Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Heterochromatin revisited

Key Points

  • Heterochromatin is a DNA-packaging state that is commonly associated with transcriptional silencing and repression of recombination.

  • Methylation of histone H3 at lysine 9 (H3K9me) and recruitment of heterochromatin protein HP1 are essential steps in heterochromatin assembly. These factors, when targeted to specific sites on chromosomes, can spread, allowing large heterochromatic domains to form.

  • Heterochromatin formation can be initiated by proteins that bind to DNA 'silencer' sequences. It can also be triggered by repetitive DNA elements through the action of the RNAi pathway.

  • Heterochromatin factors serve as a platform to recruit and facilitate the spreading of effector proteins, allowing them to exert regional control.

  • Heterochromatin mediates the spreading of RNAi machinery from nucleation sites to surrounding sequences. Chromosome-bound RNAi 'factories' might selectively produce small interfering RNAs (siRNAs), which are involved in genomic silencing and defense against parasitic elements.

  • Recruitment of histone deacetylases (HDACs) enforces the transcriptional-silencing role of heterochromatin. HDACs seem to have a crucial role in chromatin condensation.

  • Despite the well-described roles of heterochromatin in chromatin compaction and silencing, in some instances, effectors that are recruited by heterochromatin might also facilitate transcription.

  • The heterochromatin platform is dynamic and can be readily altered in response to developmental signals.

  • Boundary elements that limit the spread of heterochromatin have been described in some systems. They seem to work by diverse mechanisms.

Abstract

The formation of heterochromatin, which requires methylation of histone H3 at lysine 9 and the subsequent recruitment of chromodomain proteins such as heterochromatin protein HP1, serves as a model for the role of histone modifications and chromatin assembly in epigenetic control of the genome. Recent studies in Schizosaccharomyces pombe indicate that heterochromatin serves as a dynamic platform to recruit and spread a myriad of regulatory proteins across extended domains to control various chromosomal processes, including transcription, chromosome segregation and long-range chromatin interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms for the initiation of heterochromatin assembly.
Figure 2: RNAi-mediated heterochromatin assembly and silencing in fission yeast.
Figure 3: Heterochromatin as a platform for the recruitment of effectors across extended domains.
Figure 4: Heterochromatin recruits both silencing and anti-silencing factors.
Figure 5: A model for a possible role for small RNAs in genome organization.
Figure 6: Heterochromatin regulates cell-type specific spreading of a protein complex.

Similar content being viewed by others

References

  1. Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Goll, M. G. & Bestor, T. H. Eukaryotic cytosine methyltransferases. Annu. Rev. Biochem. 74, 481–514 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Kosak, S. T. & Groudine, M. Gene order and dynamic domains. Science 306, 644–647 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Heitz, E. Das heterochromatin der moose. I Jahrb Wiss Botanik 69, 762–818 (1928) (in German).

    Google Scholar 

  6. Huisinga, K. L., Brower-Toland, B. & Elgin, S. C. The contradictory definitions of heterochromatin: transcription and silencing. Chromosoma 115, 110–122 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Weiler, K. S. & Wakimoto, B. T. Heterochromatin and gene expression in Drosophila. Annu. Rev. Genet. 29, 577–605 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Birchler, J. A., Bhadra, M. P. & Bhadra, U. Making noise about silence: repression of repeated genes in animals. Curr. Opin. Genet. Dev. 10, 211–216 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Hall, I. M. & Grewal, S. I. in RNAi: A Guide To Gene Silencing (ed. Hannon, G. J.) 205–232 (Cold Spring Harbor Press, Cold Spring Harbor, 2003).

    Google Scholar 

  10. Martens, J. H. et al. The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J. 24, 800–812 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Boumil, R. M. & Lee, J. T. Forty years of decoding the silence in X-chromosome inactivation. Hum. Mol. Genet. 10, 2225–2232 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Henikoff, S. Heterochromatin function in complex genomes. Biochim. Biophys. Acta. 1470, 1–8 (2000).

    Google Scholar 

  13. Allshire, R. C., Nimmo, E. R., Ekwall, K., Javerzat, J. P. & Cranston, G. Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation. Genes Dev. 9, 218–233 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Kellum, R. & Alberts, B. M. Heterochromatin protein 1 is required for correct chromosome segregation in Drosophila embryos. J. Cell Sci. 108, 1419–1431 (1995).

    CAS  PubMed  Google Scholar 

  15. Csink, A. K. & Henikoff, S. Genetic modification of heterochromatic association and nuclear organization in Drosophila. Nature 381, 529–531 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Dernburg, A. F. et al. Perturbation of nuclear architecture by long-distance chromosome interactions. Cell 85, 745–759 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Jia, S., Yamada, T. & Grewal, S. I. Heterochromatin regulates cell type-specific long-range chromatin interactions essential for directed recombination. Cell 119, 469–480 (2004). This paper demonstrated a role for heterochromatin in promoting cell-type-specific, long-range spreading of a protein complex that is involved in promoting recombination.

    Article  CAS  PubMed  Google Scholar 

  18. Lu, B. Y., Emtage, P. C., Duyf, B. J., Hilliker, A. J. & Eissenberg, J. C. Heterochromatin protein 1 is required for the normal expression of two heterochromatin genes in Drosophila. Genetics 155, 699–708 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yasuhara, J. C. & Wakimoto, B. T. Oxymoron no more: the expanding world of heterochromatic genes. Trends Genet. 22, 330–338 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Greil, F. et al. Distinct HP1 and Su(var)3–9 complexes bind to sets of developmentally coexpressed genes depending on chromosomal location. Genes Dev. 17, 2825–2838 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Piacentini, L., Fanti, L., Berloco, M., Perrini, B. & Pimpinelli, S. Heterochromatin protein 1 (HP1) is associated with induced gene expression in Drosophila euchromatin. J. Cell Biol. 161, 707–714 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cryderman, D. E. et al. Role of Drosophila HP1 in euchromatic gene expression. Dev. Dyn. 232, 767–774 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Vakoc, C. R., Mandat, S. A., Olenchock, B. A. & Blobel, G. A. Histone H3 lysine 9 methylation and HP1γ are associated with transcription elongation through mammalian chromatin. Mol. Cell 19, 381–391 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Zofall, M. & Grewal, S. I. Swi6/HP1 recruits a JmjC domain protein to facilitate transcription of heterochromatic repeats. Mol. Cell 22, 681–692 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Maison, C. & Almouzni, G. HP1 and the dynamics of heterochromatin maintenance. Nature Rev. Mol. Cell Biol. 5, 296–304 (2004).

    Article  CAS  Google Scholar 

  26. Hiragami, K. & Festenstein, R. Heterochromatin protein 1: a pervasive controlling influence. Cell. Mol. Life Sci. 62, 2711–2726 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Cheutin, T. et al. Maintenance of stable heterochromatin domains by dynamic HP1 binding. Science 299, 721–725 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Festenstein, R. et al. Modulation of heterochromatin protein 1 dynamics in primary mammalian cells. Science 299, 719–721 (2003). References 27 and 28 demonstrated that the heterochromatin protein HP1 is highly dynamic, even in heterochromatin domains, which are generally perceived to be highly stable.

    Article  CAS  PubMed  Google Scholar 

  29. Cheutin, T., Gorski, S. A., May, K. M., Singh, P. B. & Misteli, T. In vivo dynamics of Swi6 in yeast: evidence for a stochastic model of heterochromatin. Mol. Cell. Biol. 24, 3157–3167 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Grunstein, M. Yeast heterochromatin: regulation of its assembly and inheritance by histones. Cell 93, 325–328 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Nakayama, J., Rice, J. C., Strahl, B. D., Allis, C. D. & Grewal, S. I. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292, 110–113 (2001). This paper demonstrated that methylation of H3K9 is crucial for recruitment of Swi6/HP1 to heterochromatic loci.

    Article  CAS  PubMed  Google Scholar 

  32. Litt, M. D., Simpson, M., Gaszner, M., Allis, C. D. & Felsenfeld, G. Correlation between histone lysine methylation and developmental changes at the chicken β-globin locus. Science 293, 2453–2455 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Noma, K., Allis, C. D. & Grewal, S. I. Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science 293, 1150–1155 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Cam, H. P. et al. Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome. Nature Genet. 37, 809–819 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Martin, C. & Zhang, Y. The diverse functions of histone lysine methylation. Nature Rev. Mol. Cell Biol. 6, 838–849 (2005).

    Article  CAS  Google Scholar 

  36. Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124 (2001). References 36 and 37 demonstrated that the chromodomain of HP1 binds with high affinity to H3K9me.

    Article  CAS  PubMed  Google Scholar 

  38. Schotta, G. et al. Central role of Drosophila SU(VAR)3–9 in histone H3-K9 methylation and heterochromatic gene silencing. EMBO J. 21, 1121–1131 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593–539 (2000). This paper showed that mammalian SUV39H1 and its fission yeast homologue Clr4 are histone H3K9-specific methyltranscferases, and identified the SET domain as the catalytic motif.

    Article  CAS  PubMed  Google Scholar 

  40. Hall, I. M. et al. Establishment and maintenance of a heterochromatin domain. Science 297, 2232–2237 (2002). This paper established a link between RNAi and heterochromatin assembly in fission yeast, and showed that heterochromatin assembly that is nucleated at a repeat element can spread in a manner that is dependent upon Swi6/HP1.

    Article  CAS  PubMed  Google Scholar 

  41. Brasher, S. V. et al. The structure of mouse HP1 suggests a unique mode of single peptide recognition by the shadow chromo domain dimer. EMBO J. 19, 1587–1597 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cowieson, N. P., Partridge, J. F., Allshire, R. C. & McLaughlin, P. J. Dimerisation of a chromo shadow domain and distinctions from the chromodomain as revealed by structural analysis. Curr. Biol. 10, 517–525 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Smothers, J. F. & Henikoff, S. The HP1 chromo shadow domain binds a consensus peptide pentamer. Curr. Biol. 10, 27–30 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Lechner, M. S., Schultz, D. C., Negorev, D., Maul, G. G. & Rauscher, F. J., 3rd. The mammalian heterochromatin protein 1 binds diverse nuclear proteins through a common motif that targets the chromoshadow domain. Biochem. Biophys. Res. Commun. 331, 929–937 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Yamada, T., Fischle, W., Sugiyama, T., Allis, C. D. & Grewal, S. I. The nucleation and maintenance of heterochromatin by a histone deacetylase in fission yeast. Mol. Cell 20, 173–185 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, C. L., McKinsey, T. A. & Olson, E. N. Association of class II histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation. Mol. Cell. Biol. 22, 7302–7312 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wysocka, J. et al. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 422, 86–90 (2006).

    Article  CAS  Google Scholar 

  48. Pray-Grant, M. G., Daniel, J. A., Schieltz, D., Yates, J. R., 3rd & Grant, P. A. Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation. Nature 433, 434–438 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Carrozza, M. J. et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123, 581–592 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Joshi, A. A. & Struhl, K. Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation. Mol. Cell 20, 971–978 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Keogh, M. C. et al. Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell 123, 593–605 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Nielsen, S. J. et al. Rb targets histone H3 methylation and HP1 to promoters. Nature 412, 561–565 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Schultz, D., Ayyanathan, K., Negorev, D., Maul, G. & Rauscher, F. R. SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev. 16, 1855–1869 (2002).

    Article  CAS  Google Scholar 

  54. Dorer, D. R. & Henikoff, S. Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell 77, 993–1002 (1994).

    Article  CAS  PubMed  Google Scholar 

  55. Selker, E. U. Repeat-induced gene silencing in fungi. Adv. Genet. 46, 439–450 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Luff, B., Pawlowski, L. & Bender, J. An inverted repeat triggers cytosine methylation of identical sequences in Arabidopsis. Mol. Cell 3, 505–511 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Matzke, M. A. & Birchler, J. A. RNAi-mediated pathways in the nucleus. Nature Rev. Genet. 6, 24–35 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998). This groundbreaking study revealed an unexpected role of dsRNA in controlling gene expression.

    Article  CAS  PubMed  Google Scholar 

  59. Meister, G. & Tuschl, T. Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343–349 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Cox, D. N. et al. A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev. 12, 3715–3727 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Klar, A. J. Developmental choices in mating-type interconversion in fission yeast. Trends Genet. 8, 208–213 (1992).

    Article  CAS  PubMed  Google Scholar 

  62. Grewal, S. I., Bonaduce, M. J. & Klar, A. J. Histone deacetylase homologs regulate epigenetic inheritance of transcriptional silencing and chromosome segregation in fission yeast. Genetics 150, 563–576 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Volpe, T. A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837 (2002). This paper demonstrated that the RNAi machinery is required for transcriptional silencing and heterochromatin formation at the centromeres in fission yeast.

    Article  CAS  PubMed  Google Scholar 

  64. Mochizuki, K., Fine, N. A., Fujisawa, T. & Gorovsky, M. A. Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in tetrahymena. Cell 110, 689–699 (2002). This paper showed that the RNAi machinery is required for programmed elimination of DNA sequences in Tetrahymena thermophila , a process that involves heterochromatin formation at the eliminated DNA.

    Article  CAS  PubMed  Google Scholar 

  65. Taverna, S. D., Coyne, R. S. & Allis, C. D. Methylation of histone H3 at lysine 9 targets programmed DNA elimination in tetrahymena. Cell 110, 701–711 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Pal-Bhadra, M. et al. Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science 303, 669–672 (2004). This study demonstrated that the RNAi machinery is required for silencing and heterochromatin formation in D. melanogaster.

    Article  CAS  PubMed  Google Scholar 

  67. Zilberman, D., Cao, X. & Jacobsen, S. E. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science 299, 716–719 (2003). These authors established that the RNAi machinery is required for heterochromatic gene silencing and control of transposable elements in A. thaliana.

    Article  CAS  PubMed  Google Scholar 

  68. Kanellopoulou, C. et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev. 19, 489–501 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fukagawa, T. et al. Dicer is essential for formation of the heterochromatin structure in vertebrate cells. Nature Cell Biol. 6, 784–791 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Grishok, A., Sinskey, J. L. & Sharp, P. A. Transcriptional silencing of a transgene by RNAi in the soma of C. elegans. Genes Dev. 19, 683–696 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Reinhart, B. J. & Bartel, D. P. Small RNAs correspond to centromere heterochromatic repeats. Science 297, 1831 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Xie, Z. et al. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2, e104 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Lippman, Z. et al. Role of transposable elements in heterochromatin and epigenetic control. Nature 430, 471–476 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Aravin, A. A. et al. The small RNA profile during Drosophila melanogaster development. Dev. Cell 5, 337–350 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Djupedal, I. et al. RNA Pol II subunit Rpb7 promotes centromeric transcription and RNAi-directed chromatin silencing. Genes Dev. 19, 2301–2306 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kato, H. et al. RNA polymerase II is required for RNAi-dependent heterochromatin assembly. Science 309, 467–469 (2005). References 75 and 76 showed that mutations in RNA Pol II subunits affect RNAi-mediated heterochromatin assembly at fission yeast centromeres.

    Article  CAS  PubMed  Google Scholar 

  77. Partridge, J. F., Scott, K. S., Bannister, A. J., Kouzarides, T. & Allshire, R. C. cis-acting DNA from fission yeast centromeres mediates histone H3 methylation and recruitment of silencing factors and cohesin to an ectopic site. Curr. Biol. 12, 1652–1660 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Grewal, S. I. & Klar, A. J. A recombinationally repressed region between mat2 and mat3 loci shares homology to centromeric repeats and regulates directionality of mating-type switching in fission yeast. Genetics 146, 1221–1238 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Noma, K. et al. RITS acts in cis to promote RNA interference-mediated transcriptional and post-transcriptional silencing. Nature Genet. 36, 1174–1180 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Jia, S., Noma, K. & Grewal, S. I. RNAi-independent heterochromatin nucleation by the stress-activated ATF/CREB family proteins. Science 304, 1971–1976 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Kim, H. S., Choi, E. S., Shin, J. A., Jang, Y. K. & Park, S. D. Regulation of Swi6/HP1-dependent heterochromatin assembly by cooperation of components of the mitogen-activated protein kinase pathway and a histone deacetylase Clr6. J. Biol. Chem. 279, 42850–42859 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Kanoh, J., Sadaie, M., Urano, T. & Ishikawa, F. Telomere binding protein Taz1 establishes Swi6 heterochromatin independently of RNAi at telomeres. Curr. Biol. 15, 1808–1819 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Hansen, K. R., Ibarra, P. T. & Thon, G. Evolutionary-conserved telomere-linked helicase genes of fission yeast are repressed by silencing factors, RNAi components and the telomere-binding protein Taz1. Nucl. Acids Res. 34, 78–88 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nakagawa, H. et al. Fission yeast CENP-B homologs nucleate centromeric heterochromatin by promoting heterochromatin-specific histone tail modifications. Genes Dev. 16, 1766–1778 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gonzalo, S. & Blasco, M. A. Role of Rb family in the epigenetic definition of chromatin. Cell Cycle 4, 752–755 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Verdel, A. et al. RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303, 672–676 (2004). This paper reported the identification of the RITS complex, which is involved in RNAi-mediated heterochromatin assembly and silencing in fission yeast.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Petrie, V. J., Wuitschick, J. D., Givens, C. D., Kosinski, A. M. & Partridge, J. F. RNA interference (RNAi)-dependent and RNAi-independent association of the Chp1 chromodomain protein with distinct heterochromatic loci in fission yeast. Mol. Cell. Biol. 25, 2331–2346 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sugiyama, T., Cam, H., Verdel, A., Moazed, D. & Grewal, S. I. RNA-dependent RNA polymerase is an essential component of a self-enforcing loop coupling heterochromatin assembly to siRNA production. Proc. Natl Acad. Sci. USA 102, 152–157 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Buhler, M., Verdel, A. & Moazed, D. Tethering RITS to a nascent transcript initiates RNAi- and heterochromatin-dependent gene silencing. Cell 125, 873–886 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Motamedi, M. R. et al. Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Cell 119, 789–802 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Irvine, D. V. et al. Argonaute slicing is required for heterochromatic silencing and spreading. Science 313, 1134–1137 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Zofall, M. & Grewal, S. I. RNAi-mediated heterochromatin assembly in fission yeast. Cold Spring Harb. Symp. Quant. Biol. (in the press).

  93. Jia, S., Kobayashi, R. & Grewal, S. I. Ubiquitin ligase component Cul4 associates with Clr4 histone methyltransferase to assemble heterochromatin. Nature Cell Biol. 7, 1007–1013 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Horn, P. J., Bastie, J. N. & Peterson, C. L. A Rik1-associated, cullin-dependent E3 ubiquitin ligase is essential for heterochromatin formation. Genes Dev. 19, 1705–1714 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hong, E. E., Villen, J., Gerace, E. L., Gygi, S. P. & Moazed, D. A Cullin E3 ubiquitin ligase complex associates with Rik1 and the Clr4 histone H3-K9 methyltransferase and is required for RNAi-mediated heterochromatin formation. RNA Biol. 2, 106–111 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Thon, G. et al. The Clr7 and Clr8 directionality factors and the Pcu4 cullin mediate heterochromatin formation in the fission yeast Schizosaccharomyces pombe. Genetics 171, 1583–1595 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Neuwald, A. F. & Poleksic, A. PSI-BLAST searches using hidden markov models of structural repeats: prediction of an unusual sliding DNA clamp and of β-propellers in UV-damaged DNA-binding protein. Nucleic Acids Res. 28, 3570–3580 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gaszner, M. & Felsenfeld, G. Insulators: exploiting transcriptional and epigenetic mechanisms. Nature Rev. Genet. 7, 703–713 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Labrador, M. & Corces, V. G. Setting the boundaries of chromatin domains and nuclear organization. Cell 111, 151–154 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Bi, X. & Broach, J. R. Chromosomal boundaries in S. cerevisiae. Curr. Opin. Genet. Dev. 11, 199–204 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Oki, M. & Kamakaka, R. T. Barrier function at HMR. Mol. Cell 19, 707–716 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Thon, G., Bjerling, P., Bunner, C. M. & Verhein-Hansen, J. Expression-state boundaries in the mating-type region of fission yeast. Genetics 161, 611–622 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Noma, K., Cam, H. P., Maraia, R. J. & Grewal, S. I. A role for TFIIIC transcription factor complex in genome organization. Cell 125, 859–872 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Yusufzai, T. M., Tagami, H., Nakatani, Y. & Felsenfeld, G. CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species. Mol. Cell 13, 291–298 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Ishii, K., Arib, G., Lin, C., Van Houwe, G. & Laemmli, U. K. Chromatin boundaries in budding yeast: the nuclear pore connection. Cell 109, 551–562 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Scott, K. C., Merrett, S. L. & Willard, H. F. A heterochromatin barrier partitions the fission yeast centromere into discrete chromatin domains. Curr. Biol. 16, 119–129 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Partridge, J. F., Borgstrom, B. & Allshire, R. C. Distinct protein interaction domains and protein spreading in a complex centromere. Genes Dev. 14, 783–791 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Shogren-Knaak, M. et al. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311, 844–847 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Tamaru, H. & Selker, E. U. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414, 277–283 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Chan, S. W., Henderson, I. R. & Jacobsen, S. E. Gardening the genome: DNA methylation in Arabidopsis thaliana. Nature Rev. Genet. 6, 351–360 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Ohki, I. et al. Solution structure of the methyl-CpG binding domain of human MBD1 in complex with methylated DNA. Cell 105, 487–497 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Bird, A. P. & Wolffe, A. P. Methylation-induced repression-belts, braces, and chromatin. Cell 99, 451–454 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Murchison, E. P., Partridge, J. F., Tam, O. H., Cheloufi, S. & Hannon, G. J. Characterization of Dicer-deficient murine embryonic stem cells. Proc. Natl Acad. Sci. USA 102, 12135–12140 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Haussecker, D. & Proudfoot, N. J. Dicer-dependent turnover of intergenic transcripts from the human β-globin gene cluster. Mol. Cell. Biol. 25, 9724–9733 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sigova, A., Rhind, N. & Zamore, P. D. A single Argonaute protein mediates both transcriptional and posttranscriptional silencing in Schizosaccharomyces pombe. Genes Dev. 18, 2359–2367 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Maison, C. et al. Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nature Genet. 30, 329–334 (2002).

    Article  PubMed  Google Scholar 

  117. Muchardt, C. et al. Coordinated methyl and RNA binding is required for heterochromatin localization of mammalian HP1α. EMBO Rep. 3, 975–981 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Seum, C., Delattre, M., Spierer, A. & Spierer, P. Ectopic HP1 promotes chromosome loops and variegated silencing in Drosophila. EMBO J. 20, 812–818 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Li, Y., Danzer, J. R., Alvarez, P., Belmont, A. S. & Wallrath, L. L. Effects of tethering HP1 to euchromatic regions of the Drosophila genome. Development 130, 1817–1824 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Hall, I. M., Noma, K. & Grewal, S. I. RNA interference machinery regulates chromosome dynamics during mitosis and meiosis in fission yeast. Proc. Natl Acad. Sci. USA 100, 193–198 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Grimaud, C. et al. RNAi components are required for nuclear clustering of Polycomb group response elements. Cell 124, 957–971 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Pal-Bhadra, M., Bhadra, U. & Birchler, J. A. Interrelationship of RNA interference and transcriptional gene silencing in Drosophila. Cold Spring Harb. Symp. Quant. Biol. 69, 433–438 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Lei, E. P. & Corces, V. G. RNA interference machinery influences the nuclear organization of a chromatin insulator. Nature Genet. 38, 936–941 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Gasser, S. M. Positions of potential: nuclear organization and gene expression. Cell 104, 639–642 (2001).

    Article  CAS  PubMed  Google Scholar 

  125. Heard, E. Delving into the diversity of facultative heterochromatin: the epigenetics of the inactive X chromosome. Curr. Opin. Genet. Dev. 15, 482–489 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Ayoub, N. et al. A novel JmjC domain protein modulates heterochromatization in fission yeast. Mol. Cell. Biol. 23, 4356–4370 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Peters, A. H. et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107, 323–337 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Karpen, G. H., Le, M. H. & Le, H. Centric heterochromatin and the efficiency of achiasmate disjunction in Drosophila female meiosis. Science 273, 118–122 (1996).

    Article  CAS  PubMed  Google Scholar 

  129. Bernard, P. et al. Requirement of heterochromatin for cohesion at centromeres. Science 294, 2539–2542 (2001).

    Article  CAS  PubMed  Google Scholar 

  130. Nonaka, N. et al. Recruitment of cohesin to heterochromatic regions by Swi6/HP1 in fission yeast. Nature Cell Biol. 4, 89–93 (2002). References 129 and 130 showed that Swi6/HP1 preferentially recruit cohesin to heterochromatic loci including pericentric regions, which is essential for proper chromosome segregation.

    Article  CAS  PubMed  Google Scholar 

  131. Ekwall, K. The roles of histone modifications and small RNA in centromere function. Chromosome Res. 12, 535–542 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Pidoux, A. L. & Allshire, R. C. Kinetochore and heterochromatin domains of the fission yeast centromere. Chromosome Res. 12, 521–534 (2004).

    Article  CAS  PubMed  Google Scholar 

  133. Obuse, C. et al. A conserved Mis12 centromere complex is linked to heterochromatic HP1 and outer kinetochore protein Zwint-1. Nature Cell Biol. 6, 1135–1141 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Ainsztein, A. M., Kandels-Lewis, S. E., Mackay, A. M. & Earnshaw, W. C. INCENP centromere and spindle targeting: identification of essential conserved motifs and involvement of heterochromatin protein HP1. J. Cell Biol. 143, 1763–1774 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Pinsky, B. A. & Biggins, S. The spindle checkpoint: tension versus attachment. Trends Cell Biol. 15, 486–493 (2005).

    Article  CAS  PubMed  Google Scholar 

  136. Pak, D. T. et al. Association of the origin recognition complex with heterochromatin and HP1 in higher eukaryotes. Cell 91, 311–323 (1997).

    Article  CAS  PubMed  Google Scholar 

  137. Murzina, N., Verreault, A., Laue, E. & Stillman, B. Heterochromatin dynamics in mouse cells: interaction between chromatin assembly factor 1 and HP1 proteins. Mol. Cell 4, 529–540 (1999).

    Article  CAS  PubMed  Google Scholar 

  138. Bailis, J. M., Bernard, P., Antonelli, R., Allshire, R. C. & Forsburg, S. L. Hsk1–Dfp1 is required for heterochromatin-mediated cohesion at centromeres. Nature Cell Biol. 5, 1111–1116 (2003).

    Article  CAS  PubMed  Google Scholar 

  139. Klose, R. J. et al. The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature 442, 312–316 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Fodor, B. D. et al. Jmjd2b antagonizes H3K9 trimethylation at pericentric heterochromatin in mammalian cells. Genes Dev. 20, 1557–1562 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Whetstine, J. R. et al. Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell 125, 467–481 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Fischle, W. et al. Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438, 1116–1122 (2005).

    Article  CAS  PubMed  Google Scholar 

  143. Hirota, T., Lipp, J. J., Toh, B. H. & Peters, J. M. Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature 438, 1176–1180 (2005). References 142 and 143 showed that the association of HP1 with H3K9me can be regulated by the phosphorylation of adjacent serine 10 residue.

    Article  CAS  PubMed  Google Scholar 

  144. Eissenberg, J. C., Ge, Y. W. & Hartnett, T. Increased phosphorylation of HP1, a heterochromatin-associated protein of Drosophila, is correlated with heterochromatin assembly. J. Biol. Chem. 269, 21315–21321 (1994).

    CAS  PubMed  Google Scholar 

  145. Lomberk, G., Bensi, D., Fernandez-Zapico, M. E. & Urrutia, R. Evidence for the existence of an HP1-mediated subcode within the histone code. Nature Cell Biol. 8, 407–415 (2006).

    Article  CAS  PubMed  Google Scholar 

  146. Shin, J. A. et al. SUMO modification is involved in the maintenance of heterochromatin stability in fission yeast. Mol. Cell 19, 817–828 (2005).

    Article  CAS  PubMed  Google Scholar 

  147. Minc, E., Allory, Y., Worman, H. J., Courvalin, J. C. & Buendia, B. Localization and phosphorylation of HP1 proteins during the cell cycle in mammalian cells. Chromosoma 108, 220–234 (1999).

    Article  CAS  PubMed  Google Scholar 

  148. Moazed, D. Common themes in mechanisms of gene silencing. Mol. Cell 8, 489–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  149. Orban, T. I. & Izaurralde, E. Decay of mRNAs targeted by RISC requires XRN1, the Ski complex, and the exosome. RNA 11, 459–469 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Freitag, M., Hickey, P. C., Khlafallah, T. K., Read, N. D. & Selker, E. U. HP1 is essential for DNA methylation in Neurospora. Mol. Cell 13, 427–434 (2004). This paper showed that the HP1 homologue of N. crassa is required for DNA methylation at the relics of transposons.

    Article  CAS  PubMed  Google Scholar 

  151. Alleman, M. et al. An RNA-dependent RNA polymerase is required for paramutation in maize. Nature 442, 295–298 (2006).

    Article  CAS  PubMed  Google Scholar 

  152. Mandell, J. G., Goodrich, K. J., Bahler, J. & Cech, T. R. Expression of a RecQ helicase homolog affects progression through crisis in fission yeast lacking telomerase. J. Biol. Chem. 280, 5249–5257 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Sabl for her help in editing the manuscript, and H. Cam, M. Lichten and anonymous reviewers for helpful comments. We apologize to colleagues whose work could not be cited due to space limitations. Research in the Grewal laboratory is supported by the Intramural Research Program of the National Institutes of Health, National Cancer Institute, Center for Cancer Research, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiv I. S. Grewal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Glossary

Knobs

Blocks of heterochromatin other than the centromeres and nucleolar organizer regions.

Co-optation

The adaptation of an existing biological feature for a new purpose.

Spindle

A eukaryotic cytoskeletal structure that is made of bundles of microtubules and functions to segregate chromosomes to the daughter cells during mitosis and meiosis.

Conjugation

A process of sexual reproduction in certain algae and fungi in which temporary or permanent fusion occurs, resulting in the union of the male and female gametes.

Meiotic drive

A process that causes some alleles to be overrepresented in the gametes that are formed during meiosis.

Paramutation

An interaction between two alleles of a single locus, resulting in a heritable change in the expression of one allele, which is induced by the other allele.

Imprinting

The epigenetic marking of a gene on the basis of parental origin, which results in monoallelic expression.

RNAi

A mechanism by which dsRNA triggers the destruction of cognate mRNA.

Dicer

An RNase III nuclease that processes dsRNA precursors into small interfering RNAs.

Argonaute proteins

PAZ- and PIWI-domain-containing proteins that are essential components of RNAi effector complexes, which bind small interfering RNAs.

RNA-dependent RNA polymerase

An RNA polymerase that generates dsRNAs from ssRNAs to strengthen the RNAi response.

siRNA

Small interfering RNAs (22–24 nucleotides), which are derived from the processing of long dsRNA by Dicer.

Polytene chromosomes

Chromosomes produced by multiple rounds of replication that remain synapsed together.

Kinetochore

A multiprotein structure that is assembled on centromeric DNA to mediate the attachment and movement of chromosomes along the mitotic spindle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grewal, S., Jia, S. Heterochromatin revisited. Nat Rev Genet 8, 35–46 (2007). https://doi.org/10.1038/nrg2008

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2008

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing