Inherited epigenetic variation — revisiting soft inheritance

Abstract

Phenotypic variation is traditionally parsed into components that are directed by genetic and environmental variation. The line between these two components is blurred by inherited epigenetic variation, which is potentially sensitive to environmental inputs. Chromatin and DNA methylation-based mechanisms mediate a semi-independent epigenetic inheritance system at the interface between genetic control and the environment. Should the existence of inherited epigenetic variation alter our thinking about evolutionary change?

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Three classes of epigenetic variation.

References

  1. 1

    Bird, A. & Macleod, D. Reading the DNA methylation signal. Cold Spring Harb. Symp. Quant. Biol. 69, 113–118 (2004).

    CAS  Article  Google Scholar 

  2. 2

    Jaenisch, R. & Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genet. 33, S245–S254 (2003).

    Article  Google Scholar 

  3. 3

    Wang, Y. et al. Linking covalent histone modifications to epigenetics: the rigidity and plasticity of the marks. Cold Spring Harb. Symp. Quant. Biol. 69, 161–169 (2004).

    CAS  Article  Google Scholar 

  4. 4

    Bernstein, E. & Allis, C. D. RNA meets chromatin. Genes Dev. 19, 1635–1655 (2005).

    CAS  Article  Google Scholar 

  5. 5

    Matzke, M. A. & Birchler, J. A. RNAi-mediated pathways in the nucleus. Nature Rev. Genet. 6, 24–35 (2005).

    CAS  Article  Google Scholar 

  6. 6

    Wassenegger, M. The role of the RNAi machinery in heterochromatin formation. Cell 122, 13–16 (2005).

    CAS  Article  Google Scholar 

  7. 7

    Di Croce, L. et al. Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 295, 1079–1082 (2002).

    CAS  Article  Google Scholar 

  8. 8

    Jia, S., Noma, K. & Grewal, S. I. RNAi-independent heterochromatin nucleation by the stress-activated ATF/CREB family proteins. Science 304, 1971–1976 (2004).

    CAS  Article  Google Scholar 

  9. 9

    Makar, K. W. et al. Active recruitment of DNA methyltransferases regulates interleukin 4 in thymocytes and T cells. Nature Immunol. 4, 1183–1190 (2003).

    CAS  Article  Google Scholar 

  10. 10

    Robertson, K. D. et al. DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nature Genet. 25, 338–342 (2000).

    CAS  Article  Google Scholar 

  11. 11

    Yamada, T., Fischle, W., Sugiyama, T., Allis, C. D. & Grewal, S. I. The nucleation and maintenance of heterochromatin by a histone deacetylase in fission yeast. Mol. Cell 20, 173–185 (2005).

    CAS  Article  Google Scholar 

  12. 12

    Grace Goll, M. & Bestor, T. H. Eukaryotic cytosine methyltransferases. Annu. Rev. Biochem. 74, 481–514 (2005).

    Article  Google Scholar 

  13. 13

    Genereux, D. P., Miner, B. E., Bergstrom, C. T. & Laird, C. D. A population-epigenetic model to infer site-specific methylation rates from double-stranded DNA methylation patterns. Proc. Natl Acad. Sci. USA 102, 5802–5807 (2005).

    CAS  Article  Google Scholar 

  14. 14

    Pfeifer, G. P., Steigerwald, S. D., Hansen, R. S., Gartler, S. M. & Riggs, A. D. Polymerase chain reaction-aided genomic sequencing of an X chromosome-linked CpG island: methylation patterns suggest clonal inheritance, CpG site autonomy, and an explanation of activity state stability. Proc. Natl Acad. Sci. USA 87, 8252–8256 (1990).

    CAS  Article  Google Scholar 

  15. 15

    Boyes, J. & Bird, A. Repression of genes by DNA methylation depends on CpG density and promoter strength: evidence for involvement of a methyl-CpG binding protein. EMBO J. 11, 327–333 (1992).

    CAS  Article  Google Scholar 

  16. 16

    Lorincz, M. C., Schubeler, D., Hutchinson, S. R., Dickerson, D. R. & Groudine, M. DNA methylation density influences the stability of an epigenetic imprint and Dnmt3a/b-independent de novo methylation. Mol. Cell. Biol. 22, 7572–7580 (2002).

    CAS  Article  Google Scholar 

  17. 17

    Schotta, G. et al. Central role of Drosophila SU(VAR)3–9 in histone H3-K9 methylation and heterochromatic gene silencing. EMBO J. 21, 1121–1131 (2002).

    CAS  Article  Google Scholar 

  18. 18

    Richards, E. J. & Elgin, S. C. Epigenetic codes for heterochromatin formation and silencing: rounding up the usual suspects. Cell 108, 489–500 (2002).

    CAS  Article  Google Scholar 

  19. 19

    Selker, E. U. et al. Induction and maintenance of nonsymmetrical DNA methylation in Neurospora. Proc. Natl Acad. Sci. USA 99 (Suppl. 4), 16485–16490 (2002).

    CAS  Article  Google Scholar 

  20. 20

    Sugiyama, T., Cam, H., Verdel, A., Moazed, D. & Grewal, S. I. RNA-dependent RNA polymerase is an essential component of a self-enforcing loop coupling heterochromatin assembly to siRNA production. Proc. Natl Acad. Sci. USA 102, 152–157 (2005).

    CAS  Article  Google Scholar 

  21. 21

    Kahan, B. & DeMars, R. Autonomous gene expression on the human inactive X chromosome. Somatic Cell Genet. 6, 309–323 (1980).

    CAS  Article  Google Scholar 

  22. 22

    Morgan, H. D., Santos, F., Green, K., Dean, W. & Reik, W. Epigenetic reprogramming in mammals. Hum. Mol. Genet. 14, R47–R58 (2005).

    CAS  Article  Google Scholar 

  23. 23

    Jablonka, E. & Lamb, M. J. Epigenetic Inheritance and Evolution (Oxford Univ. Press, Oxford, 1995).

    Google Scholar 

  24. 24

    Macleod, D., Clark, V. H. & Bird, A. Absence of genome-wide changes in DNA methylation during development of the zebrafish. Nature Genet. 23, 139–140 (1999).

    CAS  Article  Google Scholar 

  25. 25

    Lane, N. et al. Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis 35, 88–93 (2003).

    CAS  Article  Google Scholar 

  26. 26

    Silva, A. J. & White, R. Inheritance of allelic blueprints for methylation patterns. Cell 54, 145–152 (1988).

    CAS  Article  Google Scholar 

  27. 27

    Holliday, R. The inheritance of epigenetic defects. Science 238, 163–170 (1987).

    CAS  Article  Google Scholar 

  28. 28

    Lippman, Z. et al. Role of transposable elements in heterochromatin and epigenetic control. Nature 430, 471–476 (2004).

    CAS  Article  Google Scholar 

  29. 29

    Liu, J., He, Y., Amasino, R. & Chen, X. siRNAs targeting an intronic transposon in the regulation of natural flowering behavior in Arabidopsis. Genes Dev. 18, 2873–2878 (2004).

    CAS  Article  Google Scholar 

  30. 30

    Michaud, E. J. et al. Differential expression of a new dominant agouti allele (Aiapy) is correlated with methylation state and is influenced by parental lineage. Genes Dev. 8, 1463–1472 (1994).

    CAS  Article  Google Scholar 

  31. 31

    Morgan, H. D., Sutherland, H. G., Martin, D. I. & Whitelaw, E. Epigenetic inheritance at the agouti locus in the mouse. Nature Genet. 23, 314–318 (1999).

    CAS  Article  Google Scholar 

  32. 32

    Jacobsen, S. E., Sakai, H., Finnegan, E. J., Cao, X. & Meyerowitz, E. M. Ectopic hypermethylation of flower-specific genes in Arabidopsis. Curr. Biol. 10, 179–186 (2000).

    CAS  Article  Google Scholar 

  33. 33

    Kakutani, T., Jeddeloh, J. A., Flowers, S. K., Munakata, K. & Richards, E. J. Developmental abnormalities and epimutations associated with DNA hypomethylation mutations. Proc. Natl Acad. Sci. USA 93, 12406–12411 (1996).

    CAS  Article  Google Scholar 

  34. 34

    Kankel, M. W. et al. Arabidopsis MET1 cytosine methyltransferase mutants. Genetics 163, 1109–1122 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Fraga, M. F. et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl Acad. Sci. USA 102, 10604–10609 (2005).

    CAS  Article  Google Scholar 

  36. 36

    Feinberg, A. P. The epigenetics of cancer etiology. Semin. Cancer Biol. 14, 427–432 (2004).

    CAS  Article  Google Scholar 

  37. 37

    Bastow, R. et al. Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427, 164–167 (2004).

    CAS  Article  Google Scholar 

  38. 38

    Steward, N., Ito, M., Yamaguchi, Y., Koizumi, N. & Sano, H. Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J. Biol. Chem. 277, 37741–37746 (2002).

    CAS  Article  Google Scholar 

  39. 39

    Axtell, J. D. & Brink, R. A. Chemically induced paramutation at the R locus in maize. Proc. Natl Acad. Sci. USA 58, 181–187 (1967).

    CAS  Article  Google Scholar 

  40. 40

    Ivarie, R. D. & Morris, J. A. Induction of prolactin-deficient variants of GH3 rat pituitary tumor cells by ethyl methanesulfonate: reversion by 5-azacytidine, a DNA methylation inhibitor. Proc. Natl Acad. Sci. USA 79, 2967–2670 (1982).

    CAS  Article  Google Scholar 

  41. 41

    Stokes, T. L., Kunkel, B. N. & Richards, E. J. Epigenetic variation in Arabidopsis disease resistance. Genes Dev. 16, 171–182 (2002).

    CAS  Article  Google Scholar 

  42. 42

    Jacobsen, S. E. & Meyerowitz, E. M. Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis. Science 277, 1100–1103 (1997).

    CAS  Article  Google Scholar 

  43. 43

    Soppe, W. J. et al. The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol. Cell 6, 791–802 (2000).

    CAS  Article  Google Scholar 

  44. 44

    Cooney, C. A., Dave, A. A. & Wolff, G. L. Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J. Nutr. 132, 2393S–2400S (2002).

    CAS  Article  Google Scholar 

  45. 45

    Waterland, R. A. & Jirtle, R. L. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol. Cell. Biol. 23, 5293–5300 (2003).

    CAS  Article  Google Scholar 

  46. 46

    Wolff, G. L., Kodell, R. L., Moore, S. R. & Cooney, C. A. Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J. 12, 949–957 (1998).

    CAS  Article  Google Scholar 

  47. 47

    Weaver, I. C. et al. Epigenetic programming by maternal behavior. Nature Neurosci. 7, 847–854 (2004).

    CAS  Article  Google Scholar 

  48. 48

    Anway, M. D., Cupp, A. S., Uzumcu, M. & Skinner, M. K. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308, 1466–1469 (2005).

    CAS  Article  Google Scholar 

  49. 49

    Roemer, I., Reik, W., Dean, W. & Klose, J. Epigenetic inheritance in the mouse. Curr. Biol. 7, 277–280 (1997).

    CAS  Article  Google Scholar 

  50. 50

    Carrel, L. & Willard, H. F. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434, 400–404 (2005).

    CAS  Article  Google Scholar 

  51. 51

    Cubas, P., Vincent, C. & Coen, E. An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401, 157–161 (1999).

    CAS  Article  Google Scholar 

  52. 52

    Waddington, C. H. Canalization of development and the inheritance of acquired characters. Nature 150, 563–565 (1942).

    Article  Google Scholar 

  53. 53

    Waddington, C. H. Genetic assimilation of an acquired character. Evolution 7, 118–126 (1953).

    Article  Google Scholar 

  54. 54

    Pal, C. & Miklos, I. Epigenetic inheritance, genetic assimilation and speciation. J. Theor. Biol. 200, 19–37 (1999).

    CAS  Article  Google Scholar 

  55. 55

    Provine, W. B. The Origins of Theoretical Population Genetics (Univ. Chicago Press, Chicago, 1971).

    Google Scholar 

  56. 56

    Denver, D. R. et al. The transcriptional consequences of mutation and natural selection in Caenorhabditis elegans. Nature Genet. 37, 544–548 (2005).

    CAS  Article  Google Scholar 

  57. 57

    Schultz, S. T., Lynch, M. & Willis, J. H. Spontaneous deleterious mutation in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 96, 11393–11398 (1999).

    CAS  Article  Google Scholar 

  58. 58

    Shaw, R. G., Byers, D. L. & Darmo, E. Spontaneous mutational effects on reproductive traits of Arabidopsis thaliana. Genetics 155, 369–378 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Sollars, V. et al. Evidence for an epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution. Nature Genet. 33, 70–74 (2003).

    CAS  Article  Google Scholar 

  60. 60

    Fazzari, M. J. & Greally, J. M. Epigenomics: beyond CpG islands. Nature Rev. Genet. 5, 446–455 (2004).

    CAS  Article  Google Scholar 

  61. 61

    Waddington, C. H. The epigenotype. Endeavour 1, 18–20 (1942).

    Google Scholar 

  62. 62

    Filipowicz, W., Jaskiewicz, L., Kolb, F. A. & Pillai, R. S. Post-transcriptional gene silencing by siRNAs and miRNAs. Curr. Opin. Struct. Biol. 15, 331–341 (2005).

    CAS  Article  Google Scholar 

  63. 63

    Tijsterman, M., Ketting, R. F. & Plasterk, R. H. The genetics of RNA silencing. Annu. Rev. Genet. 36, 489–519 (2002).

    CAS  Article  Google Scholar 

  64. 64

    Mayr, E. in The Evolutionary Synthesis (eds Mayr, E. & Provine, W. B.) 1–48 (Harvard Univ. Press, Cambridge, Massachusetts; London, England, 1980).

    Google Scholar 

  65. 65

    Mayr, E. The Growth of Biological Thought (Harvard Univ. Press, Cambridge, Massachusetts, 1982).

    Google Scholar 

  66. 66

    Burkhardt, R. W. The Spirit of System: Lamarck and Evolutionary Biology (Harvard Univ. Press, Cambridge, Massachusetts, 1995).

    Google Scholar 

  67. 67

    Banks, J. A., Masson, P. & Fedoroff, N. Molecular mechanisms in the developmental regulation of the maize Suppressor-mutator transposable element. Genes Dev. 2, 1364–1380 (1988).

    CAS  Article  Google Scholar 

  68. 68

    Rakyan, V. K. et al. Transgenerational inheritance of epigenetic states at the murine AxinFu allele occurs after maternal and paternal transmission. Proc. Natl Acad. Sci. USA 100, 2538–2543 (2003).

    CAS  Article  Google Scholar 

  69. 69

    Stam, M., Belele, C., Dorweiler, J. E. & Chandler, V. L. Differential chromatin structure within a tandem array 100 kb upstream of the maize b1 locus is associated with paramutation. Genes Dev. 16, 1906–1918 (2002).

    CAS  Article  Google Scholar 

  70. 70

    Colot, V., Maloisel, L. & Rossignol, J. L. Interchromosomal transfer of epigenetic states in Ascobolus: transfer of DNA methylation is mechanistically related to homologous recombination. Cell 86, 855–864 (1996).

    CAS  Article  Google Scholar 

  71. 71

    Suter, C. M., Martin, D. I. & Ward, R. L. Germline epimutation of MLH1 in individuals with multiple cancers. Nature Genet. 36, 497–501 (2004).

    CAS  Article  Google Scholar 

  72. 72

    Das, O. P. & Messing, J. Variegated phenotype and developmental methylation changes of a maize allele originating from epimutation. Genetics 136, 1121–1141 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Bender, J. & Fink, G. R. Epigenetic control of an endogenous gene family is revealed by a novel blue fluorescent mutant of Arabidopsis. Cell 83, 725–734 (1995).

    CAS  Article  Google Scholar 

  74. 74

    Melquist, S. & Bender, J. Transcription from an upstream promoter controls methylation signaling from an inverted repeat of endogenous genes in Arabidopsis. Genes Dev. 17, 2036–2047 (2003).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

I am grateful for the helpful comments of G. Allen and the anonymous reviewers. My laboratory's experimental work on epigenetic variation and inheritance is funded by the US National Science Foundation.

Author information

Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Eric J. Richards's homepage

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Richards, E. Inherited epigenetic variation — revisiting soft inheritance. Nat Rev Genet 7, 395–401 (2006). https://doi.org/10.1038/nrg1834

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing