. & Guarente, L. Increased life span due to calorie restriction in respiratory-deficient yeast. PLoS Genet. 2, e33 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Powers, R. W. 3rd, Kaeberlein, M., Caldwell, S. D., Kennedy, B. K. & Fields, S. Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev. 20, 174–184 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fabrizio, P. et al. Sir2 blocks extreme life-span extension. Cell 123, 655–667 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Bishop, N. A. & Guarente, L. Two neurons mediate diet-restriction-induced longevity in C. elegans. Nature 447, 545–549 (2007). The first demonstration of a central role of neuronal signalling in DR, resulting in increased respiration and longevity.

    Article  CAS  PubMed  Google Scholar 

  33. Nisoli, E. et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310, 314–317 (2005). This work demonstrated that DR in mice causes increased mitochondrial function and involves nitric oxide and Sirt1.

    Article  CAS  PubMed  Google Scholar 

  34. Houthoofd, K. et al. Axenic growth up-regulates mass-specific metabolic rate, stress resistance, and extends life span in Caenorhabditis elegans. Exp. Gerontol. 37, 1371–1378 (2002).

    Article  PubMed  Google Scholar 

  35. Houthoofd, K. et al. No reduction of metabolic rate in food restricted Caenorhabditis elegans. Exp. Gerontol. 37, 1359–1369 (2002).

    Article  PubMed  Google Scholar 

  36. Rogina, B. & Helfand, S. L. SIR2 mediates longevity in the fly through a pathway related to calorie restriction. Proc. Natl Acad. Sci. USA 101, 15998–16003 (2004). First report of a gene required for DR longevity in the fly.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen, D., Steele, A. D., Lindquist, S. & Guarente, L. Increase in activity during calorie restriction requires Sirt1. Science 310, 1641 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Viswanathan, M., Kim, S. K., Berdichevsky, A. & Guarente, L. A role for SIR-2.1 regulation of ER stress response genes in determining C. elegans life span. Dev. Cell 9, 605–615 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Tissenbaum, H. A. & Guarente, L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410, 227–230 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Hansen, M. et al. Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 6, 95–110 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Lee, G. D. et al. Dietary deprivation extends lifespan in Caenorhabditis elegans. Aging Cell 5, 515–524 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Kaeberlein, T. L. et al. Lifespan extension in Caenorhabditis elegans by complete removal of food. Aging Cell 5, 487–494 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Wang, Y. & Tissenbaum, H. A. Overlapping and distinct functions for a Caenorhabditis elegans SIR2 and DAF-16/FOXO. Mech. Ageing Dev. 127, 48–56 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Vellai, T. et al. Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426, 620 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Kapahi, P. et al. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr. Biol. 14, 885–890 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kenyon, C. The plasticity of aging: insights from long-lived mutants. Cell 120, 449–460 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Houthoofd, K., Braeckman, B. P., Johnson, T. E. & Vanfleteren, J. R. Life extension via dietary restriction is independent of the Ins/IGF-1 signalling pathway in Caenorhabditis elegans. Exp. Gerontol. 38, 947–954 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Lakowski, B. & Hekimi, S. The genetics of caloric restriction in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 95, 13091–13096 (1998). The first report of a gene required for the DR response in worms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Apfeld, J., O'Connor, G., McDonagh, T., DiStefano, P. S. & Curtis, R. The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev. 18, 3004–3009 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Curtis, R., O'Connor, G. & DiStefano, P. S. Aging networks in Caenorhabditis elegans: AMP-activated protein kinase (aak-2) links multiple aging and metabolism pathways. Aging Cell 5, 119–126 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Ashrafi, K., Lin, S. S., Manchester, J. K. & Gordon, J. I. Sip2p and its partner snf1p kinase affect aging in S. cerevisiae. Genes Dev. 14, 1872–1885 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A C. elegans mutant that lives twice as long as wild type. Nature 366, 461–464 (1993).

    Article  CAS  PubMed  Google Scholar 

  53. Libina, N., Berman, J. R. & Kenyon, C. Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan. Cell 115, 489–502 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Wolkow, C. A., Kimura, K. D., Lee, M. S. & Ruvkun, G. Regulation of C. elegans life-span by insulinlike signaling in the nervous system. Science 290, 147–150 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Panowski, S. H., Wolff, S., Aguilaniu, H., Durieux, J. & Dillin, A. PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature 447, 550–555 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Clancy, D. J., Gems, D., Hafen, E., Leevers, S. J. & Partridge, L. Dietary restriction in long-lived dwarf flies. Science 296, 319 (2002). An instructive report that introduces the importance of testing a range of food levels in DR interaction studies.

    Article  CAS  PubMed  Google Scholar 

  57. Tatar, M. Diet restriction in Drosophila melanogaster. Design and analysis. Interdiscip. Top. Gerontol. 35, 115–136 (2007).

    CAS  PubMed  Google Scholar 

  58. Clancy, D. J. et al. Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292, 104–106 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Partridge, L., Piper, M. D. & Mair, W. Dietary restriction in Drosophila. Mech. Ageing Dev. 126, 938–950 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Flurkey, K., Papaconstantinou, J., Miller, R. A. & Harrison, D. E. Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc. Natl. Acad. Sci. USA 98, 6736–6741 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Brown-Borg, H. M., Borg, K. E., Meliska, C. J. & Bartke, A. Dwarf mice and the ageing process. Nature 384, 33 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Bartke, A. et al. Extending the lifespan of long-lived mice. Nature 414, 412 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Coschigano, K. T., Clemmons, D., Bellush, L. L. & Kopchick, J. J. Assessment of growth parameters and life span of GHR/BP gene-disrupted mice. Endocrinology 141, 2608–2613 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Bonkowski, M. S., Rocha, J. S., Masternak, M. M., Al Regaiey, K. A. & Bartke, A. Targeted disruption of growth hormone receptor interferes with the beneficial actions of calorie restriction. Proc. Natl Acad. Sci. USA 103, 7901–7905 (2006). The first report of a mammalian mutant that is unresponsive to DR.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Apfeld, J. & Kenyon, C. Regulation of lifespan by sensory perception in Caenorhabditis elegans. Nature 402, 804–809 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Alcedo, J. & Kenyon, C. Regulation of C. elegans longevity by specific gustatory and olfactory neurons. Neuron 41, 45–55 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Broughton, S. J. et al. Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc. Natl Acad. Sci. USA 102, 3105–3110 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Libert, S. et al. Regulation of Drosophila life span by olfaction and food-derived odors. Science 315, 1133–1137 (2007). The first indication that sensory perception is involved in DR longevity in metazoans.

    Article  CAS  PubMed  Google Scholar 

  69. Fridell, Y. W., Sanchez-Blanco, A., Silvia, B. A. & Helfand, S. L. Targeted expression of the human uncoupling protein 2 (hUCP2) to adult neurons extends life span in the fly. Cell Metab. 1, 145–152 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Sanchez-Blanco, A., Fridell, Y. W. & Helfand, S. L. Involvement of Drosophila uncoupling protein 5 in metabolism and aging. Genetics 172, 1699–1710 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bargmann, C. I. & Horvitz, H. R. Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron 7, 729–742 (1991).

    Article  CAS  PubMed  Google Scholar 

  72. Bargmann, C. I. & Horvitz, H. R. Control of larval development by chemosensory neurons in Caenorhabditis elegans. Science 251, 1243–1246 (1991).

    Article  CAS  PubMed  Google Scholar 

  73. Riddle, D. L. & Albert, P. S. in C. elegans II (eds Riddle, D. L., Blumenthal, T., Meyer, B. J. & Preiss, J. R.) 739–768 (Cold Spring Harbor Laboratory Press, Plainview, 1997).

    Google Scholar 

  74. Flier, J. S. Obesity wars: molecular progress confronts an expanding epidemic. Cell 116, 337–350 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Lam, T. K., Schwartz, G. J. & Rossetti, L. Hypothalamic sensing of fatty acids. Nature Neurosci. 8, 579–584 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Levin, B. E., Routh, V. H., Kang, L., Sanders, N. M. & Dunn-Meynell, A. A. Neuronal glucosensing: what do we know after 50 years? Diabetes 53, 2521–2528 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Hara, J. et al. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 30, 345–354 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Shimada, M., Tritos, N. A., Lowell, B. B., Flier, J. S. & Maratos-Flier, E. Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature 396, 670–674 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).

    Article  CAS  PubMed  Google Scholar 

  80. Ahima, R. S. et al. Role of leptin in the neuroendocrine response to fasting. Nature 382, 250–252 (1996).

    Article  CAS  PubMed  Google Scholar 

  81. Bruning, J. C. et al. Role of brain insulin receptor in control of body weight and reproduction. Science 289, 2122–2125 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Schwartz, M. W., Woods, S. C., Porte, D. Jr., Seeley, R. J. & Baskin, D. G. Central nervous system control of food intake. Nature 404, 661–671 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Kitamura, T. et al. Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake. Nature Med. 12, 534–540 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Niswender, K. D. et al. Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus: a key mediator of insulin-induced anorexia. Diabetes 52, 227–231 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Niswender, K. D. et al. Intracellular signalling. Key enzyme in leptin-induced anorexia. Nature 413, 794–795 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Plum, L., Belgardt, B. F. & Bruning, J. C. Central insulin action in energy and glucose homeostasis. J. Clin. Invest. 116, 1761–1766 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Minokoshi, Y. et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 428, 569–574 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Cota, D. et al. Hypothalamic mTOR signaling regulates food intake. Science 312, 927–930 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Ibrahim, N. et al. Hypothalamic proopiomelanocortin neurons are glucose responsive and express K(ATP) channels. Endocrinology 144, 1331–1340 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Muroya, S., Yada, T., Shioda, S. & Takigawa, M. Glucose-sensitive neurons in the rat arcuate nucleus contain neuropeptide Y. Neurosci. Lett. 264, 113–116 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Eto, K. et al. Role of NADH shuttle system in glucose-induced activation of mitochondrial metabolism and insulin secretion. Science 283, 981–985 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Mobbs, C. V. et al. Secrets of the lac operon. Glucose hysteresis as a mechanism in dietary restriction, aging and disease. Interdiscip. Top. Gerontol. 35, 39–68 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Yang, X. J., Kow, L. M., Pfaff, D. W. & Mobbs, C. V. Metabolic pathways that mediate inhibition of hypothalamic neurons by glucose. Diabetes 53, 67–73 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Coppola, A. et al. A central thermogenic-like mechanism in feeding regulation: an interplay between arcuate nucleus T3 and UCP2. Cell Metab. 5, 21–33 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Conti, B. et al. Transgenic mice with a reduced core body temperature have an increased life span. Science 314, 825–828 (2006). This paper shows that expression of a transgene in a single hypothalamic neuron type is sufficient to extend murine lifespan, and suggests that the mechanism of lifespan extension overlaps with that of DR.

    Article  CAS  PubMed  Google Scholar 

  96. Harrison, D. E., Archer, J. R. & Astle, C. M. Effects of food restriction on aging: separation of food intake and adiposity. Proc. Natl Acad. Sci. USA 81, 1835–1838 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Weindruch, R. & Walford, R. L. The Retardation of Aging and Disease by Dietary Restriction (Charles C. Thomas Pub, Springfield, 1988).

    Google Scholar 

  98. Martin, B. et al. Sex-dependent metabolic, neuroendocrine and cognitive responses to dietary energy restriction and excess. Endocrinology 148, 4318–4333 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Mobbs, C. V. et al. Neuroendocrine and pharmacological manipulations to assess how caloric restriction increases life span. J. Gerontol. A Biol. Sci. Med. Sci. 56, S34–S44 (2001).

    Article  Google Scholar 

  100. Sohal, R. S. & Weindruch, R. Oxidative stress, caloric restriction, and aging. Science 273, 59–63 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the scientific community working on ageing and acknowledge support from the US National Institutes of Health and the Glenn Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard Guarente.

Ethics declarations

Competing interests

Leonard Guarente is a founder of Elixir Pharmaceuticals.

Glossary

Feeding ad libidum

A feeding protocol in which an organism is allowed to eat as much as desired, given an unlimited food supply.

Hypothalamus

A region of the brain that regulates organismal homeostasis, in particular energy balance, by regulating behaviour and metabolism by endocrine and autonomic signalling.

Uncoupling proteins

A family of mammalian proteins that dissipate the proton gradient across the mitochondrial membrane, necessitating more rapid respiration to maintain the rate of ATP production.

Dauer

An alternative larval stage of Caenorhabditis elegans that is adapted to survive adverse conditions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bishop, N., Guarente, L. Genetic links between diet and lifespan: shared mechanisms from yeast to humans. Nat Rev Genet 8, 835–844 (2007). https://doi.org/10.1038/nrg2188

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2188

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing