Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins

Key Points

  • Fanconi anaemia (FA) is a rare genetic disease featuring bone marrow failure, various developmental abnormalities, genomic instability, cancer predisposition and cellular hypersensitivity to DNA-crosslinking drugs. FA has been considered as a useful model to study the pathway that repairs interstrand DNA crosslinks.

  • Three FA genes are identical to breast cancer susceptibility (BRCA) genes. FA and BRCA gene products function in a novel DNA-damage response network.

  • Thirteen FA genes have been identified to date. They can be classified into three groups, each of which acts at a different stage in the FA–BRCA DNA-damage response network.

  • Group I consists of eight FA proteins (FANCA, B, C, E, F, G, L and M). They form the FA core complex, together with FANCA-associated polypeptides FAAP100 and FAAP24. The core complex monoubiquitylates the ID complex in response to DNA damage, and might also participate in DNA repair through the DNA-processing activities of FANCM–FAAP24.

  • Group II consists of FANCD2 and FANCI, which form the FA–ID complex. In response to DNA damage, The ID complex becomes monoubiquitylated, leading to its redistribution to sites of DNA damage where it colocalizes with BRCA1 and γH2AX, a histone H2A variant. These proteins are essential for the redistribution of the ID complex.

  • Group III proteins include FANCD1 (or BRCA2), FANCN(or partner and localizer of BRCA2 (PALB2)), and FANCJ (also known as BRCA1-interacting protein 1 (BRIP1) or BRCA1-associated C-terminal helicase 1 (BACH1)), which are all products of breast cancer susceptibility genes. BRCA2 and PALB2 form a complex with RAD51 recombinase and BRCA1, and this complex mediates homologous recombination-dependent repair of DNA damage. FANCJ is a DNA helicase, which forms a distinct complex with BRCA1, mutL homologue 1(MLH1) and post-meiotic segregation increased 2 (PMS2).

  • FA proteins crosstalk with many molecules that are known to be involved in the DNA-damage response. These include homologous recombination protein RAD51 and translesion polymerases REV1 and REV3. The checkpoint kinase ataxia telangiectasia and Rad3-related protein (ATR) acts upstream of the FA–BRCA network. The Bloom syndrome helicase (BLM) and its partners form a large, stable complex with the FA core complex.

Abstract

Fanconi anaemia (FA) has recently become an attractive model to study breast cancer susceptibility (BRCA) genes, as three FA genes, FANCD1, FANCN and FANCJ, are identical to the BRCA genes BRCA2, PALB2 and BRIP1. Increasing evidence shows that FA proteins function as signal transducers and DNA-processing molecules in a DNA-damage response network. This network consists of many proteins that maintain genome integrity, including ataxia telangiectasia and Rad3 related protein (ATR), Bloom syndrome protein (BLM), and BRCA1. Now that the gene that is defective in the thirteenth and last assigned FA complementation group (FANCI) has been identified, I discuss what is known about FA proteins and their interactive network, and what remains to be discovered.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Fanconi anaemia core complex and the Bloom syndrome protein (BLM) complex associate in a supercomplex, BRAFT.
Figure 2: Classification and domain structures of Fanconi anaemia (FA) proteins.
Figure 3: Signalling through the Fanconi anaemia (FA)–breast cancer susceptibility (BRCA) network in response to DNA damage.
Figure 4: Fanconi anaemia (FA) proteins FANCM and FAAP24 form a heterodimer that belongs to the endonuclease family of XPF–ERCC1 and MUS81–EME1.
Figure 5: The Fanconi anaemia (FA)–ID complex may promote translesion bypass through a mechanism similar to that of proliferating cell nuclear antigen (PCNA).
Figure 6: A model for the participation of Fanconi anaemia (FA) proteins in crosslinked DNA-damage repair.

Similar content being viewed by others

References

  1. Garcia-Higuera, I. et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol. Cell 7, 249–262 (2001). This work presents the first evidence for a DNA-damage response pathway that includes FA proteins and BRCA1, and shows that FANCD2 monoubiquitylation is a key step in this pathway.

    Article  CAS  PubMed  Google Scholar 

  2. Howlett, N. G. et al. Biallelic inactivation of BRCA2 in Fanconi anemia. Science 297, 606–609 (2002). This study showed that BRCA2 is identical to FANCD1, providing the first direct evidence for a connection between breast cancer and FA.

    Article  CAS  PubMed  Google Scholar 

  3. Wang, X., Andreassen, P. R. & D'Andrea, A. D. Functional interaction of monoubiquitinated FANCD2 and BRCA2/FANCD1 in chromatin. Mol. Cell. Biol. 24, 5850–5862 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Venkitaraman, A. R. Tracing the network connecting BRCA and Fanconi anaemia proteins. Nature Rev. Cancer 4, 266–276 (2004).

    Article  CAS  Google Scholar 

  5. Levitus, M. et al. The DNA helicase BRIP1 is defective in Fanconi anemia complementation group J. Nature Genet. 37, 934–935 (2005). One of the three papers that identified the BRCA1-interacting helicase BRIP1 as FANCJ, thus providing new connections between FA and breast cancer, and between FA and DNA repair.

    Article  CAS  PubMed  Google Scholar 

  6. Levran, O. et al. The BRCA1-interacting helicase BRIP1 is deficient in Fanconi anemia. Nature Genet. 37, 931–933 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Litman, R. et al. BACH1 is critical for homologous recombination and appears to be the Fanconi anemia gene product FANCJ. Cancer Cell 8, 255–265 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Xia, B. et al. Fanconi anemia is associated with a defect in the BRCA2 partner PALB2. Nature Genet. 39, 159–161 (2007). One of the two papers that identified the BRCA2 partner PALB2 as the protein that is defective in FA complementation group N, providing a new connection between FA and breast cancer.

    Article  CAS  PubMed  Google Scholar 

  9. Reid, S. et al. Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nature Genet. 39, 162–164 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Rahman, N. et al. PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nature Genet. 39, 165–167 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Meetei, A. R. et al. A human ortholog of archaeal DNA repair protein HEF is defective in Fanconi anemia complementation group M. Nature Genet. 37, 958–963 (2005). This study showed that FANCM is an orthologue of archaeal DNA-repair protein Hef with DNA-processing domains and activity, thus providing a direct connection between FA and DNA repair.

    Article  CAS  PubMed  Google Scholar 

  12. Mosedale, G. et al. The vertebrate Hef ortholog is a component of the Fanconi anemia tumor-suppressor pathway. Nature Struct. Mol. Biol. 12, 763–771 (2005).

    Article  CAS  Google Scholar 

  13. Pichierri, P. & Rosselli, F. The DNA crosslink-induced S-phase checkpoint depends on ATR–CHK1 and ATR–NBS1–FANCD2 pathways. EMBO J. 23, 1178–1187 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Andreassen, P. R., D'Andrea, A. D. & Taniguchi, T. ATR couples FANCD2 monoubiquitination to the DNA-damage response. Genes Dev. 18, 1958–1963 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yamamoto, K. et al. Fanconi anemia FANCG protein in mitigating radiation- and enzyme-induced DNA double-strand breaks by homologous recombination in vertebrate cells. Mol. Cell. Biol. 23, 5421–5430 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Niedzwiedz, W. et al. The Fanconi anaemia gene FANCC promotes homologous recombination and error-prone DNA repair. Mol. Cell 15, 607–620 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Nakanishi, K. et al. Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair. Proc. Natl Acad. Sci. USA 102, 1110–1115 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fanconi, G. Familiaere infantile perniziosaartige Anaemie (pernizioeses Blutbild and konstitution). Jahrbuch Kinderheild 117, 257–280 (1927) (in German).

    Google Scholar 

  19. Joenje, H. & Patel, K. J. The emerging genetic and molecular basis of fanconi anaemia. Nature Rev. Genet. 2, 446–459 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Levitus, M., Joenje, H. & de Winter, J. P. The Fanconi anemia pathway of genomic maintenance. Cell Oncol. 28, 3–29 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Akkari, Y. M. et al. The 4N cell cycle delay in Fanconi anemia reflects growth arrest in late S phase. Mol. Genet. Metab. 74, 403–412. (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Dronkert, M. L. & Kanaar, R. Repair of DNA interstrand cross-links. Mutat. Res. 486, 217–247 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Li, L., Peterson, C. A., Lu, X., Wei, P. & Legerski, R. J. Interstrand cross-links induce DNA synthesis in damaged and undamaged plasmids in mammalian cell extracts. Mol. Cell. Biol. 19, 5619–5630 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hirano, S. et al. Functional relationships of FANCC to homologous recombination, translesion synthesis, and BLM. EMBO J. 24, 418–427 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Meetei, A. R. et al. A multiprotein nuclear complex connects Fanconi anemia and bloom syndrome. Mol. Cell. Biol. 23, 3417–3426 (2003). This study provided the first evidence for a complex containing both FA and BLM proteins, leading to the subsequent discovery of three new FA genes ( FANCL, FANCB and FANCM ) and two novel proteins (FAAP100 and BLAP75) as essential for the FA pathway and BLM functions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ciccia, A. et al. Identification of FAAP24, a Fanconi anemia core complex protein that interacts with FANCM. Mol. Cell 25, 331–443 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Ling, C. et al. FAAP100 is essential for activation of the Fanconi anemia-associated DNA damage response pathway. EMBO J. 26, 2104–2114 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yin, J. et al. BLAP75, an essential component of Bloom's syndrome protein complexes that maintain genome integrity. EMBO J. 24, 1465–1476 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kennedy, R. D. & D'Andrea, A. D. The Fanconi anemia/BRCA pathway: new faces in the crowd. Genes Dev. 19, 2925–2940 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Taniguchi, T. et al. Disruption of the Fanconi anemia–BRCA pathway in cisplatin-sensitive ovarian tumors. Nature Med. 9, 568–574 (2003). This study revealed that the FA–BRCA pathway can be disrupted by epigenetic silencing in several ovarian cancer cell lines, suggesting that this pathway is involved in sporadic cancers of non-FA individuals.

    Article  CAS  PubMed  Google Scholar 

  31. van der Heijden, M. S., Yeo, C. J., Hruban, R. H. & Kern, S. E. Fanconi anemia gene mutations in young-onset pancreatic cancer. Cancer Res. 63, 2585–2588 (2003).

    CAS  PubMed  Google Scholar 

  32. Condie, A. et al. Analysis of the Fanconi anaemia complementation group A gene in acute myeloid leukaemia. Leuk. Lymphoma 43, 1849–1853 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Tischkowitz, M. D. et al. Deletion and reduced expression of the Fanconi anemia FANCA gene in sporadic acute myeloid leukemia. Leukemia 18, 420–425 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Turner, N., Tutt, A. & Ashworth, A. Hallmarks of 'BRCAness' in sporadic cancers. Nature Rev. Cancer 4, 814–819 (2004).

    Article  CAS  Google Scholar 

  35. Chirnomas, D. et al. Chemosensitization to cisplatin by inhibitors of the Fanconi anemia/BRCA pathway. Mol. Cancer Ther. 5, 952–961 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Strathdee, C. A., Gavish, H., Shannon, W. R. & Buchwald, M. Cloning of cDNAs for Fanconi's anaemia by functional complementation. Nature 356, 763–767 (1992). This study used a new functional complementation assay to clone the first FA gene, FANCC.

    Article  CAS  PubMed  Google Scholar 

  37. Strathdee, C. A., Duncan, A. M. & Buchwald, M. Evidence for at least four Fanconi anaemia genes including FACC on chromosome 9. Nature Genet. 1, 196–198 (1992).

    Article  CAS  PubMed  Google Scholar 

  38. Lo Ten Foe, J. R. et al. Expression cloning of a cDNA for the major Fanconi anaemia gene, FAA. Nature Genet. 14, 320–323 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Apostolou, S. et al. Positional cloning of the Fanconi anaemia group A gene. The Fanconi anaemia/breast cancer consortium. Nature Genet. 14, 324–328 (1996).

    Article  CAS  Google Scholar 

  40. de Winter, J. P. et al. The Fanconi anaemia group G gene FANCG is identical with XRCC9. Nature Genet. 20, 281–283 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. de Winter, J. P. et al. The Fanconi anaemia gene FANCF encodes a novel protein with homology to ROM. Nature Genet. 24, 15–16 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. de Winter, J. P. et al. Isolation of a cDNA representing the Fanconi anemia complementation group E gene. Am. J. Hum. Genet. 67, 1306–1308 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kupfer, G. M., Naf, D., Suliman, A., Pulsipher, M. & D'Andrea, A. D. The Fanconi anaemia proteins, FAA and FAC, interact to form a nuclear complex. Nature Genet. 17, 487–490 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. de Winter, J. P. et al. The Fanconi anemia protein FANCF forms a nuclear complex with FANCA, FANCC and FANCG. Hum. Mol. Genet. 9, 2665–2674 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Medhurst, A. L., Huber, P. A., Waisfisz, Q., de Winter, J. P. & Mathew, C. G. Direct interactions of the five known Fanconi anaemia proteins suggest a common functional pathway. Hum. Mol. Genet. 10, 423–429 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Timmers, C. et al. Positional cloning of a novel Fanconi anemia gene, FANCD2. Mol. Cell 7, 241–248 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Taniguchi, T. et al. S-phase-specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51. Blood 100, 2414–2420 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Smogorzewska, A. et al. Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair. Cell 129, 289–301 (2007). One of the three papers that identified FANCI as a paralogue of FANCD2. This work also showed that FANCI is a ubiquitylation substrate for the FA core complex and works together with FANCD2 as the ID complex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dorsman, J. C. et al. Identification of the Fanconi anemia complementation group I gene, FANCI. Cell Oncol. 29, 211–218 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sims, A. E. et al. FANCI is a second monoubiquitinated member of the Fanconi anemia pathway. Nature Struct. Mol. Biol. 14, 564–567 (2007).

    Article  CAS  Google Scholar 

  51. Meetei, A. R. et al. A novel ubiquitin ligase is deficient in Fanconi anemia. Nature Genet. 35, 165–170 (2003). This study identified FANCL as an E3 ubiquitin ligase that is essential for FANCD2 monoubiquitylation.

    Article  CAS  PubMed  Google Scholar 

  52. Garcia-Higuera, I., Kuang, Y., Naf, D., Wasik, J. & D'Andrea, A. D. Fanconi anemia proteins FANCA, FANCC, and FANCG/XRCC9 interact in a functional nuclear complex. Mol. Cell. Biol. 19, 4866–4873 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Meetei, A. R. et al. X-linked inheritance of Fanconi anemia complementation group B. Nature Genet. 36, 1219–1224 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Xia, B. et al. Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. Mol. Cell 22, 719–729 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Gurtan, A. M., Stuckert, P. & D'Andrea, A. D. The WD40 repeats of FANCL are required for Fanconi anemia core complex assembly. J. Biol. Chem. 281, 10896–10905 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Pace, P. et al. FANCE: the link between Fanconi anaemia complex assembly and activity. EMBO J. 21, 3414–3423 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Komori, K., Fujikane, R., Shinagawa, H. & Ishino, Y. Novel endonuclease in Archaea cleaving DNA with various branched structure. Genes Genet. Syst. 77, 227–241 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Komori, K. et al. Cooperation of the N-terminal Helicase and C-terminal endonuclease activities of Archaeal Hef protein in processing stalled replication forks. J. Biol. Chem. 279, 53175–53185 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Prakash, R. et al. Saccharomyces cerevisiae MPH1 gene, required for homologous recombination-mediated mutation avoidance, encodes a 3′ to 5′ DNA helicase. J. Biol. Chem. 280, 7854–7860 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Sobeck, A., Stone, S. & Hoatlin, M. E. DNA Structure-induced recruitment and activation of the Fanconi anemia pathway protein, FANCD2. Mol. Cell. Biol. 27, 4283–4292 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yamashita, T. et al. The Fanconi anemia pathway requires FAA phosphorylation and FAA/FAC nuclear accumulation. Proc. Natl Acad. Sci. USA 95, 13085–13090 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Qiao, F. et al. Phosphorylation of Fanconi anemia (FA) complementation group G protein, FANCG, at serine 7 is important for function of the FA pathway. J. Biol. Chem. 279, 46035–46045 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Wang, X. et al. Chk1-mediated phosphorylation of FANCE is required for the Fanconi anemia/BRCA pathway. Mol. Cell. Biol. 27, 3098–3108 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Matsuoka, S. et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316, 1160–1166 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Nijman, S. M. et al. The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway. Mol. Cell 17, 331–339 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Taniguchi, T. et al. Convergence of the Fanconi anemia and ataxia telangiectasia signaling pathways. Cell 109, 459–472 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Park, W. H. et al. Direct DNA binding activity of the Fanconi anemia D2 protein. J. Biol. Chem. 280, 23593–23598 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Meetei, A. R., Yan, Z. & Wang, W. FANCL replaces BRCA1 as the likely ubiquitin ligase responsible for FANCD2 monoubiquitination. Cell Cycle 3, 179–181 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Matsushita, N. et al. A FANCD2–monoubiquitin fusion reveals hidden functions of Fanconi anemia core complex in DNA repair. Mol. Cell 19, 841–847 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Bogliolo, M. et al. Histone H2AX and Fanconi anemia FANCD2 function in the same pathway to maintain chromosome stability. EMBO J. 26, 1340–1351 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nojima, K. et al. Multiple repair pathways mediate tolerance to chemotherapeutic cross-linking agents in vertebrate cells. Cancer Res. 65, 11704–11711 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. McHugh, P. J. & Sarkar, S. DNA interstrand cross-link repair in the cell cycle: a critical role for polymerase η in G1 phase. Cell Cycle 5, 1044–1047 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Shen, X. et al. REV3 and REV1 play major roles in recombination-independent repair of DNA interstrand cross-links mediated by monoubiquitinated proliferating cell nuclear antigen (PCNA). J. Biol. Chem. 281, 13869–13872 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Kannouche, P. L., Wing, J. & Lehmann, A. R. Interaction of human DNA polymerase η with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol. Cell 14, 491–500 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Kalb, R. et al. Hypomorphic mutations in the gene encoding a key Fanconi anemia protein, FANCD2, sustain a significant group of FA-D2 patients with severe phenotype. Am. J. Hum. Genet. 80, 895–910 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Houghtaling, S. et al. Epithelial cancer in Fanconi anemia complementation group D2 (Fancd2) knockout mice. Genes Dev. 17, 2021–2035 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Godthelp, B. C. et al. Inducibility of nuclear Rad51 foci after DNA damage distinguishes all Fanconi anemia complementation groups from D1/BRCA2. Mutat. Res. 594, 39–48 (2005).

