Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The evolution of sex-biased genes and sex-biased gene expression

Key Points

  • Sexual dimorphism in gene expression is widespread across organisms and genomes.

  • Genes with sex-biased expression, especially those with male-biased expression, tend to evolve rapidly in both protein sequence and expression level.

  • Sex-biased genes are non-randomly distributed in the genome, with examples of both under-representation and over-representation on the X chromosome.

  • There is mounting evidence that positive selection is the driving force behind the rapid evolution of sex-biased genes. This is probably caused by sexual selection and antagonistic coevolution between the sexes.

  • Sex-linked genes that escape dosage compensation constitute a special case of sex-biased gene expression.

  • There are several scenarios for the origin of sex-biased genes, including single-locus antagonism, sexual antagonism plus gene duplication and duplication of sex-biased genes.

Abstract

Differences between males and females in the optimal phenotype that is favoured by selection can be resolved by the evolution of differential gene expression in the two sexes. Microarray experiments have shown that such sex-biased gene expression is widespread across organisms and genomes. Sex-biased genes show unusually rapid sequence evolution, are often labile in their pattern of expression, and are non-randomly distributed in the genome. Here we discuss the characteristics and expression of sex-biased genes, and the selective forces that shape this previously unappreciated source of phenotypic diversity. Sex-biased gene expression has implications beyond just evolutionary biology, including for medical genetics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fitness trade-offs for a sexually antagonistic mutation.
Figure 2: Divergence of sex-biased genes between Drosophila species.
Figure 3: Adaptive evolution of sex-biased genes.
Figure 4: Scenarios for the accumulation and underrepresentation of sexually antagonistic mutations on sex chromosomes.

Similar content being viewed by others

References

  1. Connallon, T. & Knowles, L. L. Intergenomic conflict revealed by patterns of sex-biased gene expression. Trends Genet. 21, 495–499 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Rinn, J. L. & Snyder, M. Sexual dimorphism in mammalian gene expression. Trends Genet. 21, 298–305 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Arnqvist, G. & Rowe, L. Sexual Conflict (Princeton Univ. Press, Princeton, 2005).

    Book  Google Scholar 

  4. Rice, W. R. Sexually antagonistic male adaptation triggered by experimental arrest of female evolution. Nature 381, 232–234 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Rice, W. R. Male fitness increases when females are eliminated from gene pool: implications for the Y chromosome. Proc. Natl Acad. Sci. USA 95, 6217–6221 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chippindale, A. K., Gibson, J. R. & Rice, W. R. Negative genetic correlation for adult fitness between sexes reveals ontogenetic conflict in Drosophila. Proc. Natl Acad. Sci. USA 98, 1671–1675 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ranz, J. M., Castillo-Davis, C. I., Meiklejohn, C. D. & Hartl, D. L. Sex-dependent gene expression and evolution of the D. melanogaster transcriptome. Science 300, 1742–1744 (2003). The authors compare male and female gene expression between two closely related Drosophila species, and find that the degree of sex bias often differs between species.

    Article  CAS  PubMed  Google Scholar 

  8. Parisi, M. et al. Paucity of genes on the D. melanogaster X chromosome showing male-biased expression. Science 299, 697–700 (2003). Microarray experiments reveal that male-biased genes with both somatic and germline expression are under-represented on the D. melanogaster X chromosome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang, X. et al. Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res. 16, 995–1004 (2006). This reference represents an unparalleled example of microarray-based analysis of sex-biased gene expression, using a large number of replicates.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Thoemle, K. et al. Genome-wide analysis of sex-enriched gene expression during C. elegans larval development. Dev. Biol. 284, 500–508 (2005).

    Article  CAS  Google Scholar 

  11. Zhang, Z., Hambuch, T. M. & Parsch, J. Molecular evolution of sex-biased genes in Drosophila. Mol. Biol. Evol. 21, 2130–2139 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Richards, S. et al. Comparative genome sequencing of Drosophila pseudoobscura: chromosomal, gene, and cis-element evolution. Genome Res. 15, 1–18 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Metta, M., Gudavalli, R., Gibert, J. M. & Schlötterer, C. No accelerated rate of protein evolution in male-biased Drosophila pseudoobscura genes. Genetics 174, 411–420 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Reinke, V., Gil, I. S., Ward, S. & Kazmer, K. Genome-wide germline-enriched and sex-biased expression profiles in Caenorhabditis elegans. Development 131, 311–323 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Cutter, A. D. & Ward, S. Sexual and temporal dynamics of molecular evolution in C. elegans development. Mol. Biol. Evol. 22, 178–188 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Torgerson, D. G., Kulathinal, R. J. & Singh, R. S. Mammalian sperm proteins are rapidly evolving: evidence of positive selection in functionally diverse genes. Mol. Biol. Evol. 19, 1973–1980 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Schultz, N., Hamra, F. K. & Garbers, D. L. A multitude of genes expressed solely in meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets. Proc. Natl Acad. Sci. USA 100, 12201–12206 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Good, J. M. & Nachman, M. W. Rates of protein evolution are positively correlated with developmental timing of expression during mouse spermatogenesis. Mol. Biol. Evol. 22, 1044–1052 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Khaitovich, P. et al. Parallel patterns of evolution in the genomes and transcriptomes of humans and chimpanzees. Science 309, 1850–1854 (2005). In a comparative genomic study of humans and chimpanzees, the authors find that testis-expressed genes have diverged rapidly in both protein sequence and expression level.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, Z. & Parsch, J. Positive correlation between evolutionary rate and recombination rate in Drosophila genes with male-biased expression. Mol. Biol. Evol. 22, 1945–1947 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Pröschel, M., Zhang, Z. & Parsch, J. Widespread adaptive evolution of Drosophila genes with sex-biased expression. Genetics 174, 893–900 (2006). DNA polymorphism and divergence data reveal that sex-biased genes undergo frequent adaptive evolution in Drosophila species.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sawyer, S. A., Parsch, J., Zhang, Z. & Hartl, D. L. Prevalence of positive selection among nearly neutral amino acid replacements in Drosophila. Proc. Natl Acad. Sci. USA 104, 6504–6510 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nielsen, R. et al. A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol. 3, e170 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dorus, S. et al. Genomic and functional evolution of the Drosophila melanogaster sperm proteome. Nature Genet. 38, 1440–1445 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Swanson, W. J., Wong, A., Wolfner, M. F. & Aquadro, C. F. Evolutionary expressed sequence tag analysis of Drosophila female reproductive tracts identifies genes subjected to positive selection. Genetics 168, 1457–1465 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Panhuis, T. M. & Swanson, W. J. Molecular evolution and population genetic analysis of candidate female reproductive genes in Drosophila. Genetics 173, 2039–2047 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Swanson, W. J. & Vacquier, V. D. The rapid evolution of reproductive proteins. Nature Rev. Genet. 3, 137–144 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Rice, W. R. & Holland, B. The enemies within: intergenomic conflict, interlocus contest evolution (ICE), and the intraspecific Red Queen. Behav. Ecol. Sociobiol. 41, 1–10 (1997).

    Article  Google Scholar 

  30. Gavrilets, S. Rapid evolution of reproductive barriers driven by sexual conflict. Nature 403, 886–889 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Stepinska, U. & Bakst, M. R. in Reproductive Biology and Phylogeny of Birds (ed. Jamieson, B. G. M.) 553–587 (Science, Enfield, 2007).

    Google Scholar 

  32. Stewart, S. G. et al. Species specificity in avian sperm:perivitelline interaction. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 137, 657–663 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Berlin, S. & Smith, N. G. Testing for adaptive evolution of the female reproductive protein ZPC in mammals, birds and fishes reveals problems with the M7-M8 likelihood ratio test. BMC Evol. Biol. 5, 65 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Voolstra, C., Tautz, D., Farbrother, P., Eichinger, L. & Harr, B. Contrasting evolution of expression differences in the testis between species and subspecies of the house mouse. Genome Res. 17, 42–49 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Meiklejohn, C. D., Parsch, J., Ranz, J. M. & Hartl, D. L. Rapid evolution of male-biased gene expression in Drosophila. Proc. Natl Acad. Sci. USA 100, 9894–9899 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Grantham, R., Gautier, C., Gouy, M., Jacobzone, M. & Mercier, R. Codon catalog usage is a genome strategy modulated for gene expressivity. Nucleic Acids Res. 9, R43–R74 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bennetzen, J. L. & Hall, B. D. Codon selection in yeast. J. Biol. Chem. 257, 3026–3031 (1982).

    CAS  PubMed  Google Scholar 

  38. Duret, L. & Mouchiroud, D. Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis. Proc. Natl Acad. Sci. USA 96, 4482–4487 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Coghlan, A. & Wolfe, K. H. Relationship of codon bias to mRNA concentration and protein length in Saccharomyces cerevisiae. Yeast 16, 1131–1145 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Ikemura, T. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system. J. Mol. Biol. 151, 389–409 (1981).

    Article  CAS  PubMed  Google Scholar 

  41. Ikemura, T. Correlation between the abundance of yeast transfer RNAs and the occurrence of the respective codons in protein genes. Differences in synonymous codon choice patterns of yeast and Escherichia coli with reference to the abundance of isoaccepting transfer RNAs. J. Mol. Biol. 158, 573–597 (1982).

    Article  CAS  PubMed  Google Scholar 

  42. Moriyama, E. N. & Powell, J. R. Codon usage bias and tRNA abundance in Drosophila. J. Mol. Evol. 45, 514–523 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Duret, L. tRNA gene number and codon usage in the C. elegans genome are co-adapted for optimal translation of highly expressed genes. Trends Genet. 16, 287–289 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Hambuch, T. M. & Parsch, J. Patterns of synonymous codon usage in Drosophila melanogaster genes with sex-biased expression. Genetics 170, 1691–1700 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Whittle, C. A., Malik, M. R. & Krochko, J. E. Gender-specific selection on codon usage in plant genomes. BMC Genomics 8, 169 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rice, W. R. Sex chromosomes and the evolution of sexual dimorphism. Evolution 38, 735–742 (1984).

    Article  PubMed  Google Scholar 

  47. Charlesworth, B., Coyne, J. A. & Barton, N. H. The relative rates of evolution of sex chromosomes and autosomes. Am. Nat. 130, 113–146 (1987). References 46 and 47 represent seminal work on the theoretical expectations for the probability of fixation of sexually antagonistic mutations.

    Article  Google Scholar 

  48. Oliver, B. & Parisi, M. Battle of the Xs. Bioessays 26, 543–548 (2004).

    Article  PubMed  Google Scholar 

  49. Reinke, V. et al. A global profile of germ line gene expression in C. elegans. Mol. Cell 6, 605–616 (2000). One of the first large-scale studies of sex-biased gene expression.

    Article  CAS  PubMed  Google Scholar 

  50. Wang, P. J., McCarrey, J. R., Yang, F. & Page, D. C. An abundance of X-linked genes expressed in spermatogonia. Nature Genet. 27, 422–426 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Khil, P. P., Smirnova, N. A., Romanienko, P. J. & Camerini-Otero, R. D. The mouse X chromosome is enriched for sex-biased genes not subject to selection by meiotic sex chromosome inactivation. Nature Genet. 36, 642–646 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Wu, C. I. & Xu, E. Y. Sexual antagonism and X inactivation — the SAXI hypothesis. Trends Genet. 19, 243–247 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Saifi, G. M. & Chandra, H. S. An apparent excess of sex- and reproduction-related genes on the human X chromosome. Proc. Biol. Sci. 266, 203–209 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Birchler, J. A., Riddle, N. C., Auger, D. L. & Veitia, R. A. Dosage balance in gene regulation: biological implications. Trends Genet. 21, 219–226 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Marin, I., Siegal, M. L. & Baker, B. S. The evolution of dosage-compensation mechanisms. Bioessays 22, 1106–1114 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Heard, E. & Disteche, C. M. Dosage compensation in mammals: fine-tuning the expression of the X chromosome. Genes Dev. 20, 1848–1867 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Lucchesi, J. C., Kelly, W. G. & Panning, B. Chromatin remodeling in dosage compensation. Annu. Rev. Genet. 39, 615–631 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Disteche, C. M., Filippova, G. N. & Tsuchiya, K. D. Escape from X inactivation. Cytogenet. Genome Res. 99, 36–43 (2001).

    Article  Google Scholar 

  59. Brown, C. J. & Greally, J. M. A stain upon the silence: genes escaping X inactivation. Trends Genet. 19, 432–438 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Carrel, L. & Willard, H. F. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434, 400–404 (2005). This reference provides a detailed insight into the complexity of X-chromosome inactivation.

    Article  CAS  PubMed  Google Scholar 

  61. Jegalian, K. & Page, D. C. A proposed path by which genes common to mammalian X and Y chromosomes evolve to become X inactivated. Nature 394, 776–780 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Itoh, Y. et al. Dosage compensation is less effective in birds than in mammals. J. Biol. 6, 2 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Gupta, V. et al. Global analysis of X-chromosome dosage compensation. J. Biol. 5, 3 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Birchler, J. A., Bhadra, U., Bhadra, M. P. & Auger, D. L. Dosage-dependent gene regulation in multicellular eukaryotes: implications for dosage compensation, aneuploid syndromes, and quantitative traits. Dev. Biol. 234, 275–288 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Handley, L. J., Ceplitis, H. & Ellegren, H. Evolutionary strata on the chicken Z chromosome: implications for sex chromosome evolution. Genetics 167, 367–376 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Scholz, B. et al. Sex-dependent gene expression in early brain development of chicken embryos. BMC Neurosci. 7, 12 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kaiser, V. B. & Ellegren, H. Nonrandom distribution of genes with sex-biased expression in the chicken genome. Evolution 60, 1945–1951 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Storchova, R. & Divina, P. Nonrandom representation of sex-biased genes on chicken Z chromosome. J. Mol. Evol. 63, 676–681 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Gnad, F. & Parsch, J. Sebida: a database for the functional and evolutionary analysis of genes with sex-biased expression. Bioinformatics 22, 2577–2579 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Waxman, D. & Peck, J. R. Pleiotropy and the preservation of perfection. Science 279, 1210–1213 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Mank, J. E., Hultin-Rosenberg, L., Zwahlén, M. & Ellegren, H. Pleiotropic constraint hampers the resolution of sexual antagonism in vertebrate gene expression. Am. Nat., (in the press).

  72. Otto, S. P. & Lenormand, T. Resolving the paradox of sex and recombination. Nature Rev. Genet. 3, 252–261 (2002). A comprehensive review of the classical dilemma of why sexual reproduction is so much more common than asexual modes of reproduction.

    Article  CAS  PubMed  Google Scholar 

  73. Oshlack, A., Chabot, A. E., Smyth, G. K. & Gilad, Y. Using DNA microarrays to study gene expression in closely related species. Bioinformatics 23, 1235–1242 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Velculescu, V. E., Zhang, L., Vogelstein, B. & Kinzler, K. W. Serial analysis of gene expression. Science 270, 484–487 (1995).

    Article  CAS  PubMed  Google Scholar 

  75. Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–378 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bentley, D. R. Whole-genome re-sequencing. Curr. Opin. Genet. Dev. 16, 545–552 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Stolc, V. et al. A gene expression map for the euchromatic genome of Drosophila melanogaster. Science 306, 655–660 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. McIntyre, L. M. et al. Sex-specific expression of alternative transcripts in Drosophila. Genome Biol. 7, R79 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Parsch, J., Meiklejohn, C. D. & Hartl, D. L. in Selective Sweep (ed. Nurminsky, D.) 1–12 (Landes Bioscience, Georgetown, 2005).

    Book  Google Scholar 

  80. Parsch, J., Meiklejohn, C. D., Hauschteck-Jungen, E., Hunziker, P. & Hartl, D. L. Molecular evolution of the ocnus and janus genes in the Drosophila melanogaster species subgroup. Mol. Biol. Evol. 18, 801–811 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Betrán, E., Thornton, K. & Long, M. Retroposed new genes out of the X in Drosophila. Genome Res. 12, 1854–1859 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Loppin, B., Lepetit, D., Dorus, S., Couble, P. & Karr, T. L. Origin and neofunctionalization of a Drosophila paternal effect gene essential for zygote viability. Curr. Biol. 15, 87–93 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Kalamegham, R., Sturgill, D., Siegfried, E. & Oliver, B. Drosophila mojoless, a retroposed GSK-3, has functionally diverged to acquire an essential role in male fertility. Mol. Biol. Evol. 24, 732–742 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Betrán, E. & Long, M. Dntf-2r, a young Drosophila retroposed gene with specific male expression under positive Darwinian selection. Genetics 164, 977–988 (2003).

    PubMed  PubMed Central  Google Scholar 

  85. Begun, D. J. & Lindfors, H. A. Rapid evolution of genomic Acp complement in the melanogaster subgroup of Drosophila. Mol. Biol. Evol. 22, 2010–2021 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Begun, D. J., Lindfors, H. A., Thompson, M. E. & Holloway, A. K. Recently evolved genes identified from Drosophila yakuba and D. erecta accessory gland expressed sequence tags. Genetics 172, 1675–1681 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Levine, M. T., Jones, C. D., Kern, A. D., Lindfors, H. A. & Begun, D. J. Novel genes derived from noncoding DNA in Drosophila melanogaster are frequently X-linked and exhibit testis-biased expression. Proc. Natl Acad. Sci. USA 103, 9935–9939 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Begun, D. J., Lindfors, H. A., Kern, A. D. & Jones C. D. Evidence for de novo evolution of testis-expressed genes in the Drosophila yakuba/Drosophila erecta clade. Genetics 176, 1131–1137 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bustamante, C. D. et al. The cost of inbreeding in Arabidopsis. Nature 416, 531–534 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support was obtained from the Swedish Research Council to H. E. and Deutsche Forschungsgemeinschaft to J. P.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hans Ellegren or John Parsch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Hans Ellegren's homepage

LMU — Evolutionary and functional genomics

Glossary

Sexual dimorphism

Phenotypic differences between males and females of the same species.

Sexual selection

The process of natural selection acting on traits related directly to mating or reproductive success.

Sexual antagonism

Conflict arising from traits that are beneficial to one sex but harmful to the other.

Sex-biased genes

A gene that is expressed predominantly or exclusively in one sex.

Codon bias

The non-random use of synonymous codons to encode a protein.

dN/dS

The ratio of the non-synonymous (amino-acid altering) and synonymous substitution rates, used as a standard measure of the rate of evolution of a protein-encoding sequence.

EST sequencing

Large-scale sequencing of clones from a cDNA library obtained from mRNA.

Transcriptome profiling

A characterization of the mRNA molecules that are expressed in a certain tissue.

Androdioecious

A population consisting of hermaphrodites, which contain both male and female reproductive tissues, and males, which contain only male reproductive tissues.

Positive selection

Positive selection is key to adaptive evolution and implies that an advantageous allele gives its carrier a higher fitness and is therefore favoured by natural selection.

Fixation

When a new mutation is eventually spread to all individuals in the population.

Accessory glands

In insects, such as Drosophila, these are male reproductive tissues that produce and secrete seminal fluid proteins that are transferred to the female during copulation.

Purifying selection

Negative selection against a deleterious or slightly deleterious mutation.

Heterogametic sex

The sex that produces two different types of gametes with respect to sex chromosome content (for example, XY).

Homogametic sex

The sex that produces one type of gamete with respect to sex chromosome content (for example, XX).

Retrogene

A gene duplicate that arose through reverse transcription of a cellular mRNA.

Subfunctionalization

The partitioning of multiple ancestral gene functions between gene copies following duplication.

Neofunctionalization

A gain of a new function to a duplicated gene through mutation and selection.

Paralogues

Genes that arose from duplication of a common, ancestral gene. A gene that was duplicated before the divergence of two species is present as two paralogues, each of which has an orthologue in the other species.

Pleiotropy

The influence that a single gene has on multiple traits.

Epistatic selection

Selection for a certain combination of alleles at two or more loci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellegren, H., Parsch, J. The evolution of sex-biased genes and sex-biased gene expression. Nat Rev Genet 8, 689–698 (2007). https://doi.org/10.1038/nrg2167

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2167

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing