Key Points
-
Recent studies have uncovered the extent and pattern of conservation of intron position across widely diverged eukaryotic species.
-
Introns that are found in the genomes of modern species are mainly fairly old, with significant fractions dating to relatively deep eukaryotic ancestors.
-
Conservation of spliceosomal components across diverse eukaryotic lineages suggests the presence of a complex spliceosome in the ancestor of all extant eukaryotes.
-
This pattern of conservation might indicate that introns were already numerous in early eukaryotes, with diverse eukaryotic lineages having subsequently experienced more intron loss than gain, although debate is ongoing.
-
Analysis of apparent cases of intron loss indicates that such loss might occur through recombination between the genomic copy of the gene and a reverse transcript of a spliced mRNA copy of the gene.
-
Analysis of introns that seem to have been gained over the past 10–100 million years indicates that the new introns could arise as transposon insertions into contiguous coding sequence, not by transposition of previous introns, which was the previously favoured model.
-
Previous proposals for the causes of the vast differences between numbers of introns between eukaryotic species, which were based on inter-specific differences in either the selective value of introns or population size, have trouble explaining the apparently large numbers of introns in fairly deep eukaryotic ancestors. We propose that many of these intron-number differences could be explained by intron-loss rates.
Abstract
The origins and importance of spliceosomal introns comprise one of the longest-abiding mysteries of molecular evolution. Considerable debate remains over several aspects of the evolution of spliceosomal introns, including the timing of intron origin and proliferation, the mechanisms by which introns are lost and gained, and the forces that have shaped intron evolution. Recent important progress has been made in each of these areas. Patterns of intron-position correspondence between widely diverged eukaryotic species have provided insights into the origins of the vast differences in intron number between eukaryotic species, and studies of specific cases of intron loss and gain have led to progress in understanding the underlying molecular mechanisms and the forces that control intron evolution.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Genome-wide identification of the geranylgeranyl pyrophosphate synthase (GGPS) gene family involved in chlorophyll synthesis in cotton
BMC Genomics Open Access 05 April 2023
-
Genome-wide identification and expression analysis of the SAUR gene family in foxtail millet (Setaria italica L.)
BMC Plant Biology Open Access 14 January 2023
-
Genome-wide identification and expression analysis of the ftsH protein family and its response to abiotic stress in Nicotiana tabacum L
BMC Genomics Open Access 12 July 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Cannone, J. J. et al. The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. MBC Bioinformatics 3, 2 (2002).
Bonen, L. & Vogel, J. The ins and outs of group II introns. Trends Genet. 17, 322–331 (2001).
Lambowitz, A. M. & Zimmerly, S. Mobile group II introns. Annu. Rev. Genet. 38, 1–35 (2004).
Jurica, M. S. & Moore, M. J. Pre-mRNA splicing: awash in a sea of proteins. Mol. Cell 12, 5–14 (2003).
Cech, T. R. The generality of self-splicing RNA: relationship to nuclear mRNA splicing. Cell 44, 207–210. (1986).
Rogers, J. H. How were introns inserted into nuclear genes? Trends Genet. 5, 213–216 (1989). Two of the five current models of intron creation are proposed in this speculative piece.
Sharp, P. A. Five easy pieces. Science 254, 663 (1991).
Cavalier-Smith, T. Intron phylogeny: a new hypothesis. Trends Genet. 7, 145–148 (1991). An important statement of the idea that introns might be descended from type II introns that are transferred from early eukaryotic organelles.
Stoltzfus, A. On the possibility of constructive neutral evolution. J. Mol. Evol. 49, 169–181 (1999).
Llopart, A., Comeron, J. M., Brunet, F. G., Lachaise, D. & Long, M. Intron presence–absence polymorphism in Drosophila driven by positive Darwinian selection. Proc. Natl Acad. Sci. USA 99, 8121–8126 (2002). The sole known cases of polymorphic intron absence–presence within a species, notably in a gene with a fascinating evolutionary history.
Iwamoto, M., Maekawa, M., Saito, A., Higo, H. & Higo, K. Evolutionary relationship of plant catalase genes inferred from intron–exon structures: isozyme divergence after the separation of monocots and dicots. Theor. Appl. Genet. 97, 9–19 (1998). The first convincing case of intron gain in which the source of the intron, an inserted SINE element, is clear.
Iwamoto, M., Nagashima, H., Nagamine, T., Higo, H. & Higo, K. p-SINE1-like intron of the CatA catalase homologs and phylogenetic relationships among AA-genome Oryza and related species. Theor. Appl. Genet. 98, 853–861 (1999).
Hankeln, T., Friedl, H., Ebersberger, I., Martin, J. & Schmidt, E. R. A variable intron distribution in globin genes of Chironomus: evidence for recent intron gain. Gene 205, 151–160 (1997).
Dawkins, R. The Selfish Gene (Oxford Univ. Press, 1976).
Orgel, L. E. & Crick, F. H. Selfish DNA: the ultimate parasite. Nature 284, 604–607 (1980).
Doolittle, W. F. & Sapienza, C. Selfish genes, the phenotype paradigm and genome evolution. Nature 284, 601–603 (1981). Along with reference 15, this article contains early statements of the idea of genome evolution by insertion of selfish elements and differential selection on such elements between species of different complexity.
Gilbert, W. The exon theory of genes. Cold Spring Harbor Symp. Quant. Biol. 52, 901–905 (1987).
Britten, R. J. & Davidson, E. H. Gene regulation for higher cells: a theory. Science 165, 349–357 (1969).
Britten, R. J. & Davidson, E. H. Repetitive and non-repetitive DNA sequences and a speculation on the origins of evolutionary novelty. Q. Rev. Biol. 46, 111–138 (1971).
Lynch, M. Intron evolution as a population-genetic process. Proc. Natl Acad. Sci. USA 99, 6118–6123 (2002).
Lynch, M. & Conery, J. The origins of genome complexity. Science 302, 1401–1404 (2002).
Gilbert, W. Why genes in pieces? Nature 271, 501 (1978).
Doolittle, W. F. Genes in pieces – were they ever together? Nature 272, 581–582 (1978).
Blake, C. C. F. Do genes in pieces imply proteins in pieces? Nature 273, 267 (1978). References 22–24 provide the backbone of the IE theory.
Perler, F. et al. The evolution of genes — the chicken preproinsulin gene. Cell 20, 555–566 (1980).
Go, M. Correlation of DNA exonic regions with protein structural units in haemoglobin. Nature 291, 90–92 (1981).
Stone, E. M., Rothblum, K. N. & Schwartz, R. J. Intron-dependent evolution of chicken glyceraldehyde phosphate dehydrogenase gene. Nature 313, 498–500 (1985).
Straus, D. & Gilbert, W. Genetic engineering in the Precambrian: structure of the chicken triosephosphate isomerase gene. Mol. Cell Biol. 5, 3497–3506 (1985).
Long, M., Rosenberg, C. & Gilbert, W. Intron phase correlations and the evolution of the intron/exon structure of genes. Proc. Natl Acad. Sci. USA 92, 12495–12499 (1995).
De Souza, S. J., Long, M., Schoenbach, L., Roy, S. W. & Gilbert., W. Introns correlate with module boundaries in ancient proteins. Proc. Natl Acad. Sci. USA 93, 14632–14636 (1996).
De Souza, S. J. et al. Towards a resolution of the introns early/late debate: only phase zero introns are correlated with the structure of ancient proteins. Proc. Natl Acad. Sci. USA 95, 5094–5099 (1998). An important early statement of the 'synthetic' or 'mixed' variant of the IE theory.
Roy, S. W., Nosaka, M., de Souza, S. J. & Gilbert, W. Centripetal modules and ancient introns. Gene 238, 85–91 (1999).
Fedorov, A. et al. Intron distribution difference for 276 ancient and 131 modern genes suggests the existence of ancient introns. Proc. Natl Acad. Sci. USA 98, 13177–13182 (2001).
Roy, S. W., Lewis, B. P., Fedorov, A. & Gilbert, W. Footprints of primordial introns on the eukaryotic genome. Trends Genet. 17, 496–498 (2001).
Fedorov, A., Roy, S., Cao, X. & Gilbert, W. Phylogenetically older introns strongly correlate with module boundaries in ancient proteins. Genome Res. 13, 1155–1157 (2003).
Roy, S. W., Fedorov, A. & Gilbert, W. The signal of ancient introns is obscured by intron density and homolog number. Proc. Natl Acad. Sci. USA 99, 15513–15517 (2002).
De Souza, S. J. The emergence of a synthetic theory of intron evolution. Genetica 118, 117–121 (2003).
Roy, S. W. Recent evidence for the exon theory of genes. Genetica 118, 251–266 (2003).
Patthy, L. Genome evolution and the evolution of exon-shuffling — a review. Gene 238, 103–114 (1999). A comprehensive review of the known cases of exon shuffling.
Patthy, L. Modular assembly of genes and the evolution of new functions. Genetica 118, 217–231 (2003).
Tonegawa, S., Maxam, A. M., Tizard, R., Bernard, O. & Gilbert, W. Sequence of a mouse germ-line gene for a variable region of an immunoglobulin light chain. Proc. Natl Acad. Sci. USA 75, 1485–1489 (1978).
Comeron, J. M. & Kreitman, M. The correlation between intron length and recombination in Drosophila. Dynamic equilibrium between mutational and selective forces. Genetics 156, 1175–1190 (2000).
Duret, L. Why do genes have introns? Recombination might add a new piece to the puzzle. Trends Genet. 17, 172–175 (2001).
Lynch, M. & Kewalramani, A. Messenger RNA surveillance and the evolutionary proliferation of introns. Mol. Biol. Evol. 20, 563–571 (2003).
Cavalier-Smith, T. Selfish DNA and the origin of introns. Nature 315, 283–284 (1985). An important early statement of the IL hypothesis.
Sharp, P. A. On the origin of RNA splicing and introns. Cell 42, 397–400 (1985).
Dibb, N. J. & Newman, A. J. Evidence that introns arose at proto-splice sites. EMBO J. 8, 2015–2021 (1989).
Palmer, J. D. & Logsdon, J. M. Jr. The recent origin of introns. Curr. Opin. Genet. Dev. 1, 470–477 (1991).
Stoltzfus, A., Spencer, D. F., Zuker, M., Logsdon, J. M. Jr & Doolittle, W. F. Testing the exon theory of genes: the evidence from protein structure. Science 265, 202–207 (1994).
Stoltzfus, A. Origin of introns — early or late? Nature 369, 526–527 (1994).
Logsdon, J. M. Jr et al. Seven newly discovered intron positions in the triose-phosphate isomerase gene: evidence for the introns-late theory. Proc. Natl Acad. Sci. USA 92, 8507–8511 (1995).
Kwaitowski, J., Krawczyk, M., Kornacki, M., Bailey, K. & Ayala, F. J. Evidence against the exon theory of genes derived from the triose-phosphate isomerase gene. Proc. Natl Acad. Sci. USA 92, 8503–8506 (1995).
Cho, G. & Doolittle, R. F. Intron distribution in ancient paralogs supports random insertion and not random loss. J. Mol. Evol. 44, 573–584 (1997).
Rzhetsky, A., Ayala, F. J., Hsu, L. C., Chang, C. & Yoshida, A. Exon/intron structure of aldehyde dehydrogenase genes supports the 'introns-late' theory. Proc. Natl Acad. Sci. USA 94, 6820–6825 (1997).
Logsdon, J. M. Jr. The recent origins of spliceosomal introns revisited. Curr. Opin. Genet. Dev. 8, 637–648 (1998).
Logsdon, J. M. Jr, Stoltzfus, A. & Doolittle, W. F. Molecular evolution: recent cases of spliceosomal intron gain? Curr. Biol. 8, R560–R563 (1998).
Fedoro v, A. F., Merican, A. F. & Gilbert, W. Large-scale comparison of intron positions among animal, plant, and fungal genes. Proc. Natl Acad. Sci. USA 99, 16128–16133 (2002).
Rogozin, I. B., Wolf, Y. I., Sorokin, A. V., Mirkin, B. G. & Koonin, E. V. Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution. Curr. Biol. 13, 1512–1517 (2003).
Tarrio, R., Rodriguez-Trelles, F. & Ayala, F. J. A new Drosophila spliceosomal intron position is common in plants. Proc. Natl Acad. Sci. USA 100, 6580–6583 (2003).
Dibb, N. J. Proto-splice site model of intron origin. J. Theor. Biol. 151, 405–416 (1991).
Paquette, S. M., Bak, S & Feyereisen, R. Intron–exon organization and phylogeny in a large superfamily, the paralogous cytochrome P450 genes of Arabidopsis thaliana. DNA Cell Biol. 19, 307–317 (2000).
Sverdlov, A. V., Rogozin, I. B., Babenko, V. N. & Koonin, E. V. Reconstruction of ancestral protosplice sites. Curr. Biol. 14, 1505–1508 (2004).
Coghlan, A. & Wolfe, K. H. Origins of recently gained introns in Caenorhabditis. Proc. Natl Acad. Sci. USA 101, 11362–11367 (2004). The first sequence analysis of a large number of putative recently gained introns. The results are interpreted by the authors as evidence for intron transposition, although the answer might not be so straightforward.
Qiu, W. G., Schisler, N. & Stoltzfus, A. The evolutionary gain of spliceosomal introns: sequence and phase preferences. Mol. Biol. Evol. 21, 1252–1263 (2004).
Tordai, H. & Patthy, L. Insertion of spliceosomal introns in proto-splice sites: the case of secretory signal peptides. FEBS Lett. 575, 109–111 (2004).
Sadusky, T., Newman, A. J. & Dibb, N. J. Exon junction sequences as cryptic splice sites: implications for intron origin. Curr. Biol. 14, 505–509 (2004).
Stoltzfus, A. Molecular evolution: introns fall into place. Curr. Biol. 14, R351–352 (2004).
Sverdlov, A. V., Rogozin, I. B., Babenko, V. N. & Koonin, E. V. Conservation versus parallel gains in intron evolution. Nucleic Acids Res. 33, 1741–1748 (2005).
Roy, S. W. & Gilbert, W. Complex early genes. Proc. Natl Acad. Sci. USA 102, 1986–1991 (2005). The reanalysis of data from reference 58, which indicates that intron loss, not gain, has dominated intron evolution.
Rogozin, I. B., Sverdlov, A. V., Babenko, V. N. & Koovin, E. V. Analysis of evolution of exon–intron structure in eukaryotic genes. Brief Bioinform. 6, 118–134.
Roy, S. W., Fedorov, A. & Gilbert, W. Large-scale comparison of intron positions in mammalian genes shows intron loss but no gain. Proc. Natl Acad. Sci. USA 100, 7158–7162 (2003).
Cho, S., Jin, S. W., Cohen, A. & Ellis, R. E. A phylogeny of Caenorhabditis reveals frequent loss of introns during nematode evolution. Genome Res. 14, 1207–1220 (2004).
Kiontke, K. et al. Caenorhabditis phylogeny predicts convergence of hermaphroditism and extensive intron loss. Proc. Natl Acad. Sci. USA 101, 9003–9008 (2004).
Robertson, H. M. Two large families of chemoreceptor genes in the nematodes Caenorhabditis elegans and Caenorhabditis briggsae reveal extensive gene duplication, diversification, movement, and intron loss. Genome Res. 8, 449–463 (1998).
Wolf, Y. I., Kondrashov, F. A. & Koonin, E. V. Footprints of primordial introns on the eukaryotic genome: still no clear traces. Trends Genet. 17, 499–501 (2001).
Seo, H. C. et al. Miniature genome in the marine chordate Oikopleura dioica. Science 294, 2506 (2001).
Edvardsen, R. B. et al. Hypervariable and highly divergent intron–exon organizations in the chordate Oikopleura dioica. J. Mol. Evol. 59, 448–457 (2004).
Babenko, V. N., Rogozin, I. B., Mekhedov, S. L. & Koonin, E. V. Prevalence of intron gain over intron loss in the evolution of paralogous gene families. Nucleic Acids Res. 32, 3724–3733 (2004).
Embley, T. M. & Hirt, R. P. Early branching eukaryotes? Curr. Opin. Genet. Dev. 8, 624–629 (1998).
Simpson, A. G. & Roger, A. J. Eukaryotic evolution: getting to the root of the problem. Curr. Biol. 12, R691–R693 (2002).
Sogin, M. L. Early evolution and the origin of eukaryotes. Curr. Opin. Genet. Dev. 1, 457–463 (1991).
Hashimoto, T. & Hasegawa, M. Origin and early evolution of eukaryotes inferred from the amino acid sequences of translation elongation factors 1α/Tu and 2/G. Adv. Biophys. 32, 73–120 (1996).
Stiller, J. W., Duffield, E. C. & Hall, B. D. Amitochondriate amoebae and the evolution of DNA-dependent RNA polymerase II. Proc. Natl Acad. Sci. USA 95, 11769–11774 (1998).
Biderre, C., Metenier, G. & Vivares, C. P. A small spliceosomal-type intron occurs in a ribosomal protein gene of the microsporidian Encephalitozoon cuniculi. Mol. Biochem. Parasitol. 94, 283–286 (1998).
Fast, N. M., Roger, A. J., Richardson, C. A. & Doolittle, W. F. U2 and U6 snRNA genes in the microsporidian Nosema locustae: evidence for a functional spliceosome. Nucleic Acids Res. 26, 3202–3207 (1998).
Fast, N. M. & Doolittle, W. F. Trichomonas vaginalis possesses a gene encoding the essential spliceosomal component, PRP8. Mol. Biochem. Parasitol. 99, 275–278 (1999).
Breckenridge, D. G, Watanabe, Y., Greenwood, S. J., Gray, M. W. & Schnare, M. N. U1 small nuclear RNA and spliceosomal introns in Euglena gracilis. Proc. Natl Acad. Sci. USA 96, 852–856 (1999).
Ismaili, N. et al. Characterization of a SR protein from Trypanosoma brucei with homology to RNA-binding cis-splicing proteins. Mol. Biochem. Parasitol. 102, 103–105 (1999).
Schnare, M. N. & Gray, M. W. Structural conservation and variation among U5 small nuclear RNAs from trypanosomatid protozoa. Biochim. Biophys. Acta. 1490, 362–366 (2000).
Dacks, J. B. & Doolittle, W. F. Reconstructing/deconstructing the earliest eukaryotes: how comparative genomics can help. Cell 107, 419–425 (2001).
Edgcomb, V. P., Roger, A. J., Simpson, A. G., Kysela, D. T. & Sogin, M. L. Evolutionary relationships among 'jakobid' flagellates as indicated by α- and β-tubulin phylogenies. Mol. Biol. Evol. 18, 514–522 (2001).
Archibald, J. M., O'Kelly, C. J. & Doolittle, W. F. The chaperonin genes of jakobid and jakobid-like flagellates: implications for eukaryotic evolution. Mol. Biol. Evol. 19, 422–431 (2002).
Nixon, J. E. et al. A spliceosomal intron in Giardia lamblia. Proc. Natl Acad. Sci. USA 99, 3701–3705 (2002).
Simpson, A. G., MacQuarrie, E. K & Roger, A. J. Eukaryotic evolution: early origin of canonical introns. Nature 419, 270 (2002).
Collins, L. & Penny, D. Complex spliceosomal organization ancestral to extant eukaryotes. Mol. Biol. Evol. 22, 1053–1066 (2005). A demonstration of the presence of a sophisticated spliceosome in the common ancestor of all extant eukaryotes.
Vanacova, S., Yan, W., Carlton, J. M. & Johnson, P. J. Spliceosomal introns in the deep-branching eukaryote Trichomonas vaginalis. Proc. Natl Acad. Sci. USA 102, 4430–4435 (2005).
Anantharaman, V., Koonin, E. V. & Aravind, L. Comparative genomics and evolution of proteins involved in RNA metabolism. Nucleic Acids. Res. 30, 1427–1464 (2002).
Ruvinsky, A., Eskesen, S. T., Eskesen, F. N. & Hurst, L. D. Can codon usage bias explain intron phase distributions and exon symmetry? J. Mol. Evol. 60, 99–104 (2005).
Long, M., de Souza, S. J., Rosenberg, C. & Gilbert, W. Relationship between 'proto-splice sites' and intron phases: evidence from dicodon analysis. Proc. Natl Acad. Sci. USA 95, 219–223 (1998).
Long, M. & Rosenberg, C. Testing the 'proto-splice sites' model of intron origin: evidence from analysis of intron phase correlations. Mol. Biol. Evol. 17, 1789–1796 (2000).
Bernstein, L. B., Mount, S. M. & Weiner, A. M. Pseudogenes for human small nuclear RNA U3 appear to arise by integration of self-primed reverse transcripts of the RNA into new chromosomal sites. Cell 32, 461–472 (1983).
Lewin, R. How mammalian RNA returns to its genome. Science 219, 1052–1054 (1983).
Weiner, A. M., Deininger, P. L. & Efstratiadis, A. Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu. Rev. Biochem. 55, 631–661 (1986).
Fink, G. R. Pseudogenes in yeast? Cell 49, 5–6 (1987).
Long, M. & Langley, C. H. Natural selection and the origin of jingwei, a chimeric processed functional gene in Drosophila. Science 260, 91–95 (1993).
Derr, L. K. The involvement of cellular recombination and repair genes in RNA-mediated recombination in Saccharomyces cerevisiae. Genetics 148, 937–945 (1998).
Kent, W. J. & Zahler, A. M. Conservation, regulation, synteny, and introns in a large-scale C. briggsae–C. elegans genomic alignment. Genome Res. 10, 1115–1125 (2000).
Fedorova, L. & Fedorov, A. Introns in gene evolution. Genetica 118, 123–131 (2003).
Nielsen, C. B., Friedman, B., Birren, B., Burge, C. B. & Galagan, J. E. Patterns of intron gain and loss in fungi. PLoS Biol. 2, e422 (2004).
Banyai, L. & Patthy, L. Evidence that human genes of modular proteins have retained significantly more ancestral introns than their fly or worm orthologues. FEBS Lett. 565, 127–132 (2004).
Sakurai, A. et al. On biased distribution of introns in various eukaryotes. Gene 300, 89–95 (2002).
Mourier, T. & Jeffares, D. C. Eukaryotic intron loss. Science 300, 1393 (2003).
Frugoli, J. A., McPeek, M. A., Thomas, T. L. & McClung, C. R. Intron loss and gain during evolution of the catalase gene family in angiosperms. Genetics 149, 355–365 (1998).
Wada, H. et al. Dynamic insertion-deletion of introns in deuterostome EF-1a genes. J. Mol. Evol. 54, 118–128 (2002).
Sverdlov, A. V., Babenko, V. N., Rogozin, I. B. & Koonin, E. V. Preferential loss and gain of introns in 3′ portions of genes suggests a reverse-transcription mechanism of intron loss. Gene 338, 85–91 (2004).
Roy, S. W. & Gilbert, W. The pattern of intron loss. Proc. Natl Acad. Sci. USA 102, 713–718 (2005).
Crick, F. H. Chromosome structure and function — future prospects. Eur. J. Biochem. 83, 1–3 (1978).
Crick, F. Split genes and RNA splicing. Science 204, 264–271 (1979).
Tsujimoto, Y. & Suzuki, Y. The DNA sequence of Bombyx-mori fibroin gene including the 5′ flanking, mRNA coding, entire intervening and fibroin protein coding regions. Cell 18, 591–600 (1979).
Giroux, M. J. et al. De novo synthesis of an intron by the maize transposable element Dissociation. Proc. Natl Acad. Sci. USA 91, 12150–12154 (1994). The authors show that a transposable element inserted into the Sh2 gene of maize is sometimes exactly spliced out of transcripts, supporting the idea that transposable element insertions could give rise to new introns in some cases.
Rogers, J. H. The role of introns in evolution. FEBS Lett. 268, 339–343 (1990).
Roy, S. W. The origin of recent introns: transposons? Genome Biol. 5, 251 (2004).
Roy, S. W. & Gilbert, W. Rates of intron loss and gain: implications for early eukaryotic evolution. Proc. Natl Acad. Sci. USA 102, 5773–5778 (2005).
Guiliano, D. B. et al. Conservation of long-range synteny and microsynteny between the genomes of two distantly related nematodes. Genome Biol. 3, research 0057 (2002).
Gao, L. Z. & Innan, H. Very low gene duplication rate in the yeast genome. Science 306, 1367–1370 (2004).
Krzywinski, J. & Besansky, N. J. Frequent intron loss in the white gene: a cautionary tale for phylogeneticists. Mol. Biol. Evol. 19, 362–366 (2002).
Hentze, M. W. & Kulozik, A. E. A perfect message: RNA surveillance and nonsense-mediated decay. Cell 96, 307–310 (1999).
Ast, G. How did alternative splicing evolve? Nature Rev. Genet. 5, 773–782 (2004).
Castillo-Davis, C. I., Mekhedov, S. L., Hartl, D. L., Koonin, E. V. & Kondrashov, F. A. Selection for short introns in highly expressed genes. Nature Genet. 31, 415–418 (2002).
Ometto, L., Stephan, W. & De Lorenzo, D. Insertion/deletion and nucleotide polymorphism data reveal constraints in Drosophila melanogaster introns and intergenic regions. Genetics 169, 1521–1527 (2005).
Prachumwat, A., DeVincentis, L. & Palopoli, M. F. Intron size correlates positively with recombination rate in Caenorhabditis elegans. Genetics 166, 1585–1590 (2004).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Related links
Related links
FURTHER INFORMATION
Schizosaccharomyces pombe GeneDB
Glossary
- Nonsense-mediated decay
-
A mechanism by which a stop codon that is encountered by the ribosome upstream of an intron–exon boundary leads to degradation of the transcript.
- Exon shuffling
-
A process by which ectopic recombination within introns leads to the creation of new genetic products.
- Dollo parsimony
-
A method in which a character (in this case an intron position) is inferred to have arisen exactly once on the evolutionary tree in the ancestor of the most distantly related pair of species that share the character. Absence of the character in descendents of this ancestor is then explained by the minimal pattern of losses necessary to explain the observed phylogenetic distribution.
- Maximum likelihood analysis
-
A statistical method that finds the maximum of the likelihood function given a set of data, where the likelihood function gives the probability of obtaining the data for a set of unknown variables.
- Protosplice sites
-
A consensus motif into which newly inserted introns seem to insert (or at least in which they are found), which is generally thought to be a variant of MAG|GT, where M denotes an A or C, and the line indicates the point of insertion.
- Gene conversion
-
Any process by which a genomic element changes to the sequence of a paralogous element; this probably takes place mainly by double recombination.
- Fixation
-
With respect to a given mutant, the condition in which all alleles in the population are descendents of that mutant.
Rights and permissions
About this article
Cite this article
William Roy, S., Gilbert, W. The evolution of spliceosomal introns: patterns, puzzles and progress. Nat Rev Genet 7, 211–221 (2006). https://doi.org/10.1038/nrg1807
Issue Date:
DOI: https://doi.org/10.1038/nrg1807
This article is cited by
-
Genome-wide identification and expression analysis of the SAUR gene family in foxtail millet (Setaria italica L.)
BMC Plant Biology (2023)
-
Genome-wide identification of the geranylgeranyl pyrophosphate synthase (GGPS) gene family involved in chlorophyll synthesis in cotton
BMC Genomics (2023)
-
Genome-wide identification, evolution, and expression analysis of carbonic anhydrases genes in soybean (Glycine max)
Functional & Integrative Genomics (2023)
-
Genome-wide analysis of TALE superfamily in Triticum aestivum reveals TaKNOX11-A is involved in abiotic stress response
BMC Genomics (2022)
-
Genome-wide identification and expression analysis of the ftsH protein family and its response to abiotic stress in Nicotiana tabacum L
BMC Genomics (2022)