    Article  PubMed  CAS  Google Scholar 

  78. Greenberg, R. A., Sobhian, B., Pathania, S., Cantor, S. B., Nakatani, Y. & Livingston, D. M. Multifactorial contributions to an acute DNA damage response by BRCA1/BARD1-containing complexes. Genes Dev. 20, 34–46 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kim, H., Chen, J. & Yu, X. Ubiquitin-binding protein RAP80 mediates BRCA1-dependent DNA damage response. Science 316, 1202–1205 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Sobhian, B. et al. RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites. Science 316, 1198–1202 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang, B. et al. Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response. Science 316, 1194–1198 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Peng, M. et al. The FANCJ/MutLα interaction is required for correction of the cross-link response in FA-J cells. EMBO J. 26, 3238–3249 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sharan, S. K. et al. Embryonic lethality and radiation hypersensitivity mediated by RAD51 in mice lacking BRCA2. Nature 386, 804–810 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Yang, H. et al. BRCA2 function in DNA binding and recombination from a BRCA2–DSS1–ssDNA structure. Science 297, 1837–1848. (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Pellegrini, L. et al. Insights into DNA recombination from the structure of a RAD51–BRCA2 complex. Nature 420, 287–293 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Moynahan, M. E., Pierce, A. J. & Jasin, M. BRCA2 is required for homology-directed repair of chromosomal breaks. Mol. Cell 7, 263–272 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Yuan, S. S. et al. BRCA2 is required for ionizing radiation-induced assembly of RAD51 complex in vivo. Cancer Res. 59, 3547–3551 (1999).

    CAS  PubMed  Google Scholar 

  88. Bridge, W. L., Vandenberg, C. J., Franklin, R. J. & Hiom, K. The BRIP1 helicase functions independently of BRCA1 in the Fanconi anemia pathway for DNA crosslink repair. Nature Genet. 37, 953–957 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Cantor, S. et al. The BRCA1-associated protein BACH1 is a DNA helicase targeted by clinically relevant inactivating mutations. Proc. Natl Acad. Sci. USA 101, 2357–2362 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Seki, M., Marini, F. & Wood, R. D. POLQ (pol θ), a DNA polymerase and DNA-dependent ATPase in human cells. Nucleic Acids Res. 31, 6117–6126 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Harris, P. V. et al. Molecular cloning of Drosophila mus308, a gene involved in DNA cross-link repair with homology to prokaryotic DNA polymerase I genes. Mol. Cell. Biol. 16, 5764–5771 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Shima, N., Munroe, R. J. & Schimenti, J. C. The mouse genomic instability mutation chaos1 is an allele of POLQ that exhibits genetic interaction with ATM. Mol. Cell. Biol. 24, 10381–10389 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Guy, C. P. & Bolt, E. L. Archaeal Hel308 helicase targets replication forks in vivo and in vitro and unwinds lagging strands. Nucleic Acids Res. 33, 3678–3690 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sobeck, A. et al. Fanconi anemia proteins are required to prevent accumulation of replication-associated DNA double-strand breaks. Mol. Cell. Biol. 26, 425–437 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nakanishi, K. et al. Interaction of FANCD2 and NBS1 in the DNA damage response. Nature Cell Biol. 4, 913–920 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Stiff, T. et al. NBS1 is required for ATR-dependent phosphorylation events. EMBO J. 24, 199–208 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Collis, S. J. et al. HCLK2 is essential for the mammalian S-phase checkpoint and impacts on CHK1 stability. Nature Cell Biol. 9, 391–401 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Ho, G. P., Margossian, S., Taniguchi, T. & D'Andrea, A. D. Phosphorylation of FANCD2 on two novel sites is required for mitomycin C resistance. Mol. Cell. Biol. 26, 7005–7015 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cobb, J. A., Bjergbaek, L., Shimada, K., Frei, C. & Gasser, S. M. DNA polymerase stabilization at stalled replication forks requires Mec1 and the RecQ helicase Sgs1. EMBO J. 22, 4325–4336 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bjergbaek, L., Cobb, J. A., Tsai-Pflugfelder, M. & Gasser, S. M. Mechanistically distinct roles for Sgs1p in checkpoint activation and replication fork maintenance. EMBO J. 24, 405–417 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Thompson, L. H., Hinz, J. M., Yamada, N. A. & Jones, N. J. How Fanconi anemia proteins promote the four Rs: replication, recombination, repair, and recovery. Environ. Mol. Mutagen. 45, 128–142 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Machida, Y. J. et al. UBE2T is the E2 in the Fanconi anemia pathway and undergoes negative autoregulation. Mol. Cell 23, 589–596 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Huang, T. T. et al. Regulation of monoubiquitinated PCNA by DUB autocleavage. Nature Cell Biol. 8, 339–347 (2006).

    CAS  PubMed  Google Scholar 

  104. Niedernhofer, L. J., Lalai, A. S. & Hoeijmakers, J. H. Fanconi anemia (cross)linked to DNA repair. Cell 123, 1191–1198 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Kuraoka, I. et al. Repair of an interstrand DNA cross-link initiated by ERCC1–XPF repair/recombination nuclease. J. Biol. Chem. 275, 26632–26636 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Hanada, K. et al. The structure-specific endonuclease MUS81–EME1 promotes conversion of interstrand DNA crosslinks into double-strands breaks. EMBO J. 25, 4921–4932 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I regret that all of the relevant work and references could not be included owing to space limitations. The highlighted references are for the reader's convenience only, and are by no means the most important. I thank H. Joenje, J. de Winter, L. Li, A. Ruhikanta Meetei, M. Hoatlin, D. Schlessinger and the anonymous reviewers for critical reading of the manuscript and helpful suggestions. The work of my group has been supported in part by the intramural programme of the US National Institutes of Health, National Institute on Aging and the Fanconi Anaemia Research Fund.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

OMIM

Bloom syndrome

breast cancer

Fanconi anaemia

FURTHER INFORMATION

Fanconi Anemia Research Fund

Weidong Wang's homepage

Glossary

Nucleotide excision repair

A pathway that repairs damaged nucleotides by excising the damaged DNA strand and using the intact complementary strand as the template to repair the damaged strand.

Homologous recombination repair

An error-free pathway that uses homologous sequences in the undamaged chromosome to repair broken DNA ends. The exchange (recombination) between the template and the broken DNA allows restoration of two intact DNA molecules.

Translesion synthesis

An error-prone pathway used by the DNA replication machinery to bypass the damaged DNA without repairing the lesion. The process involves participation of the translesion polymerases, which have low fidelity but can pass through the damaged site.

DNA interstrand crosslinks

A type of DNA damage in which both strands of DNA are covalently linked by a chemical mutagen. This type of linkage can prevent the separation of the two strands, which is a required step during replication and transcription.

Complementation groups

The subclassification of FA patients on the basis of somatic cell hybrid analysis or mutation analysis. Each group of patients has mutations in the same gene.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W. Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins. Nat Rev Genet 8, 735–748 (2007). https://doi.org/10.1038/nrg2159

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2159

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing