Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Inborn errors of metabolism: the flux from Mendelian to complex diseases

Key Points

  • Inborn errors of metabolism (IEM) are a diverse group of diseases that result from perturbations of biochemical pathways.

  • IEM have traditionally been regarded as Mendelian traits; however, it is now increasingly recognized that they represent the best examples of complex gene–environment interactions and, more specifically, gene–nutrient interactions that lead to complex disease. IEM could therefore be a powerful tool for dissecting both monogenic and common multifactorial diseases.

  • The molecular basis of IEM can best be understood by analysing metabolite flux, which is defined as the production or elimination of a quantity of metabolite per mass of organ or organism over a specific time frame (mole/kg/hr).

  • Diagnostic methods that are based on molecular-genetic tools have a limited ability to correlate phenotypes with subtle changes in metabolic fluxes.

  • By contrast, the direct and dynamic measurement of metabolite flux will facilitate the integration of environmental, genetic and biochemical factors with phenotypic information. This integration should lead to new diagnostic and therapeutic approaches that are focused on the manipulation of metabolic pathways.

  • Effective therapy of IEM requires the alteration of metabolite flux. This can be achieved by reducing pathway precursors, restoring adequate biochemical activity or diverting metabolites to alternative pathways.

  • The value of metabolic flux in establishing genotype–phenotype relationships in IEM is illustrated in the review through the discussion of two disorders — Gaucher disease and urea-cycle disorders. These conditions are examples of 'large-molecule' and 'small-molecule' Mendelian diseases, respectively, that also have complex features.

  • The future directions of research in IEM are discussed in relation to the use of metabolic flux to inform genotype–phenotype relationships and the challenges that the field has to overcome (for example, the fact that current, clinically available diagnostic technologies do not assess in vivo metabolite flux).

  • Ultimately, the understanding of complex disease pathogenesis and susceptibility will require our comprehension of the metabolome. To understand the metabolome, we will need to integrate different technologies and data, including genomic, proteomic and physiological fluxes.

Abstract

Inborn errors of metabolism are characterized by dysregulation of the metabolic networks that underlie development and homeostasis, and constitute an important and expanding group of genetic disorders in humans. Diagnostic methods that are based on molecular genetic tools have a limited ability to correlate phenotypes with subtle changes in metabolic fluxes. We argue that the direct and dynamic measurement of metabolite flux will facilitate the integration of environmental, genetic and biochemical factors with phenotypic information. Ultimately, this integration will lead to new diagnostic and therapeutic approaches that are focused on the manipulation of these pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inborn errors of metabolism and metabolic networks.
Figure 2: Pathogenetic mechanisms in the inborn errors of metabolism.
Figure 3: Measurement of metabolite flux using isotope tracers.
Figure 4: Urea-cycle disorders, small-molecule diseases.
Figure 5: Metabolic pathway and layers of phenotypic complexity.

Similar content being viewed by others

References

  1. Chou, J. Y., Matern, D., Mansfield, B. C. & Chen, Y. T. Type I glycogen storage diseases: disorders of the glucose-6-phosphatase complex. Curr. Mol. Med. 2, 121–143 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Garrod, A. The Croonian lectures on inborn errors of metabolism, lecture II: alkaptonuria. Lancet 2, 73–79 (1908).

    CAS  Google Scholar 

  3. Wilcken, B., Wiley, V., Hammond, J. & Carpenter, K. Screening newborns for inborn errors of metabolism by tandem mass spectrometry. N. Engl. J. Med. 348, 2304–2312 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Roe, C. R., Ding, J. in The Molecular and Metabolic Basis of Inherited Disease (eds Scriver, C. R., Beaudet, A. L., Sly, W. S. &Valle, D.) 2297–2326 (McGraw-Hill, New York, 1995).

    Google Scholar 

  5. Dipple, K. M. & McCabe, E. R. Modifier genes convert 'simple' Mendelian disorders to complex traits. Mol. Genet. Metab. 71, 43–50 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Dipple, K. M. & McCabe, E. R. Phenotypes of patients with 'simple' Mendelian disorders are complex traits: thresholds, modifiers, and systems dynamics. Am. J. Hum. Genet. 66, 1729–1735 (2000). Provides an excellent overview of the true complexity of classical Mendelian IEM.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Applegarth, D. A., Dimmick, J. E. & Toone, J. R. Laboratory detection of metabolic disease. Pediatr. Clin. North Am. 36, 49–65 (1989).

    Article  CAS  PubMed  Google Scholar 

  8. Dunn, W. B., Bailey, N. J. & Johnson, H. E. Measuring the metabolome: current analytical technologies. Analyst 130, 606–625 (2005). Provides an overview of the available techniques for analysing multiple metabolites.

    Article  CAS  PubMed  Google Scholar 

  9. Pandor, A., Eastham, J., Beverley, C., Chilcott, J. & Paisley, S. Clinical effectiveness and cost-effectiveness of neonatal screening for inborn errors of metabolism using tandem mass spectrometry: a systematic review. Health Technol. Assess. 8, 1–121 (2004).

    Article  Google Scholar 

  10. Millington, D. S., Kodo N., Norwood, D. L., Roe, C. R. Tandem mass spectrometry: a new method for acylcarnitine profiling with potential for neonatal screening for inborn errors of metabolism. J. Inherit. Metab. Dis. 13, 321–324 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. Poustie, V. J. & Rutherford, P. Dietary interventions for phenylketonuria. Cochrane Database Syst. Rev., CD001304 (1999).

  12. Guthrie, R. & Susi, A. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics 32, 338–343 (1963).

    Article  CAS  PubMed  Google Scholar 

  13. Bodamer, O. A. et al. Utilization of cornstarch in glycogen storage disease type Ia. Eur. J. Gastroenterol. Hepatol. 14, 1251–1256 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Solis, J. O. & Singh, R. H. Management of fatty acid oxidation disorders: a survey of current treatment strategies. J. Am. Diet. Assoc. 102, 1800–1803 (2002).

    Article  PubMed  Google Scholar 

  15. Pastores, G. M. & Barnett, N. L. Current and emerging therapies for the lysosomal storage disorders. Expert Opin. Emerg. Drugs 10, 891–902 (2005). An overview of the therapeutic agents that are available for storage diseases. Includes a discussion of bone-marrow transplant, enzyme replacement and substrate reduction.

    Article  CAS  PubMed  Google Scholar 

  16. Klinge, L., Straub, V., Neudorf, U. & Voit, T. Enzyme replacement therapy in classical infantile Pompe disease: results of a ten-month follow-up study. Neuropediatrics 36, 6–11 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Pastores, G. M., Barnett, N. L. & Kolodny, E. H. An open-label, noncomparative study of miglustat in type I Gaucher disease: efficacy and tolerability over 24 months of treatment. Clin. Ther. 27, 1215–1227 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Mian, A. & Lee, B. Urea-cycle disorders as a paradigm for inborn errors of hepatocyte metabolism. Trends Mol. Med. 8, 583–589 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Saudubray, J. M. et al. Liver transplantation in urea cycle disorders. Eur. J. Pediatr. 158, S55–S59 (1999).

    Article  PubMed  Google Scholar 

  20. Brunetti-Pierri, N. & Lee, B. Gene therapy for inborn errors of liver metabolism. Mol. Genet. Metab. 86, 13–24 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Birkemeyer, C., Luedemann, A., Wagner, C., Erban, A. & Kopka, J. Metabolome analysis: the potential of in vivo labeling with stable isotopes for metabolite profiling. Trends Biotechnol. 23, 28–33 (2005). An excellent review of the use of stable isotope tracers for the in vivo assays of metabolite fluxes.

    Article  CAS  PubMed  Google Scholar 

  22. Wiechert, W. 13C metabolic flux analysis. Metab. Eng. 3, 195–206 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Wittmann, C. Metabolic flux analysis using mass spectrometry. Adv. Biochem. Eng. Biotechnol. 74, 39–64 (2002).

    CAS  PubMed  Google Scholar 

  24. Leonard, J. V. & Heales, S. J. The investigation of inborn errors in vivo using stable isotopes. Eur. J. Pediatr. 153, S81–S83 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Dufner, D. & Previs, S. F. Measuring in vivo metabolism using heavy water. Curr. Opin. Clin. Nutr. Metab. Care 6, 511–517 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Kelleher, J. K. Flux estimation using isotopic tracers: common ground for metabolic physiology and metabolic engineering. Metab. Eng. 3, 100–110 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Lee, B. et al. In vivo urea cycle flux distinguishes and correlates with phenotypic severity in disorders of the urea cycle. Proc. Natl Acad. Sci. USA 97, 8021–8026 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Scaglia, F. et al. Differential utilization of systemic and enteral ammonia for urea synthesis in control subjects and ornithine transcarbamylase deficiency carriers. Am. J. Clin. Nutr. 78, 749–755 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Brady, R. O., Kanfer, J. N., Bradley, R. M. & Shapiro, D. Demonstration of a deficiency of glucocerebroside-cleaving enzyme in Gaucher's disease. J. Clin. Invest. 45, 1112–1115 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Charrow, J. et al. The Gaucher registry: demographics and disease characteristics of 1698 patients with Gaucher disease. Arch. Intern. Med. 160, 2835–2843 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Theophilus, B., Latham, T., Grabowski, G. A. & Smith, F. I. Gaucher disease: molecular heterogeneity and phenotype-genotype correlations. Am. J. Hum. Genet. 45, 212–225 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Koprivica, V. et al. Analysis and classification of 304 mutant alleles in patients with type 1 and type 3 Gaucher disease. Am. J. Hum. Genet. 66, 1777–1786 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bonifacino, J. S. & Weissman, A. M. Ubiquitin and the control of protein fate in the secretory and endocytic pathways. Annu. Rev. Cell Dev. Biol. 14, 19–57 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Brodsky, J. L. & McCracken, A. A. ER protein quality control and proteasome-mediated protein degradation. Semin. Cell Dev. Biol. 10, 507–513 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Hammond, C. & Helenius, A. Quality control in the secretory pathway. Curr. Opin. Cell. Biol. 7, 523–529 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Kopito, R. R. ER quality control: the cytoplasmic connection. Cell 88, 427–430 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Ron, I. & Horowitz, M. ER retention and degradation as the molecular basis underlying Gaucher disease heterogeneity. Hum. Mol. Genet. 14, 2387–2398 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Sitia, R. & Braakman, I. Quality control in the endoplasmic reticulum protein factory. Nature 426, 891–894 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Berrebi, A., Wishnitzer, R. &Von- der-Walde, U. Gaucher's disease: unexpected diagnosis in three patients over seventy years old. Nouv. Rev. Fr. Hematol. 26, 201–203 (1984).

    CAS  PubMed  Google Scholar 

  40. Bodennec, J., Pelled, D., Riebeling, C., Trajkovic, S. & Futerman, A. H. Phosphatidylcholine synthesis is elevated in neuronal models of Gaucher disease due to direct activation of CTP:phosphocholine cytidylyltransferase by glucosylceramide. FASEB J. 16, 1814–1816 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Weinhold, P. A. & Feldman, D. A. Choline-phosphate cytidylyltransferase. Methods Enzymol. 209, 248–258 (1992).

    Article  CAS  PubMed  Google Scholar 

  42. Kay, A. C. et al. Enzyme replacement therapy in type I Gaucher disease. Trans. Assoc. Am. Physicians 104, 258–264 (1991).

    CAS  PubMed  Google Scholar 

  43. Beutler, E. et al. Enzyme replacement therapy for Gaucher disease. Blood 78, 1183–1189 (1991).

    Article  CAS  PubMed  Google Scholar 

  44. Barton, N. W. et al. Replacement therapy for inherited enzyme deficiency — macrophage-targeted glucocerebrosidase for Gaucher's disease. N. Engl. J. Med. 324, 1464–1470 (1991).

    Article  CAS  PubMed  Google Scholar 

  45. Weinreb, N. J., Charrow, J., Andersson, H. C., Kaplan P., Kolodny, E. H., Mistry, P., et al. Effectiveness of enzyme replacement therapy in 1028 patients with type 1 Gaucher disease after 2 to 5 years of treatment: a report from the Gaucher registry. Am. J. Med. 113, 112–119 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Damiano, A. M., Pastores, G. M., Ware, J. E. The health-related quality of life of adults with Gaucher's disease receiving enzyme replacement therapy: results from a retrospective study. Qual. Life Res. 7, 373–386 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Rosenberg, M., Kingma, W., Fitzpatrick, M. A., Richards, S. M. Immunosurveillance of alglucerase enzyme therapy for Gaucher patients: induction of humoral tolerance in sero-converted patients after repeat administration. Blood 99, 2081–2088 (1999).

    Article  Google Scholar 

  48. Cox, T. M., Lachmann, R., Hollak, C. E., Aerts, H., van Weely, S., Hrebicek, M. et al. Novel oral treatment of Gaucher's disease with N-butyldeoxynojirimycin (OGT 918) to decrease substrate biosynthesis. Lancet 355, 1481–1485 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Barranger, J. A. et al. Gaucher's disease: studies of gene transfer to haematopoietic cells. Baillieres Clin. Haematol. 10, 765–778 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Clarke, J. T. & Iwanochko, R. M. Enzyme replacement therapy of Fabry disease. Mol. Neurobiol. 32, 43–50 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Brady, R. O. & Schiffmann, R. Enzyme-replacement therapy for metabolic storage disorders. Lancet Neurol. 3, 752–756 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Miebach, E. Enzyme replacement therapy in mucopolysaccharidosis type I. Acta. Paediatr. Suppl.94, 58–60 discussion 57 (2005).

  53. Aharon-Peretz, J., Rosenbaum, H. & Gershoni-Baruch, R. Mutations in the glucocerebrosidase gene and Parkinson's disease in Ashkenazi Jews. N. Engl. J. Med. 351, 1972–1977 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Tayebi, N. et al. Gaucher disease and parkinsonism: a phenotypic and genotypic characterization. Mol. Genet. Metab. 73, 313–321 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Wong, K. et al. Neuropathology provides clues to the pathophysiology of Gaucher disease. Mol. Genet. Metab. 82, 192–207 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Krebs, H. A., Henseleit, K. Untersuchungen über die harnstoffbildung im tierkörper. Z. Physiol. Chem. 210, 33–66 (1932).

    Article  CAS  Google Scholar 

  57. Brusilow, S. W. & Horwich, A. L. in The Molecular and Metabolic Basis of Inherited Disease (eds Scriver, C. R., Beaudet, A. L., Sly, W. S. & Valle, D.) 1187–1232 (McGraw-Hill, New York, 1995).

    Google Scholar 

  58. Bachmann, C. Long-term outcome of patients with urea cycle disorders and the question of neonatal screening. Eur. J. Pediatr. 162, S29–S33 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Bachmann, C. Outcome and survival of 88 patients with urea cycle disorders: a retrospective evaluation. Eur. J. Pediatr. 162, 410–416 (2003).

    Article  PubMed  Google Scholar 

  60. Msall, M., Batshaw, M. L., Suss, R., Brusilow, S. W. & Mellits, E. D. Neurologic outcome in children with inborn errors of urea synthesis. Outcome of urea-cycle enzymopathies. N. Engl. J. Med. 310, 1500–1505 (1984).

    Article  CAS  PubMed  Google Scholar 

  61. Msall, M., Monahan, P. S., Chapanis, N. & Batshaw, M. L. Cognitive development in children with inborn errors of urea synthesis. Acta. Paediatr. Jpn. 30, 435–441 (1988).

    Article  CAS  PubMed  Google Scholar 

  62. Christopher, R., Rajivnath, V. & Shetty, K. T. Arginase deficiency. Indian J. Pediatr. 64, 266–269 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Crombez, E. A. & Cederbaum, S. D. Hyperargininemia due to liver arginase deficiency. Mol. Genet. Metab. 84, 243–251 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Gerrits, G. P. et al. Argininosuccinic aciduria: clinical and biochemical findings in three children with the late onset form, with special emphasis on cerebrospinal fluid findings of amino acids and pyrimidines. Neuropediatrics 24, 15–18 (1993).

    Article  CAS  PubMed  Google Scholar 

  65. Linnebank, M. et al. Argininosuccinate lyase (ASL) deficiency: mutation analysis in 27 patients and a completed structure of the human ASL gene. Hum. Genet. 111, 350–359 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Parsons, H. G., Scott, R. B., Pinto, A., Carter, R. J. & Snyder, F. F. Argininosuccinic aciduria: long-term treatment with arginine. J. Inherit. Metab. Dis. 10, 152–161 (1987).

    Article  CAS  PubMed  Google Scholar 

  67. Prasad, A. N., Breen, J. C., Ampola, M. G. & Rosman, N. P. Argininemia: a treatable genetic cause of progressive spastic diplegia simulating cerebral palsy: case reports and literature review. J. Child Neurol. 12, 301–309 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Reid Sutton, V., Pan, Y., Davis, E. C. & Craigen, W. J. A mouse model of argininosuccinic aciduria: biochemical characterization. Mol. Genet. Metab. 78, 11–16 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Maher, A. D. et al. Mathematical modelling of the urea cycle. A numerical investigation into substrate channelling. Eur. J. Biochem. 270, 3953–3961 (2003). An example of the power of computerized modelling of metabolic pathways.

    Article  CAS  PubMed  Google Scholar 

  70. Palacios, R., Huitron, C. & Soberon, G. Preferential hydrolysis of endogenous arginine by rat liver arginase. Biochem. Biophys. Res. Commun. 38, 438–443 (1970).

    Article  CAS  PubMed  Google Scholar 

  71. Hill, H. Z. & Goodman, S. I. Detection of inborn errors of metabolism. III. Defects in urea cycle metabolism. Clin. Genet. 6, 79–81 (1974).

    Article  CAS  PubMed  Google Scholar 

  72. Tuchman, M., Jaleel, N., Morizono, H., Sheehy, L. & Lynch, M. G. Mutations and polymorphisms in the human ornithine transcarbamylase gene. Hum. Mutat. 19, 93–107 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Burlina, A. B. et al. Allopurinol challenge test in children. J. Inherit. Metab. Dis. 15, 707–712 (1992).

    Article  CAS  PubMed  Google Scholar 

  74. Ricciuti, F. C., Gelehrter, T. D., Rosenberg, L. E. X-chromosome inactivation in human liver: confirmation of X-linkage of ornithine transcarbamylase. Am. J. Hum. Genet. 28, 332–338 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Hauser, E. R., Finkelstein, J. E., Valle, D. & Brusilow, S. W. Allopurinol-induced orotidinuria. A test for mutations at the ornithine carbamoyltransferase locus in women. N. Engl. J. Med. 322, 1641–1645 (1990).

    Article  CAS  PubMed  Google Scholar 

  76. Yudkoff, M. et al. In vivo nitrogen metabolism in ornithine transcarbamylase deficiency. J. Clin. Invest. 98, 2167–2173 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Scaglia, F. et al. An integrated approach to the diagnosis and prospective management of partial ornithine transcarbamylase deficiency. Pediatrics 109, 150–152 (2002).

    Article  PubMed  Google Scholar 

  78. Batshaw, M. L., MacArthur, R. B. & Tuchman, M. Alternative pathway therapy for urea cycle disorders: twenty years later. J. Pediatr. 138, S46–S54 discussion S54–S55 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Brusilow, S. W., Valle, D. L. & Batshaw, M. New pathways of nitrogen excretion in inborn errors of urea synthesis. Lancet 2, 452–454 (1979).

    Article  CAS  PubMed  Google Scholar 

  80. Pearson, D. L. et al. Neonatal pulmonary hypertension — urea-cycle intermediates, nitric oxide production, and carbamoyl-phosphate synthetase function. N. Engl. J. Med. 344, 1832–1838 (2001). An example of genetic variation in a metabolic pathway — the study reveals a phenotype that is not associated with classical Mendelian IEM.

    Article  CAS  PubMed  Google Scholar 

  81. Summar, M. L., Scott, N., Cummings, E., Hutcheson, H., Dawling, S., Christman, B. Analysis of 200 patients undergoing bone marrow transplant shows allelic disequilibrium between drug related toxicity and a common exonic polymorphism in the CPSI gene and correlates with disruption of urea cycle intermediates. Am. J. Hum. Genet. 65 (Suppl.), A25 (1999).

    Google Scholar 

  82. Summar, M. L. et al. Relationship between carbamoyl-phosphate synthetase genotype and systemic vascular function. Hypertension 43, 186–191 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Summar, M. L. et al. Environmentally determined genetic expression: clinical correlates with molecular variants of carbamyl phosphate synthetase I. Mol. Genet. Metab. 81, S12–S19 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Scaglia, F. et al. Clinical consequences of urea cycle enzyme deficiencies and potential links to arginine and nitric oxide metabolism. J. Nutr. 134, 2775S–2782S discussion 2796S–2797S (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Altmuller, J., Palmer, L. J., Fischer, G., Scherb, H. & Wjst, M. Genomewide scans of complex human diseases: true linkage is hard to find. Am. J. Hum. Genet. 69, 936–950 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hirschhorn, J. N., Lohmueller, K., Byrne, E. & Hirschhorn, K. A comprehensive review of genetic association studies. Genet. Med. 4, 45–61 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Vockley, J., Rinaldo, P., Bennett, M. J., Matern, D. & Vladutiu, G. D. Synergistic heterozygosity: disease resulting from multiple partial defects in one or more metabolic pathways. Mol. Genet. Metab. 71, 10–18 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Bains, W. The parts list of life. Nature Biotechnol. 19, 401–402 (2001).

    Article  CAS  Google Scholar 

  89. Scriver, C. R. & Waters, P. J. Monogenic traits are not simple: lessons from phenylketonuria. Trends Genet. 15, 267–272 (1999). A further example of monogenic disorders that reveal more complex phenotypes.

    Article  CAS  PubMed  Google Scholar 

  90. Ideker, T. et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292, 929–934 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Berry, G. T., Reynolds, R. A., Yager, C. T. & Segal, S. Extended [13C]galactose oxidation studies in patients with galactosemia. Mol. Genet. Metab. 82, 130–136 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Halliday, D. & Bodamer, O. A. Measurement of glucose turnover — implications for the study of inborn errors of metabolism. Eur. J. Pediatr. 156, S35–S38 (1997).

    Article  CAS  PubMed  Google Scholar 

  93. Schadewaldt, P. & Wendel, U. Metabolism of branched-chain amino acids in maple syrup urine disease. Eur. J. Pediatr. 156, S62–S66 (1997).

    Article  CAS  PubMed  Google Scholar 

  94. Bearn, A. G. Archibald Edward Garrod, the reluctant geneticist. Genetics 137, 1–4 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pauling, L., Itano, H., Singer, S. J., Wells, I. Sickle cell anemia, a molecular disease. Science 110, 543–548 (1949).

    Article  CAS  PubMed  Google Scholar 

  96. Ingram, V. M. A specific chemical difference between the globins of normal human and sickle-cell anaemia haemoglobin. Nature 178, 792–794 (1956).

    Article  CAS  PubMed  Google Scholar 

  97. Ingram, V. M. Gene mutations in human haemoglobin: the chemical difference between normal and sickle cell haemoglobin. Nature 180, 326–328 (1957).

    Article  CAS  PubMed  Google Scholar 

  98. McKusick, V. Human Genetics 1–148 (Prentice-Hall, Englewood Cliffs, New Jersey, 1969).

    Google Scholar 

  99. McKusick, V. A. On lumpers and splitters, or the nosology of genetic disease. Perspect. Biol. Med. 12, 298–312 (1969).

    Article  CAS  PubMed  Google Scholar 

  100. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Nezu, J. et al. Primary systemic carnitine deficiency is caused by mutations in a gene encoding sodium ion-dependent carnitine transporter. Nature Genet. 21, 91–94 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brendan Lee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

OMIM

Albinism

Alkaptonuria

Cystinuria

Fabry disease

Gaucher disease

MCAD deficiency

OTCD

PD

Pentosuria

Pompe disease

Sickle cell anaemia

FURTHER INFORMATION

Brendan Lee's homepage

Glossary

Tandem mass spectrometry

Mass spectrometry (MS) is a technique that is used to identify compounds by their mass and charge. Compounds are typically separated, often by chromatography, and then ionized for detection. Tandem MS is a very useful high-throughput technology that uses two mass spectrometers in series: the first separates compounds, and the second identifies them based on their mass and charge.

Rhabdomyolysis

The breakdown of muscle tissue.

Cardiomyopathy

A disease process that alters the structure and function of the heart muscle; it is described as hypertrophic, dilated, or restrictive.

Cell autonomous

Defective enzymes or proteins are said to act in a cell-autonomous fashion if their functions are confined within a cell.

Non-cell-autonomous

Enzymes and metabolites are said to act in a non-cell-autonomous fashion if they are produced in one cell but act in another cell, for example by affecting the transport of substrates between cells.

Genotype–phenotype correlations

Correlations between clinical severity and course with specific genetic variants.

Microarray

An array of DNA fragments of either genomic or cDNA sequences that are deposited on solid support and used to identify copy-number variation and level of gene expression.

Nuclear magnetic resonance spectroscopy

(NMR spectroscopy). An analytical chemistry technique that is used to study molecular structure and dynamics, and explores spectrum differences that are caused by the differential alignment of atomic spins in the presence of a strong magnetic field.

Intermediary metabolites

Compounds that are neither precursors nor endproducts of metabolic pathway. Their accumulation or deprivation in inborn errors of metabolism might have pathologic and diagnostic significance.

Phenylketonuria

(PKU). An autosomal-recessive inborn error of metabolism that leads to the deficiency of the enzyme that converts Phe to Tyr. Phe accumulation leads to mental retardation and other neurological problems. A low-Phe diet is an effective therapy.

Sphingolipidosis

A disorder of the formation or breakdown of sphingolipids, a class of lipid that is derived from sphingosine. The most common disorder of sphingolipid metabolism is Gaucher disease.

Hepatosplenomegaly

An enlargement of the liver and spleen.

Thrombocytopoenia

A decrease in the number of platelets in the blood.

Splenectomy

The surgical removal of the spleen.

Astrogliosis

An abnormal increase in the number of astrocytes, typically owing to neuronal cell death or injury.

Lewy body

An abnormal aggregate that is seen in nerve cells of patients with Parkinson disease or lewy-body dementia.

Hippocampus

An area of the brain within the temporal lobe. It is thought to have a crucial role in the limbic system.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lanpher, B., Brunetti-Pierri, N. & Lee, B. Inborn errors of metabolism: the flux from Mendelian to complex diseases. Nat Rev Genet 7, 449–459 (2006). https://doi.org/10.1038/nrg1880

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1880

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing