Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The Decapentaplegic morphogen gradient: from pattern formation to growth regulation

Key Points

  • Decapentaplegic (DPP) exerts its long-range influence on wing patterning by acting 'directly' at a distance as a gradient morphogen, rather than 'indirectly' as a short-range inducer of other signals.

  • Cells in the wing imaginal disc continuously receive and require bone morphogenetic protein (BMP)/DPP signalling input throughout development.

  • A biologically active, GFP-tagged form of DPP is currently being used to study different mechanisms of gradient formation.

  • The DPP gradient is converted into an inverse transcriptional gradient of Brinker (BRK): the brk gene is negatively controlled by the BMP/DPP transducers Mothers against dpp (MAD) and Medea in conjunction with Schnurri (SHN), a zinc-finger protein. SHN is recruited via the MAD–Medea heterodimer to short silencer elements upstream of the brk coding region, and is essential for brk repression.

  • The nested expression boundaries of two well-known DPP target genes (optomoter-blind (omb) and spalt major (salm)) are defined by different levels of BRK (high and low levels, respectively).

  • DPP signalling also has a potent growth-promoting role in imaginal disc development.

  • Surprisingly, the pattern of cell proliferation in the wing disc is uniform — and it is not highest where DPP levels are maximal.

  • The mechanism by which the DPP morphogen gradient controls uniform growth is enigmatic. Several models have been proposed to account for this observation.

  • Because cell proliferation seems to occur non-uniformly in the absence of DPP and BRK, the role of the DPP–BRK system seems to correct an inherently uneven proliferation pattern into a uniform pattern of growth.

Abstract

Morphogens have been linked to numerous developmental processes, including organ patterning and the control of organ size. Here we review how different experimental approaches have led to an unprecedented level of molecular knowledge about the patterning role of the Drosophila melanogaster morphogen Decapentaplegic (DPP, the homologue of vertebrate bone morphogenetic protein, or BMP), the first validated secreted morphogen. In addition, we discuss how little is known about the role of the DPP morphogen in the control of organ growth and organ size. Continued efforts to elucidate the role of DPP in D. melanogaster is likely to shed light on this fundamental question in the near future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An experimental test for Decapentaplegic (DPP) morphogen function.
Figure 2: Decapentaplegic (DPP) signal transduction components.
Figure 3: Decapentaplegic (DPP) morphogen readout: gene expression patterns in the developing wing imaginal discs.
Figure 4: Models addressing the function of Decapentaplegic (DPP) in growth control.
Figure 5: An uneven ground state of growth in the absence of the Decapentaplegic (DPP)–Brinker (BRK) system?

Similar content being viewed by others

References

  1. Lawrence, P. A., Crick, F. H. & Munro, M. A gradient of positional information in an insect, Rhodnius. J. Cell Sci. 11, 815–853 (1972).

    CAS  PubMed  Google Scholar 

  2. Wolpert, L. Positional information revisited. Development 107, 3–12 (1989).

    PubMed  Google Scholar 

  3. Gurdon, J. B. & Bourillot, P. Y. Morphogen gradient interpretation. Nature 413, 797–803 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Zecca, M., Basler, K. & Struhl, G. Sequential organizing activities of Engrailed, Hedgehog and Decapentaplegic in the Drosophila wing. Development 121, 2265–2278 (1995).

    CAS  PubMed  Google Scholar 

  5. Capdevila, J. & Guerrero, I. Targeted expression of the signaling molecule Decapentaplegic induces pattern duplications and growth alterations in Drosophila wings. EMBO J. 13, 4459–4468 (1994).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Nellen, D., Affolter, M. & Basler, K. Receptor serine/threonine kinases implicated in the control of Drosophila body pattern by decapentaplegic. Cell 78, 225–237 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Brummel, T. J. et al. Characterization and relationship of DPP receptors encoded by the saxophone and thick veins genes in Drosophila. Cell 78, 251–261 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Ruberte, E., Marty, T., Nellen, D., Affolter, M. & Basler, K. An absolute requirement for both the type II and type I receptors, punt and thick veins, for DPP signaling in vivo. Cell 80, 889–897 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Penton, A. et al. Identification of two bone morphogenetic protein type I receptors in Drosophila and evidence that BRK25D is a Decapentaplegic receptor. Cell 78, 239–250 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Letsou, A. et al. Drosophila DPP signaling is mediated by the punt gene product: a dual ligand-binding type II receptor of the TGFβ receptor family. Cell 80, 899–908 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Lecuit, T. et al. Two distinct mechanisms for long-range patterning by Decapentaplegic in the Drosophila wing. Nature 381, 387–393 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Nellen, D., Burke, R., Struhl, G. & Basler, K. Direct and long-range action of a DPP morphogen gradient. Cell 85, 357–368 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Golic, K. G. Site-specific recombination between homologous chromosomes in Drosophila. Science 252, 958–961 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Xu, T. & Rubin, G. M. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117, 1223–1237 (1993).

    CAS  PubMed  Google Scholar 

  15. Struhl, G. & Basler, K. Organizing activity of wingless protein in Drosophila. Cell 72, 527–540 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Bangi, E. & Wharton, K. Dual function of the Drosophila Alk1/Alk2 ortholog Saxophone shapes the BMP activity gradient in the wing imaginal disc. Development 133, 3295–3303 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Selleck, S. B. Genetic dissection of proteoglycan function in Drosophila and C. elegans. Semin. Cell Dev. Biol. 12, 127–134 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Lin, X. Functions of heparan sulfate proteoglycans in cell signaling during development. Development 131, 6009–6021 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Belenkaya, T. Y. et al. Drosophila DPP morphogen movement is independent of dynamin-mediated endocytosis but regulated by the glypican members of heparan sulfate proteoglycans. Cell 119, 231–244 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Fujise, M. et al. Dally regulates DPP morphogen gradient formation in the Drosophila wing. Development 130, 1515–1522 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Nakato, H., Fox, B. & Selleck, S. B. Dally, a Drosophila member of the glypican family of integral membrane proteoglycans, affects cell cycle progression and morphogenesis via a Cyclin A-mediated process. J. Cell Sci. 115, 123–130 (2002).

    CAS  PubMed  Google Scholar 

  22. Entchev, E. V., Schwabedissen, A. & Gonzalez-Gaitan, M. Gradient formation of the TGFβ homolog DPP. Cell 103, 981–991 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Entchev, E. V. & Gonzalez-Gaitan, M. A. Morphogen gradient formation and vesicular trafficking. Traffic 3, 98–109 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Lander, A. D., Nie, Q. & Wan, F. Y. Do morphogen gradients arise by diffusion? Dev. Cell 2, 785–796 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Kruse, K., Pantazis, P., Bollenbach, T., Julicher, F. & Gonzalez-Gaitan, M. DPP gradient formation by dynamin-dependent endocytosis: receptor trafficking and the diffusion model. Development 131, 4843–4856 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Kicheva, A. et al. Kinetics of morphogen gradient formation. Science 315, 521–525 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Jones, S. M., Howell, K. E., Henley, J. R., Cao, H. & McNiven, M. A. Role of dynamin in the formation of transport vesicles from the trans-Golgi network. Science 279, 573–577 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Kreitzer, G., Marmorstein, A., Okamoto, P., Vallee, R. & Rodriguez-Boulan, E. Kinesin and dynamin are required for post-Golgi transport of a plasma-membrane protein. Nature Cell Biol. 2, 125–127 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Raftery, L. A., Twombly, V., Wharton, K. & Gelbart, W. M. Genetic screens to identify elements of the Decapentaplegic signaling pathway in Drosophila. Genetics 139, 241–254 (1995).

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Sekelsky, J. J., Newfeld, S. J., Raftery, L. A., Chartoff, E. H. & Gelbart, W. M. Genetic characterization and cloning of Mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics 139, 1347–1358 (1995).

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Feng, X. H. & Derynck, R. Specificity and versatility in TGF-β signaling through SMADs. Annu. Rev. Cell Dev. Biol. 21, 659–693 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Massague, J., Seoane, J. & Wotton, D. SMAD transcription factors. Genes Dev. 19, 2783–2810 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Kim, J., Johnson, K., Chen, H. J., Carroll, S. & Laughon, A. Drosophila MAD binds to DNA and directly mediates activation of vestigial by Decapentaplegic. Nature 388, 304–308 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Staehling-Hampton, K., Laughon, A. S. & Hoffmann, F. M. A Drosophila protein related to the human zinc finger transcription factor PRDII/MBPI/HIV-EP1 is required for DPP signaling. Development 121, 3393–3403 (1995).

    CAS  PubMed  Google Scholar 

  35. Grieder, N. C., Nellen, D., Burke, R., Basler, K. & Affolter, M. Schnurri is required for Drosophila DPP signaling and encodes a zinc finger protein similar to the mammalian transcription factor PRDII-BF1. Cell 81, 791–800 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Arora, K. et al. The Drosophila schnurri gene acts in the DPP/TGFβ signaling pathway and encodes a transcription factor homologous to the human MBP family. Cell 81, 781–790 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Campbell, G. & Tomlinson, A. Transducing the DPP morphogen gradient in the wing of Drosophila: regulation of DPP targets by brinker. Cell 96, 553–562 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Jazwinska, A., Kirov, N., Wieschaus, E., Roth, S. & Rushlow, C. The Drosophila gene brinker reveals a novel mechanism of DPP target gene regulation. Cell 96, 563–573 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Minami, M., Kinoshita, N., Kamoshida, Y., Tanimoto, H. & Tabata, T. brinker is a target of DPP in Drosophila that negatively regulates DPP-dependent genes. Nature 398, 242–246 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Cordier, F., Hartmann, B., Rogowski, M., Affolter, M. & Grzesiek, S. DNA recognition by the Brinker repressor — an extreme case of coupling between binding and folding. J. Mol. Biol. 361, 659–672 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Zhang, H., Levine, M. & Ashe, H. L. Brinker is a sequence-specific transcriptional repressor in the Drosophila embryo. Genes Dev. 15, 261–266 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Sivasankaran, R., Vigano, M. A., Müller, B., Affolter, M. & Basler, K. Direct transcriptional control of the DPP target omb by the DNA binding protein Brinker. EMBO J. 19, 6162–6172 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Rushlow, C., Colosimo, P. F., Lin, M. C., Xu, M. & Kirov, N. Transcriptional regulation of the Drosophila gene zen by competing SMAD and Brinker inputs. Genes Dev. 15, 340–351 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Winter, S. E. & Campbell, G. Repression of DPP targets in the Drosophila wing by Brinker. Development 131, 6071–6081 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Kirkpatrick, H., Johnson, K. & Laughon, A. Repression of DPP targets by binding of Brinker to MAD sites. J. Biol. Chem. 276, 18216–18222 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Hasson, P., Muller, B., Basler, K. & Paroush, Z. Brinker requires two corepressors for maximal and versatile repression in DPP signalling. EMBO J. 20, 5725–5736 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Marty, T., Müller, B., Basler, K. & Affolter, M. Schnurri mediates DPP-dependent repression of brinker transcription. Nature Cell Biol. 2, 745–749 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Torres-Vazquez, J., Warrior, R. & Arora, K. schnurri is required for DPP-dependent patterning of the Drosophila wing. Dev. Biol. 227, 388–402 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Müller, B., Hartmann, B., Pyrowolakis, G., Affolter, M. & Basler, K. Conversion of an extracellular DPP/BMP morphogen gradient into an inverse transcriptional gradient. Cell 113, 221–233 (2003).

    Article  PubMed  Google Scholar 

  50. Pyrowolakis, G., Hartmann, B., Muller, B., Basler, K. & Affolter, M. A simple molecular complex mediates widespread BMP-induced repression during Drosophila development. Dev. Cell 7, 229–240 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Gao, S., Steffen, J. & Laughon, A. DPP-responsive silencers are bound by a trimeric MAD–Medea complex. J. Biol. Chem. 280, 36158–36164 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Moser, M. & Campbell, G. Generating and interpreting the Brinker gradient in the Drosophila wing. Dev. Biol. 286, 647–658 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Barrio, R. & de Celis, J. F. Regulation of spalt expression in the Drosophila wing blade in response to the Decapentaplegic signaling pathway. Proc. Natl Acad. Sci. USA 101, 6021–6026 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cook, O., Biehs, B. & Bier, E. brinker and optomotor-blind act coordinately to initiate development of the L5 wing vein primordium in Drosophila. Development 131, 2113–2124 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Lunde, K. et al. Activation of the knirps locus links patterning to morphogenesis of the second wing vein in Drosophila. Development 130, 235–248 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. del Alamo Rodriguez, D., Terriente Felix, J. & Diaz-Benjumea, F. J. The role of the T-box gene optomotor-blind in patterning the Drosophila wing. Dev. Biol. 268, 481–492 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. de Celis, J. F. & Barrio, R. Function of the spalt/spalt-related gene complex in positioning the veins in the Drosophila wing. Mech. Dev. 91, 31–41 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Bohn, H. Transplantationsexperimente mit interkalarer Regeneration zum Nachweis eines sich segmental wiederholenden Gradienten im Bein von Leucophaea (Blattaria). Zool. Anz. 30, 499–508 (1967) (in German).

    Google Scholar 

  59. Bohn, H. Extent and properties of the regeneration field in the larval legs of cockroaches (Leucophaea maderae) III. Origin of the tissues and determination of symmetry properties in the regenerates. J. Embryol. Exp. Morphol. 32, 81–98 (1974).

    CAS  PubMed  Google Scholar 

  60. Bryant, S. V., French, V., Bryant, P. J. Distal regeneration and symmetry. Science 212, 993–1002 (1981).

    Article  CAS  PubMed  Google Scholar 

  61. French, V., Bryant, P. J. & Bryant, S. V. Pattern regulation in epimorphic fields. Science 193, 969–981 (1976).

    Article  CAS  PubMed  Google Scholar 

  62. Day, S. J. & Lawrence, P. A. Measuring dimensions: the regulation of size and shape. Development 127, 2977–2987 (2000).

    CAS  PubMed  Google Scholar 

  63. Basler, K. & Struhl, G. Compartment boundaries and the control of Drosophila limb pattern by hedgehog protein. Nature 368, 208–214 (1994).

    Article  CAS  PubMed  Google Scholar 

  64. Edgar, B. A. & Lehner, C. F. Developmental control of cell cycle regulators: a fly's perspective. Science 274, 1646–1652 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Lawrence, P. A. & Struhl, G. Morphogens, compartments, and pattern: lessons from Drosophila? Cell 85, 951–961 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Spencer, F. A., Hoffmann, F. M. & Gelbart, W. M. Decapentaplegic: a gene complex affecting morphogenesis in Drosophila melanogaster. Cell 28, 451–461 (1982).

    Article  CAS  PubMed  Google Scholar 

  67. Burke, R. & Basler, K. DPP receptors are autonomously required for cell proliferation in the entire developing Drosophila wing. Development 122, 2261–2269 (1996).

    CAS  PubMed  Google Scholar 

  68. Adachi-Yamada, T., Fujimura-Kamada, K., Nishida, Y. & Matsumoto, K. Distortion of proximodistal information causes JNK-dependent apoptosis in Drosophila wing. Nature 400, 166–169 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Adachi-Yamada, T. & O'Connor, M. B. Morphogenetic apoptosis: a mechanism for correcting discontinuities in morphogen gradients. Dev. Biol. 251, 74–90 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Martin-Castellanos, C. & Edgar, B. A. A characterization of the effects of DPP signaling on cell growth and proliferation in the Drosophila wing. Development 129, 1003–1013 (2002).

    CAS  PubMed  Google Scholar 

  71. Moreno, E., Basler, K. & Morata, G. Cells compete for Decapentaplegic survival factor to prevent apoptosis in Drosophila wing development. Nature 416, 755–759 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Rogulja, D. & Irvine, K. D. Regulation of cell proliferation by a morphogen gradient. Cell 123, 449–461 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Müller, B. Transcriptional control of the Drosophila dpp gene and of its target gene brinker. Thesis, Univ. Zürich (2002).

    Google Scholar 

  74. Gibson, M. C. & Perrimon, N. Extrusion and death of DPP/BMP-compromised epithelial cells in the developing Drosophila wing. Science 307, 1785–1789 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Shen, J. & Dahmann, C. Extrusion of cells with inappropriate DPP signaling from Drosophila wing disc epithelia. Science 307, 1789–1790 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Garcia-Bellido, A. & Merriam, J. R. Parameters of the wing imaginal disc development of Drosophila melanogaster. Dev. Biol. 24, 61–87 (1971).

    Article  CAS  PubMed  Google Scholar 

  77. Gonzalez-Gaitan, M., Capdevila, M. P. & Garcia-Bellido, A. Cell proliferation patterns in the wing imaginal disc of Drosophila. Mech. Dev. 46, 183–200 (1994).

    Article  CAS  PubMed  Google Scholar 

  78. Milan, M., Campuzano, S. & Garcia-Bellido, A. Cell cycling and patterned cell proliferation in the wing primordium of Drosophila. Proc. Natl Acad. Sci. USA 93, 640–65 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Serrano, N. & O'Farrell, P. H. Limb morphogenesis: connections between patterning and growth. Curr. Biol. 7, R186–R195 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Shraiman, B. I. Mechanical feedback as a possible regulator of tissue growth. Proc. Natl Acad. Sci. USA 102, 3318–3323 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hufnagel, L., Teleman, A. A., Rouault, H., Cohen, S. M. & Shraiman, B. I. On the mechanism of wing size determination in fly development. Proc. Natl Acad. Sci. USA 104, 3835–3840 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Teleman, A. A. & Cohen, S. M. DPP gradient formation in the Drosophila wing imaginal disc. Cell 103, 971–980 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Aegerter-Wilmsen, T., Aegerter, C. M., Hafen, E. & Basler, K. Model for the regulation of size in the wing imaginal disc of Drosophila. Mech. Dev. 124, 318–326 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Bryant, P. J. & Levinson, P. Intrinsic growth control in the imaginal primordia of Drosophila, and the autonomous action of a lethal mutation causing overgrowth. Dev. Biol. 107, 355–363 (1985).

    Article  CAS  PubMed  Google Scholar 

  85. Jursnich, V. A., Fraser, S. E., Held, L. I. Jr, Ryerse, J. & Bryant, P. J. Defective gap-junctional communication associated with imaginal disc overgrowth and degeneration caused by mutations of the dco gene in Drosophila. Dev. Biol. 140, 413–429 (1990).

    Article  CAS  PubMed  Google Scholar 

  86. Mirth, C. K. & Riddiford, L. M. Size assessment and growth control: how adult size is determined in insects. Bioessays 29, 344–355 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Chen, Y. & Schier, A. F. The zebrafish Nodal signal Squint functions as a morphogen. Nature 411, 607–610 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Ashe, H. L. & Briscoe, J. The interpretation of morphogen gradients. Development 133, 385–394 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Weigmann, K., Cohen, S. M. & Lehner, C. F. Cell cycle progression, growth and patterning in imaginal discs despite inhibition of cell division after inactivation of Drosophila CDC2 kinase. Development 124, 3555–3563 (1997).

    CAS  PubMed  Google Scholar 

  90. Funakoshi, Y., Minami M. & Tabata T. MTV shapes the activity gradient of the DPP morphogen through regulation of thickveins. Development 128, 67–74 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank A. Weiss for help with the figures and G. Pyrowolakis, A. Weiss, G. Schwank, T. Aegerter-Wilmsen and P. Gallant for discussions and comments and on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Markus Affolter or Konrad Basler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Glossary

Facilitated diffusion

The extracellular diffusion of molecules mediated by cell-surface or extracellular matrix proteins.

Planar transcytosis

Active transport of a molecule via endocytosis and re-secretion, so that it moves from one cell to a neighbouring cell in a planar fashion within an epithelial sheet.

Glypican

Membrane-associated proteoglycan with a GPI (glycosylphosphatidylinositol) anchor at the C terminus.

Endocytosis

The capture of extracellular molecules via the uptake of membrane vesicles or vacuoles derived from the plasma membrane.

Photobleach

To bleach or destroy the fluorescence of a molecule by intense illumination in a given area of a biological sample. Fluorescence recovery can then be studied as a re-equilibration of the fluorescent signal by molecules from the non-bleached environment.

Homeodomain-like structure

Homeodomains are DNA-binding domains encoded by homeobox proteins. The 60 amino-acid homeodomain folds into a globular domain containing a helix-turn-helix motif, which interacts with residues in the major groove of the target DNA. Additional binding affinity of homeodomains is provided by a flexible N-terminal arm that interacts with the minor groove.

Organizer

A piece of tissue that can induce appropriately organized structures in neighbouring cells.

Intercalary growth

Regeneration that occurs at a tissue boundary between parts that are not normally neighbours.

Columnar epithelium

A single-cell layered sheet of elongated epithelial cells arranged on a basement membrane. Cells are joined to their neighbours by specialized junctions such as septate junctions and adherens junctions in flies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Affolter, M., Basler, K. The Decapentaplegic morphogen gradient: from pattern formation to growth regulation. Nat Rev Genet 8, 663–674 (2007). https://doi.org/10.1038/nrg2166

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2166

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing