Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The nuclear envelope and transcriptional control

Key Points

  • Chromatin mobility in eukaryotic nuclei allows rapid localization of genes in response to physiological stimuli.

  • Heritably repressed chromatin is found to be stably associated with non-pore elements of the nuclear envelope in organisms ranging from yeast to humans.

  • A subset of stress-induced genes in yeast have been shown to associate with nuclear pores during and after induction.

  • Pore-association mechanisms vary among genes, but involve both promoter elements and mRNA-surveillance and -export factors.

  • Nuclear-pore association can entail a two- to threefold increase in expression efficiency for some genes, and a more rapid reinduction after shut-off for others.

  • In male flies, gene expression on the X chromosome is enhanced twofold by the male-specific lethal (MSL) complex. This complex is associated with MTOR (Megator), a pore-associated factor.

  • MTOR and the yeast homologue MLP1 (myosin-like protein 1) are involved in mRNA elongation, which might therefore be regulated by nuclear pores.


Cells have evolved sophisticated multi-protein complexes that can regulate gene activity at various steps of the transcription process. Recent advances highlight the role of nuclear positioning in the control of gene expression and have put nuclear envelope components at centre stage. On the inner face of the nuclear envelope, active genes localize to nuclear-pore structures whereas silent chromatin localizes to non-pore sites. Nuclear-pore components seem to not only recruit the RNA-processing and RNA-export machinery, but contribute a level of regulation that might enhance gene expression in a heritable manner.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Heterochromatin in mammalian and yeast cells is distinct from nuclear pores.
Figure 2: The nuclear periphery in metazoans and yeast.
Figure 3: Telomere position through Sir4–Esc1 is independent of nuclear-pore positioning.
Figure 4: A model for the role of the NPC in coupling transcription and mRNA processing by gene looping in yeast.
Figure 5: The dosage-compensated male X chromosome in Drosophila melanogaster.


  1. 1

    Taddei, A., Hediger, F., Neumann, F. R. & Gasser, S. M. The function of nuclear architecture: a genetic approach. Annu. Rev. Genet, 38, 305–345 (2004).

    CAS  Article  Google Scholar 

  2. 2

    Felsenfeld, G. & Groudine, M. Controlling the double helix. Nature 421, 448–453 (2003).

    Article  CAS  Google Scholar 

  3. 3

    Grewal, S. I. & Elgin, S. C. Heterochromatin: new possibilities for the inheritance of structure. Curr. Opin. Genet. Dev. 12, 178–187 (2002).

    CAS  Article  Google Scholar 

  4. 4

    Gilbert, N., Gilchrist, S. & Bickmore, W. A. Chromatin organization in the mammalian nucleus. Int. Rev. Cytol. 242, 283–336 (2005).

    CAS  Article  Google Scholar 

  5. 5

    Fisher, A. G. & Merkenschlager, M. Gene silencing, cell fate and nuclear organisation. Curr. Opin. Genet. Dev. 12, 193–197 (2002).

    CAS  Article  Google Scholar 

  6. 6

    Spector, D. L. The dynamics of chromosome organization and gene regulation. Annu. Rev. Biochem. 72, 573–608 (2003).

    CAS  Article  Google Scholar 

  7. 7

    Kosak, S. T. & Groudine, M. Form follows function: the genomic organization of cellular differentiation. Genes Dev. 18, 1371–1384 (2004).

    CAS  Article  Google Scholar 

  8. 8

    Burgess-Beusse, B. et al. The insulation of genes from external enhancers and silencing chromatin. Proc. Natl Acad. Sci. USA 99, S16433–S16437 (2002).

    Article  CAS  Google Scholar 

  9. 9

    Ishii, K., Arib, G., Lin, C., Van Houwe, G. & Laemmli, U. K. Chromatin boundaries in budding yeast: the nuclear pore connection. Cell 109, 551–562 (2002).

    CAS  Article  Google Scholar 

  10. 10

    Noma, K., Cam, H. P., Maraia, R. J. & Grewal, S. I. A role for TFIIIC transcription factor complex in genome organization. Cell 125, 859–872 (2006).

    CAS  Article  Google Scholar 

  11. 11

    Gerasimova, T. I., Byrd, K. & Corces, V. G. A chromatin insulator determines the nuclear localization of DNA. Mol. Cell 6, 1025–1035 (2000).

    CAS  Article  Google Scholar 

  12. 12

    Bantignies, F., Grimaud, C., Lavrov, S., Gabut, M. & Cavalli, G. Inheritance of Polycomb-dependent chromosomal interactions in Drosophila. Genes Dev. 17, 2406–2420 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13

    Xu, Q., Li, M., Adams, J. & Cai, H. N. Nuclear location of a chromatin insulator in Drosophila melanogaster. J. Cell Sci. 117, 1025–1032 (2004).

    CAS  Google Scholar 

  14. 14

    Yusufzai, T. M., Tagami, H., Nakatani, Y. & Felsenfeld, G. CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species. Mol. Cell 13, 291–298 (2004).

    CAS  Article  Google Scholar 

  15. 15

    Donze, D. & Kamakaka, R. T. RNA polymerase III and RNA pol II promoter complexes are heterochromatin barriers in Saccharomyces cerevisiae. EMBO J. 20, 520–531 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16

    Schmid, M. et al. Nup–PI: the nucleopore–promoter interaction of genes in yeast. Mol. Cell 21, 379–391 (2006). This paper uses a technique involving the fusion of a pore protein to MN to show that promoters associate with nuclear pores in yeast.

    CAS  Article  Google Scholar 

  17. 17

    Casolari, J. M. et al. Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell 117, 427–439 (2004). The initial cross-linking study, showing that a range of pore proteins can be crosslinked by formaldehyde to many genes, among which are those induced by galactose.

    CAS  Article  Google Scholar 

  18. 18

    Taddei, A., Hediger, F., Neumann, F. R., Bauer, C. & Gasser, S. M. Separation of silencing from perinuclear anchoring functions in yeast Ku80, Sir4 and Esc1 proteins. EMBO J. 23, 1301–1312 (2004). Sir4, yKu and Esc1 are able to relocate DNA to the nuclear envelope independently of their silencing function. The authors descibe interdependencies between proteins. Esc1 is found to be co-localized with silent chromatin but distinct from nuclear pores.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19

    Gartenberg, M. R. The Sir proteins of Saccharomyces cerevisiae: mediators of transcriptional silencing and much more. Curr. Opin. Microbiol. 3, 132–137 (2000).

    CAS  Article  Google Scholar 

  20. 20

    Palladino, F. et al. SIR3 and SIR4 proteins are required for the positioning and integrity of yeast telomeres. Cell 75, 543–555 (1993).

    CAS  Article  PubMed  Google Scholar 

  21. 21

    Gotta, M. et al. The clustering of telomeres and colocalization with Rap1, Sir3, and Sir4 proteins in wild-type Saccharomyces cerevisiae. J. Cell Biol. 134, 1349–1363 (1996).

    CAS  Article  PubMed  Google Scholar 

  22. 22

    Andrulis, E. D. et al. Esc1, a nuclear periphery protein required for Sir4-based plasmid anchoring and partitioning. Mol. Cell. Biol. 22, 8292–8301 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23

    Gartenberg, M. R., Neumann, F. R., Laroche, T., Blaszczyk, M. & Gasser, S. M. Sir-mediated repression can occur independently of chromosomal and subnuclear contexts. Cell 119, 955–967 (2004). Active and inactive chromatin moves freely through the nucleoplasm once it is released from the chromosome. Sir-mediated silencing is sufficient to anchor DNA at the nuclear envelope, and is not necessary if Sir proteins are dispersed.

    CAS  Article  Google Scholar 

  24. 24

    Hediger, F., Neumann, F. R., Van Houwe, G., Dubrana, K. & Gasser, S. M. Live imaging of telomeres: yKu and Sir proteins define redundant telomere-anchoring pathways in yeast. Curr. Biol. 12, 2076–2089 (2002).

    CAS  Article  Google Scholar 

  25. 25

    Hediger, F., Dubrana, K. & Gasser, S. M. Myosin-like proteins 1 and 2 are not required for silencing or telomere anchoring, but act in the Tel1 pathway of telomere length control. J. Struct. Biol. 140, 79–91 (2002).

    CAS  Article  Google Scholar 

  26. 26

    Zhao, X. & Blobel, G. A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc. Natl Acad. Sci. USA 102, 4777–4782 (2005).

    CAS  Article  Google Scholar 

  27. 27

    Zhao, X., Wu, C. Y. & Blobel, G. Mlp-dependent anchorage and stabilization of a desumoylating enzyme is required to prevent clonal lethality. J. Cell Biol. 167, 605–611 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28

    Hiraga, S., Robertson, E. D. & Donaldson, A. D. The Ctf18 RFC-like complex positions yeast telomeres but does not specify their replication time. EMBO J. 25, 1505–1514 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29

    Maillet, L. et al. Evidence for silencing compartments within the yeast nucleus: a role for telomere proximity and Sir protein concentration in silencer-mediated repression. Genes Dev. 10, 1796–1811 (1996). Telomere foci favour the repression of silencer-bound constructs by sequestering Sir proteins, which are shown to be limiting for repression.

    CAS  Article  Google Scholar 

  30. 30

    Andrulis, E. D., Neiman, A. M., Zappulla, D. C. & Sternglanz, R. Perinuclear localization of chromatin facilitates transcriptional silencing. Nature 394, 592–595 (1998). Anchoring of a gene to the nuclear envelope can enhance silencer function in yeast.

    CAS  Article  Google Scholar 

  31. 31

    Capell, B. C. & Collins, F. S. Human laminopathies: nuclei gone genetically awry. Nature Rev. Genet. 7, 940–952 (2006).

    CAS  Article  Google Scholar 

  32. 32

    Sullivan, T. et al. Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J. Cell Biol. 147, 913–920 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33

    Shumaker, D. K. et al. Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc. Natl Acad. Sci. USA 103, 8703–8708 (2006).

    CAS  Article  Google Scholar 

  34. 34

    Scaffidi, P. & Misteli, T. Reversal of the cellular phenotype in the premature aging disease Hutchinson–Gilford progeria syndrome. Nature Med. 11, 440–445 (2005).

    CAS  Article  Google Scholar 

  35. 35

    Goldman, R. D. et al. Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson–Gilford progeria syndrome. Proc. Natl Acad. Sci. USA 101, 8963–8968 (2004).

    CAS  Article  Google Scholar 

  36. 36

    Liu, J. et al. MAN1 and emerin have overlapping function(s) essential for chromosome segregation and cell division in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 100, 4598–4603 (2003).

    CAS  Article  Google Scholar 

  37. 37

    Pickersgill, H. et al. Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nature Genet. 38, 1005–1014 (2006). This work describes the binding profile of D. melanogaster lamins, showing that lamins preferentially bind to transcriptionally inactive genes.

    CAS  Article  Google Scholar 

  38. 38

    Paddy, M. R., Belmont, A. S., Saumweber, H., Agard, D. A. & Sedat, J. W. Interphase nuclear envelope lamins form a discontinuous network that interacts with only a fraction of the chromatin in the nuclear periphery. Cell 62, 89–106 (1990).

    CAS  Article  Google Scholar 

  39. 39

    Marshall, W. F. et al. Interphase chromosomes undergo constrained diffusional motion in living cells. Curr. Biol. 7, 930–939 (1997). The first description of the constrained random walk of LacO-tagged yeast and D. melanogaster loci. This work shows that a centromere-proximal locus is constrained in yeast.

    CAS  Article  Google Scholar 

  40. 40

    Heun, P., Laroche, T., Shimada, K., Furrer, P. & Gasser, S. M. Chromosome dynamics in the yeast interphase nucleus. Science 294, 2181–2186 (2001). Silent telomeres and active non-telomeric loci are shown to have different amounts of spatial constraint in their random-walk movement in the yeast nucleus. This work coupled Nup49–GFP with LacO-tagged loci to measure the absolute movement of genes.

    CAS  Article  Google Scholar 

  41. 41

    Bystricky, K., Heun, P., Gehlen, L., Langowski, J. & Gasser, S. M. Long-range compaction and flexibility of interphase chromatin in budding yeast analyzed by high-resolution imaging techniques. Proc. Natl Acad. Sci. USA 101, 16495–16500 (2004).

    CAS  Article  Google Scholar 

  42. 42

    Heun, P., Laroche, T., Raghuraman, M. K. & Gasser, S. M. The positioning and dynamics of origins of replication in the budding yeast nucleus. J. Cell Biol. 152, 385–400 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43

    Jin, Q., Trelles-Sticken, E., Scherthan, H. & Loidl, J. Yeast nuclei display prominent centromere clustering that is reduced in nondividing cells and in meiotic prophase. J. Cell Biol. 141, 21–29 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44

    Sage, D., Neumann, F. R., Hediger, F., Gasser, S. M. & Unser, M. Automatic tracking of individual fluorescence particles: application to the study of chromosome dynamics. IEEE Trans. Image Process. 14, 1372–1383 (2005).

    Article  Google Scholar 

  45. 45

    Rosa, A., Maddocks, J. H., Neumann, F. R., Gasser, S. M. & Stasiak, A. Measuring limits of telomere movement on nuclear envelope. Biophys. J. 90, L24–L26 (2006).

    CAS  Article  Google Scholar 

  46. 46

    Taddei, A. et al. Nuclear pore association confers optimal expression levels for an inducible yeast gene. Nature 441, 774–778 (2006). Telomeric foci and pores are distinct functional compartments. A subtelomeric gene shifts from a telomeric focus to a pore upon induction on low glucose. When this relocation is impaired, maximal induction is prevented.

    CAS  Article  Google Scholar 

  47. 47

    Cabal, G. G. et al. SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope. Nature 441, 770–773 (2006). Stimulation of galactose-inducible promoters correlates with relocalization to the nuclear periphery, which is mediated by components of the SAGA complex in yeast.

    CAS  Article  Google Scholar 

  48. 48

    Bystricky, K., Laroche, T., van Houwe, G., Blaszczyk, M. & Gasser, S. M. Chromosome looping in yeast: telomere pairing and coordinated movement reflect anchoring efficiency and territorial organization. J. Cell Biol. 168, 375–387 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49

    Marshall, W. F., Fung, J. C. & Sedat, J. W. Deconstructing the nucleus: global architecture from local interactions. Curr. Opin. Genet. Dev. 7, 259–263 (1997).

    CAS  Article  Google Scholar 

  50. 50

    Chubb, J. R., Boyle, S., Perry, P. & Bickmore, W. A. Chromatin motion is constrained by association with nuclear compartments in human cells. Curr. Biol. 12, 439–445 (2002).

    CAS  Article  Google Scholar 

  51. 51

    Janicki, S. M. et al. From silencing to gene expression: real-time analysis in single cells. Cell 116, 683–698 (2004). The first live tracking of an mRNA from a gene to the nuclear pore. The process is rapid and occurs with a random-walk character.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52

    Misteli, T. The concept of self-organization in cellular architecture. J. Cell Biol. 155, 181–185 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53

    Menon, B. B. et al. Reverse recruitment: the Nup84 nuclear pore subcomplex mediates Rap1/Gcr1/Gcr2 transcriptional activation. Proc. Natl Acad. Sci. USA 102, 5749–5754 (2005).

    CAS  Article  Google Scholar 

  54. 54

    Casolari, J. M., Brown, C. R., Drubin, D. A., Rando, O. J. & Silver, P. A. Developmentally induced changes in transcriptional program alter spatial organization across chromosomes. Genes Dev. 19, 1188–1198 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. 55

    Brickner, D. G. et al. H2A. Z-mediated Localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state. PLoS Biol. 5, e81 (2007). Active genes are retained at the nuclear periphery for several generations. The retention and reactivation requires histone variant H2A.Z. The authors propose that such a mechanism could provide a system by which cells remember the status of the actively transcribed gene through cell generations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Brickner, J. H. & Walter, P. Gene recruitment of the activated INO1 locus to the nuclear membrane. PLoS Biol. 2, e342 (2004). Ino1 expression requires contact with the nuclear envelope for promoter activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Dieppois, G., Iglesias, N. & Stutz, F. Cotranscriptional recruitment to the mRNA export receptor Mex67p contributes to nuclear pore anchoring of activated genes. Mol. Cell. Biol. 26, 7858–7870 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. 58

    Abruzzi, K. C., Belostotsky, D. A., Chekanova, J. A., Dower, K. & Rosbash, M. 3′-end formation signals modulate the association of genes with the nuclear periphery as well as mRNP dot formation. EMBO J. 25, 4253–4262 (2006). 3′ UTR sequences and mRNA influence prolonged gene positioning at nuclear pores.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. 59

    Rodriguez-Navarro, S. et al. Sus1, a functional component of the SAGA histone acetylase complex and the nuclear pore-associated mRNA export machinery. Cell 116, 75–86 (2004).

    CAS  Article  Google Scholar 

  60. 60

    Fischer, T. et al. The mRNA export machinery requires the novel Sac3p–Thp1p complex to dock at the nucleoplasmic entrance of the nuclear pores. EMBO J. 21, 5843–5852 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. 61

    Strasser, K. et al. TREX is a conserved complex coupling transcription with messenger RNA export. Nature 417, 304–308 (2002).

    Article  CAS  Google Scholar 

  62. 62

    O'Sullivan, J. M. et al. Gene loops juxtapose promoters and terminators in yeast. Nature Genet. 36, 1014–1018 (2004).

    CAS  Article  PubMed  Google Scholar 

  63. 63

    Ansari, A. & Hampsey, M. A role for the CPF 3′-end processing machinery in RNAPII-dependent gene looping. Genes Dev. 19, 2969–2978 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. 64

    Furger, A., O'Sullivan, J. M., Binnie, A., Lee, B. A. & Proudfoot, N. J. Promoter proximal splice sites enhance transcription. Genes Dev. 16, 2792–2799 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. 65

    Proudfoot, N. New perspectives on connecting messenger RNA 3′ end formation to transcription. Curr. Opin. Cell Biol. 16, 272–278 (2004).

    CAS  Article  PubMed  Google Scholar 

  66. 66

    Mendjan, S. et al. Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila. Mol. Cell 21, 811–823 (2006). The first report of the novel biochemical and functional link of MTOR and NUP153 to dosage compensation of the male X chromosome in D. melanogaster .

    CAS  Google Scholar 

  67. 67

    Jin, Y., Wang, Y., Johansen, J. & Johansen, K. M. JIL-1, a chromosomal kinase implicated in regulation of chromatin structure, associated with the male specific lethal (MSL) dosage compensation complex. J. Cell Biol. 149, 1005–1010 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. 68

    Deuring, R. et al. The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo. Mol. Cell 5, 355–365 (2000).

    CAS  Article  Google Scholar 

  69. 69

    Corona, D. F., Clapier, C. R., Becker, P. B. & Tamkun, J. W. Modulation of ISWI function by site-specific histone acetylation. EMBO Rep. 3, 242–247 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. 70

    Furuhashi, H., Nakajima, M. & Hirose, S. DNA supercoiling factor contributes to dosage compensation in Drosophila. Development 133, 4475–4483 (2006).

    CAS  Article  Google Scholar 

  71. 71

    Lucchesi, J. C., Kelly, W. G. & Panning, B. Chromatin remodeling in dosage compensation. Annu Rev Genet 39, 615–651 (2005).

    CAS  Article  Google Scholar 

  72. 72

    Mendjan, S. & Akhtar, A. The right dose for every sex. Chromosoma 116, 95–106 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  73. 73

    Straub, T. & Becker, P. B. Dosage compensation: the beginning and end of generalization. Nature Rev. Genet. 8, 47–57 (2007).

    CAS  Article  Google Scholar 

  74. 74

    Alekseyenko, A. A., Larschan, E., Lai, W. R., Park, P. J. & Kuroda, M. I. High-resolution ChIP-chip analysis reveals that the Drosophila MSL complex selectively identifies active genes on the male X chromosome. Genes Dev. 20, 848–857 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. 75

    Gilfillan, G. D. et al. Chromosome-wide gene-specific targeting of the Drosophila dosage compensation complex. Genes Dev. 20, 858–870 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. 76

    Legube, G., McWeeney, S. K., Lercher, M. J. & Akhtar, A. X-chromosome-wide profiling of MSL-1 distribution and dosage compensation in Drosophila. Genes Dev. 20, 871–883 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. 77

    Smith, E. R., Allis, C. D. & Lucchesi, J. C. Linking global histone acetylation to the transcription enhancement of X-chromosomal genes in Drosophila males. J. Biol. Chem. 276, 31483–31486 (2001). References 74–77 use a ChIP–chip strategy to identify the binding profile of MSL proteins, and show that the MSL complex is enriched on X-linked genes with preferential binding towards the 3′ end of genes.

    CAS  Article  Google Scholar 

  78. 78

    Hamada, F. N., Park, P. J., Gordadze, P. R. & Kuroda, M. I. Global regulation of X chromosomal genes by the MSL complex in Drosophila melanogaster. Genes Dev. 19, 2289–2294 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. 79

    Straub, T., Gilfillan, G. D., Maier, V. K. & Becker, P. B. The Drosophila MSL complex activates the transcription of target genes. Genes Dev. 19, 2284–2288 (2005). References 78 and 79 collectively show that transcription of MSL-bound X-linked genes is affected by depletion of MSL2 in D. melanogaster cells.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  80. 80

    Galy, V. et al. Nuclear retention of unspliced mRNAs in yeast is mediated by perinuclear Mlp1. Cell 116, 63–73 (2004).

    CAS  Article  Google Scholar 

  81. 81

    Sommer, P. & Nehrbass, U. Quality control of messenger ribonucleoprotein particles in the nucleus and at the pore. Curr. Opin. Cell Biol. 17, 294–301 (2005).

    CAS  Article  Google Scholar 

  82. 82

    Libri, D. et al. Interactions between mRNA export commitment, 3′-end quality control, and nuclear degradation. Mol. Cell Biol. 22, 8254–8266 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. 83

    Zenklusen, D., Vinciguerra, P., Wyss, J. C. & Stutz, F. Stable mRNP formation and export require cotranscriptional recruitment of the mRNA export factors Yra1p and Sub2p by Hpr1p. Mol. Cell. Biol. 22, 8241–8253 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  84. 84

    Andrulis, E. D. et al. The RNA processing exosome is linked to elongating RNA polymerase II in Drosophila. Nature 420, 837–841 (2002). This work describes the co-purification of the RNA pol II complex with components of the nuclear exosome, thus linking the RNA-processing machinery with the transcription machinery.

    CAS  Article  Google Scholar 

  85. 85

    Hieronymus, H., Yu, M. C. & Silver, P. A. Genome-wide mRNA surveillance is coupled to mRNA export. Genes Dev. 18, 2652–2662 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  86. 86

    Hilleren, P., McCarthy, T., Rosbash, M., Parker, R. & Jensen, T. H. Quality control of mRNA 3′-end processing is linked to the nuclear exosome. Nature 413, 538–542 (2001).

    CAS  Article  Google Scholar 

  87. 87

    Herrera, F. J. & Triezenberg, S. J. Molecular biology: what ubiquitin can do for transcription. Curr. Biol. 14, R622–R624 (2004).

    CAS  Article  Google Scholar 

  88. 88

    Vazquez, J., Belmont, A. S. & Sedat, J. W. The dynamics of homologous chromosome pairing during male Drosophila meiosis. Curr. Biol. 12, 1473–1483 (2002).

    CAS  Article  Google Scholar 

  89. 89

    Cremer, T. & Cremer, C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nature Rev. Genet. 2, 292–301 (2001).

    CAS  Article  Google Scholar 

  90. 90

    Lanctot, C., Cheutin, T., Cremer, M., Cavalli, G. & Cremer, T. Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nature Rev. Genet. 8, 104–115 (2007).

    CAS  Article  Google Scholar 

  91. 91

    Chambeyron, S. & Bickmore, W. A. Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev. 18, 1119–1130 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  92. 92

    Chambeyron, S., Da Silva, N. R., Lawson, K. A. & Bickmore, W. A. Nuclear re-organisation of the HOXB complex during mouse embryonic development. Development 132, 2215–2223 (2005).

    CAS  Article  Google Scholar 

  93. 93

    Morey, C., Da Silva, N. R., Perry, P. & Bickmore, W. A. Nuclear reorganisation and chromatin decondensation are conserved, but distinct, mechanisms linked to Hox gene activation. Development 134, 909–919 (2007).

    CAS  Article  Google Scholar 

  94. 94

    Tran, E. J. & Wente, S. R. Dynamic nuclear pore complexes: life on the edge. Cell 125, 1041–1053 (2006).

    CAS  Article  Google Scholar 

  95. 95

    Vinciguerra, P., Iglesias, N., Camblong, J., Zenklusen, D. & Stutz, F. Perinuclear Mlp proteins downregulate gene expression in response to a defect in mRNA export. EMBO J. 24, 813–823 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references


We thank members of our laboratories for support. We are very grateful to Jop Kind for Figure 5. We apologize to any colleagues whose work could not be cited owing to space limitations. This work was support by EU funding to A.A. and S.M.G. S.M.G. acknowledges support from the Novartis Research Foundation.

Author information



Corresponding authors

Correspondence to Asifa Akhtar or Susan M. Gasser.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links


Akhtar homepage

Gasser homepage


Nuclear periphery

A term that generally refers to the nuclear-membrane bilayer, its associated proteins and the embedded nuclear-pore complexes.

Dosage compensation

A phenomenon that ensures equalized gene expression of X-chromosomal genes between males and females. In Drosophila melanogaster, this results in approximately twofold higher levels of transcriptional activation in the single male X chromosome compared with the female X chromosomes.

Nuclear lamina

A meshwork of a nuclear intermediate filament protein that is found at the interface between the inner nuclear membrane and chromatin.

Fluorescence in situ hybridization

A technique whereby a fluorescently labelled DNA probe is used to detect a particular chromosomal region by fluorescence microscopy.

Chromatin immunoprecipitation

A technique that involves crosslinking methods and is used to identify pieces of DNA or chromatin that contact a protein of interest in vivo.

Nuclear-pore complexes

Large, multiprotein complexes (composed of about 30 proteins) that are embedded in the nuclear membrane and serve as gateways for traffic between the nucleus and the cytoplasm.

MSL complex

An RNA–protein complex containing at least five male-specific Lethal (MSL) proteins, MSL1, MSL2, MSL3, MOF and MLE, and two non-coding RNAs, roX1 and roX2. This complex is stably expressed in male flies and regulates dosage compensation of X-linked genes.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Akhtar, A., Gasser, S. The nuclear envelope and transcriptional control. Nat Rev Genet 8, 507–517 (2007).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing