Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The developmental genetics of homology

Abstract

Homology is an essential idea of biology, referring to the historical continuity of characters, but it is also conceptually highly elusive. The main difficulty is the apparently loose relationship between morphological characters and their genetic basis. Here I propose that it is the historical continuity of gene regulatory networks rather than the expression of individual homologous genes that underlies the homology of morphological characters. These networks, here referred to as 'character identity networks', enable the execution of a character-specific developmental programme.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Homology of morphological characters.
Figure 2: Homologous characters can have different shapes and functions.
Figure 3: Characters and character states.
Figure 4: Ubx determines character identity, not character states.
Figure 5: Gene regulatory networks for eye development.

Similar content being viewed by others

References

  1. Hall, B. K. Evolutionary Developmental Biology (Chapman & Hall, London, 1998).

    Google Scholar 

  2. Wilkins, A. S. The Evolution of Developmental Pathways (Sinauer, Sunderland, 2002).

    Google Scholar 

  3. Butler, A. B. & Saidel, W. M. Defining sameness: historical, biological, and generative homology. BioEssays 22, 846–853 (2000).

    Article  CAS  Google Scholar 

  4. VanValen, L. Homology and causes. J. Morphol. 173, 305–312 (1982).

    Article  CAS  Google Scholar 

  5. Lewontin, R. C. Adaptation. Am. Sci. 239, 156–169 (1978).

    Article  Google Scholar 

  6. Owen, R. On the Archetype and Homologies of the Vertebrate Skeleton (Voorst, London, 1848).

    Book  Google Scholar 

  7. Futuyma, D. J. Evolutionary Biology (Sinauer, Sunderland, 2005).

    Google Scholar 

  8. Brigant, I. Homology in comparative, molecular, and evolutionary developmental biology: the radiation of a concept. J. Exp. Zool. B Mol. Dev. Evol. 299, 9–17 (2003).

    Article  Google Scholar 

  9. Graur, D. & Li, W.-H. Fundamentals of Molecular Evolution (Sinauer, Sunderland, 2000).

    Google Scholar 

  10. Geeta, R. Structure trees and species trees: what they say about morphological development and evolution. Evol. Dev. 5, 609–621 (2003).

    Article  CAS  Google Scholar 

  11. Oakley, T. H. The eye as a replicating and diverging, modular developmental unit. Trends Ecol. Evol. 18, 623–627 (2003).

    Article  Google Scholar 

  12. Roth, V. L. Homology and hierarchies: problems solved and unresolved. J. Evol. Biol. 4, 167–194 (1991).

    Article  Google Scholar 

  13. Ghiselin, M. T. Homology as a relation of correspondence between parts of individuals. Theor. Biosci. 124, 91–103 (2005).

    Article  Google Scholar 

  14. Wagner, G. P. The biological role of homologues: a building block hypothesis. N. Jb. Geol. Paläont. Abh. 195, 279–288 (1995).

    Article  Google Scholar 

  15. Wagner, G. P. in The Character Concept in Evolutionary Biology (ed. Wagner, G. P.) 1–10 (Academic, San Diego, 2001).

    Book  Google Scholar 

  16. Wagner, G. P. The biological homology concept. Ann. Rev. Ecol. Syst. 20, 51–69 (1989).

    Article  Google Scholar 

  17. Hall, B. K. in Evolutionary Biology Vol. 28 (eds Hecht, M. K., MacIntyre, R. J. & Clegg, M. T.) 1–30 (Plenum, New York, 1994).

    Google Scholar 

  18. Wray, G. A. & Abouheif, E. When is homology not homology? Curr. Opin. Genet. Dev. 8, 675–680 (1998).

    Article  CAS  Google Scholar 

  19. Hall, B. K. Descent with modification: the unity underlying homology and homoplasy as seen through an analysis of development and evolution. Biol. Rev. Camb. Philos. Soc. 78, 409–433 (2003).

    Article  Google Scholar 

  20. Pankratz, M. J. & Jackle, H. in The Development of Drosophila melanogaster (eds Bate, M. & Martinez-Arias, A.) 467–516 (Cold Spring Harbor Laboratory Press, Plainview, 1993).

    Google Scholar 

  21. Patel, N. H., Ball, E. F. & Goodman, C. S. Changing role of even-skipped during the evolution of insect pattern formation. Nature 357, 339–342 (1992).

    Article  CAS  Google Scholar 

  22. Dawes, R., Dawson, I., Falciani, F., Tear, G. & Akam, M. Dax, a locust Hox gene related to fushi-tarazu but showing no pair-rule expression. Development 120, 1561–1572 (1994).

    CAS  PubMed  Google Scholar 

  23. Peel, A. D., Chipman, A. D. & Akam, M. Arthropod segmentation: beyond the Drosophila paradigm. Nature Rev. Genet. 6, 905–916 (2005).

    Article  CAS  Google Scholar 

  24. Arendt, D. Evolution of eyes and photoreceptor cell types. Int. J. Dev. Biol. 47, 563–571 (2003).

    Google Scholar 

  25. Arendt, D. Genes and homology in nervous system evolution: comparing gene functions, expression patterns, and cell type molecular fingerprints. Theor. Biosci. 124, 185–197 (2005).

    Article  CAS  Google Scholar 

  26. Allan, D. W., Park, D., Pierre, S. E. S., Taghert, P. H. & Thor, S. Regulators acting in combinatorial codes also act independently in single differentiating neurons. Neuron 45, 689–700 (2005).

    Article  CAS  Google Scholar 

  27. Shirasaki, R. & Pfaff, S. L. Transcriptional codes and the control of neuronal identity. Ann. Rev. Neurosci. 25, 251–281 (2002).

    Article  CAS  Google Scholar 

  28. Davidson, E. H. The Regulatory Genome: Gene Regulatory Networks in Development and Evolution 144–159, 28 (Academic, Amsterdam, 2006).

    Google Scholar 

  29. Ghiselin, M. 'Definition, ' 'character' and other equivocal terms. Syst. Zool. 33, 104–110 (1984).

    Article  Google Scholar 

  30. Deutsch, J. Hox and wings. BioEssays 27, 673–675 (2005).

    Article  Google Scholar 

  31. Warren, R. W., Nagy, L., Senegue, J., Gates, J. & Carroll, S. Evolution of homeotic gene regulation and function in flies and butterflies. Nature 372, 458–461 (1994).

    Article  CAS  Google Scholar 

  32. Wagner, G. P., Chiu, C.-H. & Laubichler, M. Developmental evolution as a mechanistic science: the inference from developmental mechanisms to evolutionary processes. Am. Zool. 40, 819–831 (2000).

    Google Scholar 

  33. Tomoyasu, Y., Wheeler, S. R. & Denell, R. E. Ultrabithorax is required for membranous wing identity in the beetle Tribolium castaneum. Nature 375, 58–61 (2005).

    Google Scholar 

  34. Gehring, W. J. & Ikeo, K. Pax6 mastering eye morphogenesis and eye evolution. Trends Genet. 15, 371–377 (1999).

    Article  CAS  Google Scholar 

  35. Halder, G., Callerts, P. & Gehring, W. J. Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267, 1788–1792 (1995).

    Article  CAS  Google Scholar 

  36. Holland, P. W. H. in Homology Vol. 222 (eds Bock, G. R. & Cardew, G.) 226–236 (Wiley & Sons, Chichester, 1999).

    Google Scholar 

  37. Donner, A. L. & Maas, R. L. Conservation and non-conservation of genetic pathways in eye specification. Int. J. Dev. Biol. 48, 743–753 (2004).

    Article  Google Scholar 

  38. Kozmik, Z. Pax genes in eye development and evolution. Curr. Opin. Genet. Dev. 15, 430–438 (2005).

    Article  CAS  Google Scholar 

  39. Zuber, M. E., Gestri, G., Viczian, A. S., Barsacchi, G. & Harris, W. A. Specification of the vertebrate eye by a network of eye field transcription factors. Development 130, 5155–5167 (2003).

    Article  CAS  Google Scholar 

  40. Chow, R. L., Altmann, C. R., Lang, R. A. & Hemmati-Brivanlou, A. Pax6 induced ectopic eyes in a vertebrate. Development 126, 4213–4222 (1999).

    CAS  PubMed  Google Scholar 

  41. Kardon, G., Heanue, T. A. & Tabin, C. J. in Modularity in Development and Evolution (eds Schlosser, G. & Wagner, G. P.) 59–80 (Univ. Chicago Press, Chicago and London, 2004).

    Google Scholar 

  42. Schlosser, G. Evolutionary origins of vertebrate placods: insights from developmental studies and from comparisons with other deuterostomes. J. Exp. Zool. B Mol. Dev. Evol. 304, 347–399 (2005).

    Article  Google Scholar 

  43. Bailey, T. J. et al. Regulation of vertebrate eye development by Rx genes. Int. J. Dev. Biol. 48, 761–770 (2004).

    Article  CAS  Google Scholar 

  44. Bebenek, I. G., Gates, R. D., Morris, J., Hartenstein, V. & Jacobs, D. K. sine oculis in basal Metazoa. Dev. Genes Evol. 214, 342–351 (2004).

    Article  CAS  Google Scholar 

  45. Stierwald, M., Yanze, N., Bamert, R. P., Kammermeier, L. & Schmid, V. The sine oculis/six class family of homeobox genes in jellyfish with and without eyes: development and regeneration. Dev. Biol. 274, 70–81 (2004).

    Article  CAS  Google Scholar 

  46. Arendt, D., Tessmar-Raible, K., Snyman, K., Dorresteijn, A. W. & Wittbrodt, J. Cilliary photoreceptors with a vertebrate-type opsin in an invertebrate brain. Science 306, 869–871 (2004).

    Article  CAS  Google Scholar 

  47. Nilsson, D.-E. Eye evolution: a question of genetic promiscuity. Curr. Opin. Neurobiol. 14, 407–414 (2004).

    Article  CAS  Google Scholar 

  48. Ogura, A., Ikeo, K. & Gojobori, T. Comparative analysis of gene expression for convergent evolution of camera eye between octopus and human. Genome Res. 14, 1555–1561 (2004).

    Article  CAS  Google Scholar 

  49. Chan, S. K., Jaffe, L., Capovilla, M., Botas, J. & Mann, R. S. The DNA binding specificity of Ultrabithorax is modulated by cooperative interactions with extradenticle, another homeoprotein. Cell 78, 603–615 (1994).

    Article  CAS  Google Scholar 

  50. McGinnis, N., Kuziora, M. A. & McGinnis, W. Human Hox-4.2 and Drosophila deformed encode similar regulatory specificities in Drosophila embryos and larvae. Cell 63, 969–976 (1990).

    Article  CAS  Google Scholar 

  51. Hsia, C. C. & McGinnis, W. Evolution of transcription factor function. Curr. Opin. Genet. Dev. 13, 199–206 (2003).

    Article  CAS  Google Scholar 

  52. Grenier, J. K. & Carroll, S. B. Functional evolution of the Ultrabithorax protein. Proc. Natl Acad. Sci. USA 97, 704–709 (2000).

    Article  CAS  Google Scholar 

  53. Galant, R. & Carroll, S. B. Evolution of a transcriptional repression domain in an insect Hox protein. Nature 415, 910–913 (2002).

    Article  CAS  Google Scholar 

  54. Hittinger, C. T., Stern, D. L. & Carroll, S. B. Pleiotropic functions of a conserved insect-specific Hox peptide motif. Development 132, 5261–5270 (2005).

    Article  CAS  Google Scholar 

  55. Ronshaugen, M., McGinnis, N. & McGinnis, W. Hox protein mutation and macroevolution of the insect body plan. Nature 415, 914–917 (2002).

    Article  Google Scholar 

  56. Ranganayakulu, G., Elliott, D. A., Harvey, R. P. & Olson, E. N. Divergent roles for NK-2 class homeobox genes in cardionenesis in flies and mice. Development 125, 3037–3048 (1998).

    CAS  PubMed  Google Scholar 

  57. Lohr, U., Yussa, M. & Pick, L. Drosophila fishi tarazu: a gene on the border of homeotic function. Curr. Biol. 11, 1403–1412 (2001).

    Article  CAS  Google Scholar 

  58. Zhao, Y. & Potter, S. S. Functional specificity of the Hoxa 13 homeobox. Development 128, 3197–3207 (2001).

    CAS  PubMed  Google Scholar 

  59. Zhao, Y. & Potter, S. S. Functional comparison of the Hoxa 4, Hoxa 10, and Hoxa 11 Homeoboxes. Dev. Biol. 244, 21–36 (2002).

    Article  CAS  Google Scholar 

  60. Tour, E., Hittinger, C. T. & McGinnis, W. Evolutionarily conserved domains required for activation and repression functions of the Drosophila Hox protein Ultrabithorax. Development 132, 5271–5281 (2005).

    Article  CAS  Google Scholar 

  61. Lynch, V. J., Roth, J. J. & Wagner, G. P. Adaptive evolution of Hox-gene homoedomains after cluster duuplications. BMC Evol. Biol. 6, 86 (2006).

    Article  Google Scholar 

  62. Sharkey, M., Graba, Y. & Scott, M. P. Hox genes in evolution: protein surfaces and paralog groups. Trends Genet. 13, 145–151 (1997).

    Article  CAS  Google Scholar 

  63. Wagner, G. P. & Lynch, V. J. Molecular evolution of evolutionary novelties: the vagina and uterus of therian mammals. J. Exp. Zool. B Mol. Dev. Evol. 304, 580–592 (2005).

    Article  Google Scholar 

  64. Davidson, E. H. & Erwin, D. H. Gene regulatory networks and the evolution of animal body plans. Science 311, 796–800 (2006).

    Article  CAS  Google Scholar 

  65. Wagner, G. P. & Stadler, P. F. Quasi-independence, homology and the unity of type: a topological theory of characters. J. Theor. Biol. 220, 505–527 (2003).

    Article  Google Scholar 

  66. Wiley, E. O. Homology, identity and transformation in Mesozoic fishes (eds Arrtia, G. & Schultze, H.-P.) (in the press).

  67. Müller, G. B. & Wagner, G. P. Novelty in evolution: restructuring the concept. Ann. Rev. Ecol. Syst. 22, 229–256 (1991).

    Article  Google Scholar 

  68. Miller, D. J. et al. Pax gene diversity in the basal cnidarian Acropora millepora (Cnidaria, Anthozoa): implications for the evolution of the Pax gene family. Proc. Natl Acad. Sci. USA 97, 4475–4480 (2000).

    Article  CAS  Google Scholar 

  69. Hadrys, T., DeSalle, R., Sagasser, S., Fischer, N. & Schierwater, B. The Trichoplax PaxB gene: a putative proto-PaxA/B/C gene predating the origin of nerve and sensory cells. Mol. Biol. Evol. 22, 1569–1578 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the financial support for the research that led to the ideas expressed in this article: NSF IBN#0321470, OIB#0445971 and the Research Prize from the Alexander von Humboldt Foundation. I also want to thank the reviewers of this paper as well as M. Laubichler, M. Ghiselin, E. Wiley, M. Donaghue, A. Monteiro and the members of my laboratory for discussion and inspiration.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Wagner laboratory homepage

Glossary

Orthologue

Two genes are orthologues if their lineages are connected through a speciation event and without a duplication event.

Paralogue

Two genes are paralogues if their lineages are connected through a gene duplication event.

Pro-orthologue

For example, when one species has two copies of a gene, say Ga and Gb, and another species has a single copy G, and the speciation event that separated the species lineages occurred earlier than the gene duplication event, G is the pro-orthologue of Ga and Gb.

Semi-orthologue

For example, if G is the pro-orthologue of Ga and Gb, then both Ga and Gb are the semi-orthologues of G.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, G. The developmental genetics of homology. Nat Rev Genet 8, 473–479 (2007). https://doi.org/10.1038/nrg2099

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2099

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing