Abstract
Our knowledge of the structure and composition of genomes is rapidly progressing in pace with their sequencing. The emerging data show that a significant portion of eukaryotic genomes is composed of transposable elements (TEs). Given the abundance and diversity of TEs and the speed at which large quantities of sequence data are emerging, identification and annotation of TEs presents a significant challenge. Here we propose the first unified hierarchical classification system, designed on the basis of the transposition mechanism, sequence similarities and structural relationships, that can be easily applied by non-experts. The system and nomenclature is kept up to date at the WikiPoson web site.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Flavell, R. B., Rimpau, J. & Smith, D. B. Repeated sequence DNA relationships in four cereal genomes. Chromosoma 63, 205–222 (1977).
International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature 436, 793–800 (2005).
Adams, M. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185–2195 (2000).
International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).
Morgante, M. Plant genome organisation and diversity: the year of the junk! Curr. Opin. Biotechnol. 17, 168–173 (2005).
Bennetzen, J. Transposable elements, gene creation and genome rearrangement in flowering plants. Curr. Opin. Genet. Dev. 15, 621–627 (2005).
Feschotte, C., Jiang, N. & Wessler, S. Plant transposable elements: where genetics meets genomics. Nature Rev. Genet. 3, 329–341 (2002).
SanMiguel, P. & Bennetzen, J. L. Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann. Bot. 82, 37–44 (1998).
Daboussi, M. & Capy, P. Transposable elements in filamentous fungi. Annu. Rev. Microbiol. 57, 275–299 (2003).
Hua-Van, A., Le Rouzic, A., Maisonhaute, C. & Capy, P. Abundance, distribution and dynamics of retrotransposable elements and transposons: similarities and differences. Cytogenet. Genome Res. 110, 426–440 (2005).
Finnegan, D. J. Eukaryotic transposable elements and genome evolution. Trends Genet. 5, 103–107 (1989).
Duval-Valentin, G., Marty-Cointin, B. & Chandler, M. Requirement of IS911 replication before integration defines a new bacterial transposition pathway. EMBO J. 23, 3897–3906 (2004).
Morgante, M. et al. Gene duplication and exon shuffling by Helitron-like transposons generate intraspecies diversity in maize. Nature Genet. 37, 997–1002 (2005).
Lai, J., Li, Y., Messing, J. & Dooner, H. K. Gene movement by Helitron transposons contributes to the haplotype variability of maize. Proc. Natl Acad. Sci. USA 102, 9068–9073 (2005).
Curcio, M. & Derbyshire, K. The outs and ins of transposition: from mu to kangaroo. Nature Rev. Mol. Cell Biol. 4, 865–877 (2003).
Kumar, A. & Bennetzen, J. Plant retrotransposons. Annu. Rev. Genet. 33, 479–532 (1999).
Han, J. S. & Boeke, J. D. LINE-1 retrotransposons: modulators of quantity and quality of mammalian gene expression? BioEssays 27, 775–784 (2005).
Sabot, F. & Schulman, A. H. Parasitism and the retrotransposon life cycle in plants: a hitchhiker's guide to the genome. Heredity 97, 381–388 (2006).
SanMiguel, P. et al. Nested retrotransposons in the intergenic regions of the maize genome. Science 274, 765–768 (1996).
Neumann, P., Pozarkova, D. & Macas, J. Highly abundant pea LTR retrotransposon Ogre is constitutively transcribed and partially spliced. Plant Mol. Biol. 53, 399–410 (2003).
Wicker, T. et al. Analysis of a contiguous 211 kb sequence in diploid wheat (Triticum monococcum) reveals multiple mechanisms of genome evolution. Plant J. 26, 307–316 (2001).
Vicient, C. M., Kalendar, R., Anamthawat-Jonsson, K. & Schulman, A. H. Structure, functionality, and evolution of the BARE-1 retrotransposon of barley. Genetica 107, 53–63 (1999).
SanMiguel, P., Gaut, B. S., Tikhoniv, A., Nakajima, Y. & Bennetzen, J. L. The paleontology of intergene retrotransposons in maize. Nature Genet. 20, 43–45 (1998).
Peterson, D. et al. Integration of Cot analysis, DNA cloning, and high-throughput sequencing facilitates genome characterization and gene discovery. Genome Res. 12, 795–807 (2002).
Eickbush, T. & Furano, A. Fruit flies and humans respond differently to retrotransposons. Curr. Opin. Genet. Dev. 12, 669–674 (2002).
Frankel, A. D. & Young, J. A. HIV-1: fifteen proteins and an RNA. Ann. Rev. Biochem. 67, 1–25 (1998).
Seelamgari, A. et al. Role of viral regulatory and accessory proteins in HIV-1 replication. Front. Biosci. 9, 2388–2413 (2004).
Bucheton, A. The relationship between the flamenco gene and gypsy in Drosophila: how to tame a retrovirus. Trends Genet. 11, 349–353 (1995).
International Committee on Taxonomy of Viruses. The Universal Virus Database. [online], (2007).
Capy, P. Classification and nomenclature of retrotransposable elements. Cytogenet. Genome Res. 110, 457–461 (2005).
Bannert, N. & Kurth, R. The evolutionary dynamics of human endogenous retroviral families. Annu. Rev. Genomics Hum. Genet. 7, 149–173 (2006).
Xiong, Y., Burke, W. & Eickbush, T. Pao, a highly divergent retrotransposable element from Bombyx mori containing long terminal repeats with tandem copies of the putative R region. Nucleic Acids Res. 21, 2117–2123 (1993).
Cook, J., Martin, J., Lewin, A., Sinden, R. & Tristem, M. Systematic screening of Anopheles mosquito genomes yields evidence for a major clade of Pao-like retrotransposons. Insect Mol. Biol. 9, 109–117 (2000).
Cappello, J., Handelsman, K. & Lodish, H. Sequence of Dictyostelium DIRS-1: an apparent retrotransposon with inverted terminal repeats and an internal circle junction sequence. Cell 43, 105–115 (1985).
Goodwin, T. & Poulter, R. A new group of tyrosine recombinase-encoding retrotransposons. Mol. Biol. Evol. 21, 746–759 (2004).
Evgen'ev, M. et al. Penelope, a new family of transposable elements and its possible role in hybrid dysgenesis in Drosophila virilis. Proc. Natl Acad. Sci. USA 94, 196–201 (1997).
Evgen'ev, M. & Arkhipova, I. Penelope-like elements — a new class of retroelements: distribution, function and possible evolutionary significance. Cytogenet. Genome Res. 110, 510–521 (2005).
Eickbush, T. H. & Malik, H. S. in Mobile DNA II (eds Craig, N. L., Craigie, R., Gellert, M. & Lambowitz, A. M.) 1111–1146 (ASM, Herndon, 2002).
Biedler, J. & Tu, Z. Non-LTR retrotransposons in the african malaria mosquito, Anopheles gambiae: unprecedented diversity and evidence of recent activity. Mol. Biol. Evol. 20, 1811–1825 (2003).
Ostertag, E. M. & Kazazian, H. H. Genetics: LINEs in mind. Nature 435, 890–891 (2005).
Petrov, D. A. & Hartl, D. L. High rate of DNA loss in the Drosophila melanogaster and Drosophila virilis species groups. Mol. Biol. Evol. 15, 293–302 (1998).
Leeton, P. R. & Smyth, D. R. An abundant LINE-like element amplified in the genome of Lilium speciosum. Mol. Gen. Genet. 237, 97–104 (1993).
Zupunski, V., Gubensek, F. & Kordis, D. Evolutionary dynamics and evolutionary history in the RTE clade of non-LTR retrotransposons. Mol. Biol. Evol. 18, 1849–1863 (2001).
Kramerov, D. & Vassetzky, N. Short retroposons in eukaryotic genomes. Int. Rev. Cytol. 247, 165–221 (2005).
Dewannieux, M., Esnault, C. & Heidmann, T. LINE-mediated retrotransposition of marked Alu sequences. Nature Genet. 35, 41–48 (2003).
Kajikawa, M. & Okada, N. LINEs mobilize SINEs in the eel through a shared 3′ sequence. Cell 111, 433–444 (2002).
Rowold, D. J. & Herrara, R. J. Alu elements and the human genome. Genetica 108, 57–72 (2000).
Wicker, T., Guyot, R., Yahiaoui, N. & Keller, B. CACTA transposons in Triticeae. A diverse family of high-copy repetitive elements. Plant Physiol. 132, 52–63 (2003).
Chandler, M. & Mahillon, J. in Mobile DNA II (eds Craig, N., Craigie, R., Gellert, M. & Lambowitz, A.) (ASM, Washington D.C., 2002).
Greenblatt, I. M. & Brink, R. A. Twin mutations in medium variegated pericarp maize. Genetics 47, 489–501 (1962).
Capy, P., Bazin, C., Higuet, D. & Langin, T. (eds) Dynamics and evolution of transposable elements (Library of Congress, Austin, 1998).
Nassif, N., Penney, J., Pal, S., Engels, W. & Gloor, G. Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair. Mol. Cell. Biol. 14, 1613–1625 (1994).
Hickman, A. et al. Molecular architecture of a eukaryotic DNA transposase. Nature Struct. Biol. 12, 715–721 (2005).
Shao, H. & Tu, Z. Expanding the diversity of the IS630–Tc1–mariner superfamily: discovery of a unique DD37E transposon and reclassification of the DD37D and DD39D transposons. Genetics 159, 1103–1115 (2001).
Kempken, F. & Windhofer, F. The hAT family: a versatile transposon group common to plants, fungi, animals, and man. Chromosoma 110, 1–9 (2001).
Calvi, B. R., Hong, T. J., Findley, S. D. & Gelbart, W. M. Evidence for a common evolutionary origin of inverted repeat transposons in Drosophila and plants: hobo, Activator, and Tam3. Cell 66, 465–471 (1991).
Courage, U. et al. Transposable elements Ac and Ds at the shrunken, waxy, and alcohol dehydrogenase 1 loci in Zea mays L. Cold Spring Harb. Symp. Quant. Biol. 49, 329–338 (1984).
Hehl, R., Nacken, W. K., Krause, A., Saedler, H. & Sommer, H. Structural analysis of Tam3, a transposable element from Antirrhinum majus, reveals homologies to the Ac element from maize. Plant Mol. Biol. 6, 369–371 (1991).
Pritham, E. J., Feschotte, C. & Wessler, S. R. Unexpected diversity and differential success of DNA transposons in four species of entamoeba protozoans. Mol. Biol. Evol. 22, 1751–1763 (2005).
Feschotte, C. Merlin, a new superfamily of DNA transposons identified in diverse animal genomes and related to bacterial IS1016 insertion sequences. Mol. Biol. Evol. 21, 1769–1780 (2004).
Kapitonov, V. V. & Jurka, J. RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biol. 3, e181 (2005).
Kapitonov, V. V. & J., J. Molecular paleontology of transposable elements in the Drosophila melanogaster genome. Proc. Natl Acad. Sci. USA 100, 6569–6574 (2003).
Hammer, S. E., Strehl, S. & Hagemann, S. Homologs of Drosophila P transposons were mobile in zebrafish but have been domesticated in a common ancestor of chicken and human. Mol. Biol. Evol. 22, 833–844 (2005).
Jurka, J. et al. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet. Genome Res. 110, 462–467 (2005).
Sarkar, A. et al. Molecular evolutionary analysis of the widespread piggyBac transposon family and related 'domesticated' sequences. Mol. Genet. Genomics 270, 173–180 (2003).
Jiang, R. et al. Elicitin genes in Phytophthora infestans are clustered and interspersed with various transposon-like elements. Mol. Genet. Genomics 273, 20–32 (2005).
Jurka, J. & Kapitonov, V. V. PIFs meet Tourists and Harbingers: a superfamily reunion. Proc. Natl Acad. Sci. USA 98, 12315–12316 (2001).
DeMarco, R., Venancio, T. & Verjovski-Almeida, S. SmTRC1, a novel Schistosoma mansoni DNA transposon, discloses new families of animal and fungi transposons belonging to the CACTA superfamily BMC Evol. Biol. 6, 89 (2006).
Goodwin, T., Butler, M. I., Poulter, R. T. Cryptons: a group of tyrosine-recombinase-encoding DNA transposons from pathogenic fungi. Microbiology 149, 3099–3109 (2003).
Kapitonov, V. & Jurka, J. Rolling-circle transposons in eukaryotes. Proc. Natl Acad. Sci. USA 98, 8714–8719 (2001).
Poulter, R. & Goodwin, T. DIRS-1 and the other tyrosine recombinase retrotransposons. Cytogenet. Genome Res. 110, 575–588 (2005).
Hood, M. Repetitive DNA in the automictic fungus Microbotryum violaceum. Genetica 124, 1–10 (2005).
Pritham, E. & Feschotte, C. Massive amplification of rolling-circle transposons in the lineage of the bat Myotis lucifugus. Proc. Natl Acad. Sci. USA 104, 1895–1900 (2007).
Feschotte, C. & Pritham, E. J. Non-mammalian c-integrases are encoded by giant transposable elements. Trends Genet. 21, 551–552 (2005).
Kapitonov, V. & Jurka, J. Self-synthesizing DNA transposons in eukaryotes. Proc. Natl Acad. Sci. USA 103, 4540–4545 (2006).
Pritham, E., Putliwala, T. & Feschotte, C. Mavericks, a novel class of giant transposable elements widespread in eukaryotes and related to DNA viruses. Gene 390, 3–17 (2007).
Tanskanen, J. A., Sabot, F., Vicient, C. & Schulman, A. H. Life without GAG: The BARE-2 retrotransposon as a parasite's parasite. Gene 390, 166–174 (2006).
Jiang, N., Feschotte, C., Zhang, X. & Wessler, S. R. Using rice to understand the origin and amplification of miniature inverted repeat transposable elements (MITEs). Curr. Opin. Plant Biol. 7, 115–119 (2004).
Kalendar, R. et al. LARD retroelements: novel, non-autonomous components of barley and related genomes. Genetics 166, 1437–1450 (2004).
Witte, C. P., Le, Q. H., Bureau, T. & Kumar, A. Terminal-repeat retrotransposons in miniature (TRIM) are involved in restructuring plant genomes. Proc. Natl Acad. Sci. USA 98, 13778–13783 (2001).
Jiang, N., Jordan, I. K. & Wessler, S. R. Dasheng and RIRE2. A nonautonomous long terminal repeat element and its putative autonomous partner in the rice genome. Plant Physiol. 130, 1697–1705 (2002).
Bureau, T. E. & Wessler, S. R. Stowaway: a new family of inverted repeat elements associated with the genes of both monocotyledonous and dicotyledonous plants. Plant Cell 6, 907–916 (1994).
Feschotte, C., Swamy, L. & Wessler, S. R. Genome-wide analysis of Mariner-like transposable elements in rice reveals complex relationships with stowaway miniature inverted repeat transposable elements (MITEs). Genetics 163, 747–758 (2003).
Wicker, T. et al. The repetitive landscape of the chicken genome. Genome Res. 15, 126–136 (2005).
Ashburner, M. et al. Gene ontology: tool for the unification of biology. Nature Genet. 25, 25–29 (2000).
SanMiguel, P., Ramakrishna, W., Bennetzen, J., Busso, C. & Dubcovsky, J. Transposable elements, genes and recombination in a 215-kb contig from wheat chromosome 5Am. Funct. Integr. Genomics 2, 70–80 (2002).
Wicker, T. & Keller, B. Genome-wide comparative analysis of copia retrotransposons in Triticeae, rice, and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families. Genome Res. 17, 1072–1081 (2007).
Bugreev, D. et al. Dynamic, thermodynamic, and kinetic basis for recognition and transformation of DNA by human immunodeficiency virus type 1 integrase. Biochemistry 42, 9235–9247 (2003).
Luschnig, C. & Bachmair, A. RNA packaging of yeast retrotransposon Ty1 in the heterologous host, Escherichia coli. Biol. Chem. 378, 39–46 (1997).
Feng, Y. X., Moore, S. P., Garfinkel, D. J. & Rein, A. The genomic RNA in Ty1 virus-like particles is dimeric. J. Virol. 74, 10819–10821 (2000).
Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).
Shirasu, K., Schulman, A. H., Lahaye, T. & Schulze-Lefert, P. A contiguous 66 kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res. 10, 908–915 (2000).
Sabot, F. & Schulman, A. Template switching can create complex LTR retrotransposon insertions in Triticeae genomes. BMC Genomics 8, 247 (2007).
Acknowledgements
The authors want to thank J. Estill (University of Georgia, Athens, USA) for very useful scientific discussions. We are particularly grateful to C. Feschotte (University of Texas, Austin, USA) and two other anonymous reviewers for their constructive comments and suggestions. J. W. Bizzaro and all the bioinformatics.org team are thanked for their hosting of WikiPoson and helping with its release. This work was supported by GDR 2157 of the Centre National de la Recherche Scientifique (CNRS; A.H.V., P.C & O.P.), by a University of Helsinki, Finland, Postdoctoral Fellowship (F.S.) and by the Institute of Plant Biology, Zurich, Switzerland (T.W.).
Author information
Authors and Affiliations
Corresponding author
Related links
Rights and permissions
About this article
Cite this article
Wicker, T., Sabot, F., Hua-Van, A. et al. A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8, 973–982 (2007). https://doi.org/10.1038/nrg2165
Issue Date:
DOI: https://doi.org/10.1038/nrg2165
This article is cited by
-
A systematic screen for co-option of transposable elements across the fungal kingdom
Mobile DNA (2024)
-
Accounting for diverse transposable element landscapes is key to developing and evaluating accurate de novo annotation strategies
Genome Biology (2024)
-
Evolutionary dynamics of the LTR-retrotransposon crapaud in the Podospora anserina species complex and the interaction with repeat-induced point mutations
Mobile DNA (2024)
-
Chromosomal-level genome assembly of the high-quality Xian/Indica rice (Oryza sativa L.) Xiangyaxiangzhan
BMC Plant Biology (2023)
-
Transposable elements as essential elements in the control of gene expression
Mobile DNA (2023)