Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The new cytogenetics: blurring the boundaries with molecular biology

Key Points

  • An important aim of recent cytogenetic developments has been to increase resolution. This has been achieved by advances that relate to the two elements of cytogenetic analysis, the target and the probe.

  • Cytogenetic methods are now available at resolutions that allow the identification of even single-nucleotide changes in the genome. Therefore, the traditional distinction between cytogenetics and molecular genetics is fading.

  • The development of procedures for the hybridization of multiple probes, each labelled in a different colour, to targets such as metaphase spreads and interphase nuclei, has had a tremendous effect on the application of cytogenetics in the clinic and for basic research.

  • Multicolour approaches are now available that allow even complex chromosomal rearrangements, as frequently seen in solid tumours, to be analysed. This can be carried out in both metaphase spreads and interphase nuclei.

  • The recent introduction of array technologies for genome analysis has had a huge effect on cytogenetic applications. A wide variety of array platforms have been developed including genome-wide scanning for polymorphisms and sub-microscopic copy number changes.

  • The identification of single base pair changes for genotyping purposes and the identification of epigenetic modifications is also possible using these techniques.

  • An important feature of cytogenetic analyses is the ability to yield information at the resolution of a single cell. Although this has been possible for some time using fluorescence in situ hybridization technology, recent developments in unbiased DNA amplification now allow single cells to be analysed using genome scanning applications such as comparative genomic hybridization.

  • The many cytogenetic technologies that are now available allow far more than a simple description of the chromosomal or DNA status of a cell or tissue. Three-dimensional interphase cytogenetics and the mapping on microarrays of DNA that has been enriched by chromatin immunoprecipitation are starting to provide new insights into the functional organization of the genome.

  • Multicolour interphase fluorescence in situ hybridization has helped us understand better how the genome is organized in three-dimensions. Recent advances in four-dimensional fluorescence in situ hybridization will contribute to a better understanding of the dynamic interplay between the genome and its regulatory factors in living cells.

Abstract

Exciting advances in fluorescence in situ hybridization and array-based techniques are changing the nature of cytogenetics, in both basic research and molecular diagnostics. Cytogenetic analysis now extends beyond the simple description of the chromosomal status of a genome and allows the study of fundamental biological questions, such as the nature of inherited syndromes, the genomic changes that are involved in tumorigenesis and the three-dimensional organization of the human genome. The high resolution that is achieved by these techniques, particularly by microarray technologies such as array comparative genomic hybridization, is blurring the traditional distinction between cytogenetics and molecular biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principles of fluorescence in situ hybridization.
Figure 2: Fluorescence in situ hybridization probes for different applications.
Figure 3: Comparison of cytogenetic techniques for identifying chromosomal abnormalities.
Figure 4: Combining cytogenetic approaches to understand a complex chromosomal rearrangement.
Figure 5: Studying genome organization using three-dimensional fluorescence in situ hybridization.

Similar content being viewed by others

References

  1. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004).

  2. BAC Consortium. Integration of cytogenetic landmarks into the draft sequence of the human genome. Nature 409, 953–958 (2001).

  3. Telenius, H. et al. Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow-sorted chromosomes. Genes Chromosomes Cancer 4, 257–263 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Cram, L. S., Gray, J. W. & Carter, N. P. Cytometry and genetics. Cytometry A 58, 33–36 (2004).

    Article  PubMed  Google Scholar 

  5. Meltzer, P. S., Guan, X. Y., Burgess, A. & Trent, J. Rapid generation of region specific probes by chromosome microdissection and their application. Nature Genet. 1, 24–28 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Carter, N. P. et al. Reverse chromosome painting: a method for the rapid analysis of aberrant chromosomes in clinical cytogenetics. J. Med. Genet. 29, 299–307 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nederlof, P. M. et al. Three color fluorescence in situ hybridization for the simultaneous detection of multiple nucleic acid sequences. Cytometry 10, 20–27 (1989).

    Article  CAS  PubMed  Google Scholar 

  8. Nederlof, P. M., van der Flier, S., Vrolijk, J., Tanke, H. J. & Raap, A. K. Fluorescence ratio measurements of double labeled probes for multiple in situ hybridization by digital imaging microscopy. Cytometry 13, 839–845 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Speicher, M. R., Ballard, S. G. & Ward, D. C. Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nature Genet. 12, 368–375 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Schröck, E. et al. Multicolor spectral karyotyping of human chromosomes. Science 273, 494–497 (1996). References 9 and 10 describe the first 24-colour hybridizations for a FISH-based classification of all human chromosomes.

    Article  PubMed  Google Scholar 

  11. Tanke, H. J. et al. New strategy for multi-colour fluorescence in situ hybridisation: COBRA: COmbined Binary RAtio labelling. Eur. J. Hum. Genet. 7, 2–11 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Fauth, C. & Speicher, M. R. Classifying by colors: FISH-based genome analysis. Cytogenet. Cell Genet. 93, 1–10 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Azofeifa, J. et al. An optimized probe set for the detection of small interchromosomal aberrations by 24-color FISH. Am. J. Hum. Genet. 66, 1684–1688 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brown, J. et al. Subtelomeric chromosome rearrangements are detected using an innovative 12-colour FISH assay (M-TEL). Nature Med. 7, 497–501 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Fauth, C. et al. A new strategy for the detection of subtelomeric rearrangements. Hum. Genet. 109, 576–583 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Müller, S., O'Brien, P. C., Ferguson-Smith, M. A. & Wienberg, J. Cross-species colour segmenting: a novel tool in human karyotype analysis. Cytometry 33, 445–452 (1998).

    Article  PubMed  Google Scholar 

  17. Chudoba, I. et al. High resolution multicolor-banding: a new technique for refined FISH analysis of human chromosomes. Cytogenet. Cell Genet. 84, 156–160 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Mitelman, F., Johansson, B. & Mertens, F. Fusion genes and rearranged genes as a linear function of chromosome aberrations in cancer. Nature Genet. 36, 331–334 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Kallioniemi, A. et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258, 818–821 (1992). This is the first use of comparative genomic hybridization to map genomic imbalances, a method that is now extensively used for clinical and research applications.

    Article  CAS  PubMed  Google Scholar 

  20. du Manoir, S. et al. Detection of complete and partial chromosome gains and losses by comparative genomic in situ hybridization. Hum. Genet. 90, 590–610 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Speicher, M. R. et al. Molecular cytogenetic analysis of archived, paraffin embedded solid tumors by comparative genomic hybridization after universal PCR. Hum. Mol. Genet. 2, 1907–1914 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Speicher, M. R. et al. Correlation of microscopic phenotype with genotype in a formalin fixed, paraffin embedded testicular germ cell tumor using universal DNA amplification, comparative genomic hybridization and interphase cytogenetics. Am. J. Pathol. 146, 1332–1340 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wiltshire, R. N. et al. Direct visualization of the clonal progression of primary cutaneous melanoma: application of tissue microdissection and comparative genomic hybridization. Cancer Res. 55, 3954–3957 (1995).

    CAS  PubMed  Google Scholar 

  24. Klein, C. A. et al. Comparative genomic hybridization, loss of heterozygosity, and DNA sequence analysis of single cells. Proc. Natl Acad. Sci. USA 96, 4494–4499 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Wells, D., Sherlock, J. K., Handyside, A. H. & Delhanty, J. D. Detailed chromosomal and molecular genetic analysis of single cells by whole genome amplification and comparative genomic hybridization. Nucleic Acids Res. 27, 1214–1218 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Voullaire, L., Wilton, L., Slater, H. & Williamson, R. Detection of aneuploidy in single cells using comparative genomic hybridization. Prenat. Diagnosis 19, 846–851 (1999). References 24–26 were the first demonstrations that an unbiased amplification of the genome of a single cell for subsequent CGH analysis is possible.

    Article  CAS  Google Scholar 

  27. Wilton, L., Williamson, R., McBain, J., Edgar, D. & Voullaire, L. Birth of a healthy infant after preimplantation confirmation of euploidy by comparative genomic hybridization. New Eng. J. Med. 345, 1537–1541 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Wells, D. et al. First clinical application of comparative genomic hybridization and polar body testing for preimplantation genetic diagnosis of aneuploidy. Fertil. Steril. 78, 543–549 (2002).

    Article  PubMed  Google Scholar 

  29. Schmidt-Kittler, O. et al. From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc. Natl Acad. Sci. USA 100, 7737–7742 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Gangnus, R., Langer, S., Breit, S., Pantel, K. & Speicher, M. R. Genomic profiling of viable and proliferative micrometastatic cells from early stage breast cancer patients. Clin. Cancer Res. 10, 3457–3464 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Langer, S., Geigl, J. B., Gangnus, R. & Speicher, M. R. Sequential application of interphase-FISH and CGH to single cells. Lab. Invest. 85, 582–592 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. van den Engh, G., Sachs, R. & Trask, B. J. Estimating genomic distance from DNA sequence location in cell nuclei by a random walk model. Science 257, 1410–1412 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. Trask, B. J. Fluorescence in situ hybridization: applications in cytogenetics and gene mapping. Trends Genet. 7, 149–154 (1991).

    Article  CAS  PubMed  Google Scholar 

  34. Tkachuk, D. et al. Detection of bcr – abl fusion in chronic myelogeneous leukemia by in situ hybridization. Science 250, 559–562 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. Arnoldus, E. P. et al. Detection of the Philadelphia chromosome in interphase nuclei. Cytogenet. Cell Genet. 54, 108–111 (1990).

    Article  CAS  PubMed  Google Scholar 

  36. Hicks, D. G. & Tubbs, R. R. Assessment of the HER2 status in breast cancer by fluorescence in situ hybridization: a technical review with interpretive guidelines. Hum. Pathol. 36, 250–261 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Chin, K. et al. In situ analyses of genome instability in breast cancer. Nature Genet. 36, 984–988 (2004). An impressive example of the use of FISH on tissue sections to investigate the first steps of tumorigenesis.

    Article  CAS  PubMed  Google Scholar 

  38. Pantel, K. & Brakenhoff, R. H. Dissecting the metastatic cascade. Nature Rev. Cancer 4, 448–456 (2004).

    Article  CAS  Google Scholar 

  39. Solakoglu, O. et al. Heterogeneous proliferative potential of occult metastatic cells in bone marrow of patients with solid epithelial tumors. Proc. Natl Acad. Sci. USA 99, 2246–2251 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instability in colorectal cancers. Nature 386, 623–627 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Heng, H. H., Squire, J. & Tsui, L. C. High-resolution mapping of mammalian genes by in situ hybridization to free chromatin. Proc. Natl Acad. Sci. USA 89, 9509–9513 (1992).

    Article  CAS  PubMed  Google Scholar 

  42. Parra, I. & Windle, B. High resolution visual mapping of stretched DNA by fluorescent hybridization. Nature Genet. 5, 17–21 (1993).

    Article  CAS  PubMed  Google Scholar 

  43. Fidlerova, H., Senger, G., Kost, M., Sanseau, P. & Sheer, D. Two simple procedures for releasing chromatin from routinely fixed cells for fluorescence in situ hybridization. Cytogenet. Cell Genet. 65, 203–205 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Bensimon, A. et al. Alignment and sensitive detection of DNA by a moving interface. Science 265, 2096–2098 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Florijn, R. J. et al. High-resolution DNA fiber-FISH for genomic DNA mapping and colour bar-coding of large genes. Hum. Mol. Genet. 4, 831–836 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Bentley, D. R. et al. The physical maps for sequencing human chromosomes 1, 6, 9, 10, 13, 20 and X. Nature 409, 942–943 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Solinas-Toldo, S. et al. Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer 20, 399–407 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Pinkel, D. et al. High resolution analysis of DNA copy number variations using comparative genomic hybridization to microarrays. Nature Genet. 20, 207–211 (1998). References 47 and 48 were the first demonstrations that high-resolution copy number estimations on high-density arrays are feasible.

    Article  CAS  PubMed  Google Scholar 

  49. Snijders, A. M. et al. Assembly of microarrays for genome-wide measurement of DNA copy number. Nature Genet. 29, 263–264 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Fiegler, H. et al. DNA microarrays for comparative genomic hybridization based on DOP-PCR amplification of BAC and PAC clones. Genes Chromosomes Cancer 36, 361–374 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Veltman, J. A. et al. High-throughput analysis of subtelomeric chromosome rearrangements by use of array-based comparative genomic hybridization. Am. J. Hum. Genet. 70, 1269–1276 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schwaenen, C. et al. Automated array-based genomic profiling in chronic lymphocytic leukemia: development of a clinical tool and discovery of recurrent genomic alterations. Proc. Natl Acad. Sci. USA 101, 1039–1044 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Ishkanian, A. S. et al. A tiling resolution DNA microarray with complete coverage of the human genome. Nature Genet. 36, 299–303 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Krzywinski, M. et al. A set of BAC clones spanning the human genome. Nucleic Acids Res. 32, 3651–3660 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pollack, J. R. et al. Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nature Genet. 23, 41–46 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Dhami, P. et al. Exon array CGH: detection of copy-number changes at the resolution of individual exons in the human genome. Am. J. Hum. Genet. 76, 750–762 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Carvalho, B., Ouwerkerk, E., Meijer, G. A. & Ylstra, B. High resolution microarray comparative genomic hybridisation analysis using spotted oligonucleotides. J. Clin. Pathol. 57, 644–646 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Barrett, M. T. et al. Comparative genomic hybridization using oligonucleotide microarrays and total genomic DNA. Proc. Natl Acad. Sci. USA 101, 17765–17770 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Lucito, R. et al. Representational oligonucleotide microarray analysis: a high-resolution method to detect genome copy number variation. Genome Res. 13, 2291–2305 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lindblad-Toh, K. et al. Loss-of-heterozygosity analysis of small-cell lung carcinomas using single-nucleotide polymorphism arrays. Nature Biotechnol. 18, 1001–1005 (2000).

    Article  CAS  Google Scholar 

  61. Bignell, G. R. et al. High-resolution analysis of DNA copy number using oligonucleotide microarrays. Genome Res. 14, 287–295 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhao, X. et al. An integrated view of copy number and allelic alterations in the cancer genome using single nucleotide polymorphism arrays. Cancer Res. 64, 3060–3071 (2004). References 57–62 describe the use of array technologies, which currently provide the highest resolution for array-based copy number analysis.

    Article  CAS  PubMed  Google Scholar 

  63. Kennedy, G. C. et al. Large-scale genotyping of complex DNA. Nature Biotechnol. 21, 1233–1237 (2003).

    Article  CAS  Google Scholar 

  64. Matsuzaki, H. et al. Genotyping over 100,000 SNPs on a pair of oligonucleotide arrays. Nature Methods 1, 109–111 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Raghavan, M. et al. Genome-wide single nucleotide polymorphism analysis reveals frequent partial uniparental disomy due to somatic recombination in acute myeloid leukemias. Cancer Res. 65, 375–378 (2005).

    CAS  PubMed  Google Scholar 

  66. Vissers, L. E. et al. Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nature Genet. 36, 955–957 (2004). A beautiful demonstration of how array CGH can identify a long-sought disease locus.

    Article  CAS  PubMed  Google Scholar 

  67. Sebat, J. et al. Large-scale copy number polymorphism in the human genome. Science 305, 525–528 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Iafrate, A. J. et al. Detection of large-scale variation in the human genome. Nature Genet. 36, 949–951 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Sharp, A. J. et al. Segmental duplications and copy-number variation in the human genome. Am. J. Hum. Genet. 77, 78–88 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fiegler, H. et al. Array painting: a method for the rapid analysis of aberrant chromosomes using DNA microarrays. J. Med. Genet. 40, 664–670 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gribble, S. M. et al. The complex nature of constitutional de novo apparently balanced translocations in patients presenting with abnormal phenotypes. J. Med. Genet. 42, 8–16 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instabilities in human cancers. Nature 396, 643–649 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Gilbert, N. et al. Chromatin architecture of the human genome: gene-rich domains are enriched in open chromatin fibers. Cell 118, 555–566 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. d'Adda di Magagna, F. et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194–198 (2003).

    Article  CAS  Google Scholar 

  75. Kondo, Y., Shen, L., Yan, P. S., Huang, T. H. & Issa, J. P. Chromatin immunoprecipitation microarrays for identification of genes silenced by histone H3 lysine 9 methylation. Proc. Natl Acad. Sci. USA 101, 7398–7403 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Dutrillaux, B., Couturier, J., Richer, C. L. & Viegas-Pequignot, E. Sequence of DNA replication in 277 R and Q-bands of human chromosomes using a BrdU treatment. Chromosoma 58, 51–61 (1976).

    Article  CAS  PubMed  Google Scholar 

  77. Ganner, E. & Evans, H. J. The relationship between patterns of DNA replication and of quinacrine fluorescence in the human chromosome complement. Chromosoma 35, 326–341 (1971).

    Article  CAS  PubMed  Google Scholar 

  78. Holmquist, G., Gray, M., Porter, T. & Jordan, J. Characterization of Giemsa dark- and light-band DNA. Cell 31, 121–129 (1982).

    Article  CAS  PubMed  Google Scholar 

  79. Watanabe, Y. et al. Chromosome-wide assessment of replication timing for human chromosomes 11q and 21q: disease-related genes in timing-switch regions. Hum. Mol. Genet. 11, 13–21 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Sinnett, D., Flint, A. & Lalande, M. Determination of DNA replication kinetics in synchronized human cells using a PCR-based assay. Nucleic Acids Res. 21, 3227–3232 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Selig, S., Okumura, K., Ward, D. C. & Cedar, H. Delineation of DNA replication time zones by fluorescence in situ hybridization. EMBO J. 11, 1217–1225 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Singh, N. et al. Coordination of the random asynchronous replication of autosomal loci. Nature Genet. 33, 339–341 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Raghuraman, M. K. et al. Replication dynamics of the yeast genome. Science 294, 115–121 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Schubeler, D. et al. Genome-wide DNA replication profile for Drosophila melanogaster: a link between transcription and replication timing. Nature Genet. 32, 438–442 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Woodfine K. et al. Replication timing of the human genome. Hum. Mol. Genet. 13, 191–202 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Woodfine K. et al. Replication timing of human chromosome 6. Cell Cycle 4, 172–176 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Cremer, T. & Cremer, C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nature Rev. Genet. 2, 292–301 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Fisher, A. G. & Merkenschlager, M. Gene silencing, cell fate and nuclear organisation. Curr. Opin. Genet. Dev. 12, 193–197 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Cremer, T., Küpper, K., Dietzel, S. & Fakan, S. Higher order chromatin architecture in the cell nucleus: on the way from structure to function. Biol. Cell 96, 555–567 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Bolzer, A. et al. Three-dimensional maps of all chromosome positions indicate a probabilistic order in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol. 3, e157 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Croft, J. A. et al. Differences in the localization and morphology of chromosomes in the human nucleus. J. Cell Biol. 145, 1119–1131 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cremer, M. et al. Inheritance of gene density-related higher order chromatin arrangements in normal and tumor cell nuclei. J. Cell Biol. 162, 809–820 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sun, H. B., Shen, J. & Yokota, H. Size-dependent positioning of human chromosomes in interphase nuclei. Biophys. J. 79, 184–190 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Spilianakis, C. G., Lalioti, M. D., Town, T., Lee, G. R. & Flavell, R. A. Interchromosomal associations between alternatively expressed loci. Nature 435, 637–645 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Belmont, A. Dynamics of chromatin, proteins, and bodies within the cell nucleus. Curr. Opin. Cell Biol. 15, 304–310 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Spector, D. L. The dynamics of chromosome organization and gene regulation. Annu. Rev. Biochem. 72, 573–608 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Wang, T. L. et al. Digital karyotyping. Proc. Natl Acad. Sci. USA 99, 16156–16161 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Nilsson, M. et al. Padlock probes: circularizing oligonucleotides for localized DNA detection. Science 265, 2085–2088 (1994).

    Article  CAS  Google Scholar 

  99. Lizardi, P. M. et al. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nature Genet. 19, 225–232 (1998).

    Article  CAS  PubMed  Google Scholar 

  100. Zhong, X. B., Lizardi, P. M., Huang, X. H., Bray-Ward, P. L. & Ward, D. C. Visualization of oligonucleotide probes and point mutations in interphase nuclei and DNA fibers using rolling circle DNA amplification. Proc. Natl Acad. Sci. USA 98, 3940–3945 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Lage, J. M. et al. Whole genome analysis of genetic alterations in small DNA samples using hyperbranched strand displacement amplification and array-CGH. Genome Res. 13, 294–307 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zardo, G. et al. Integrated genomic and epigenomic analyses pinpoint biallelic gene inactivation in tumors. Nature Genet. 32, 453–458 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Garraway, L. A. et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436, 117–122 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Velagaleti, G. V. et al. Position effects due to chromosome breakpoints that map approximately 900 Kb upstream and approximately 13 Mb downstream of SOX9 in two patients with campomelic dysplasia. Am. J. Hum. Genet. 76, 652–662 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Inoue, K. et al. Genomic rearrangements resulting in PLP1 deletion occur by nonhomologous end joining and cause different dysmyelinating phenotypes in males and females. Am. J. Hum. Genet. 71, 838–853 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Tuzun, E. et al. Fine-scale structural variation of the human genome. Nature Genet. 37, 727–732 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Arnold, J. Beobachtungen über Kerntheilungen in den Zellen der Geschwülste. Virchows Archiv 78, 279–301 (1879) (in German).

    Article  Google Scholar 

  108. Flemming, W. Beiträge zur Kenntnis der Zelle und ihrer Lebenserscheinungen. 3. Teil. Archiv für mikroskopische Anatomie 20, 1–86 (1881) (in German).

    Article  Google Scholar 

  109. Hansemann, D. Über asymmetrische Zellteilung in Epithelkrebsen und deren biologische Bedeutung. Arch. Pathol. Anat. 119, 299–326 (1890) (in German).

    Article  Google Scholar 

  110. Tjio, J. H. & Levan, A. The chromosome number of man. Hereditas 42, 1–6 (1956).

    Article  Google Scholar 

  111. Ford, C. E. & Hamerton, J. L. The chromosomes of man. Nature 178, 1020–1023 (1956).

    Article  CAS  PubMed  Google Scholar 

  112. Lejeune, J. M., Gautier, M. & Turpin, R. Etude des chromosomes somatiques de neuf enfants mongoliens. CR Acad. Sci. Paris 248, 1721–1722 (1958) (in French).

    Google Scholar 

  113. Jacobs, P. A. & Strong, J. A. A case of human intersexuality having a possible XXY sex-determining mechanism. Nature 183, 302–303 (1959).

    Article  CAS  PubMed  Google Scholar 

  114. Ford, C. E., Jones, K. W., Polani, P. E., De Almeida, J. C. & Briggs, J. H. A sex-chromosome anomaly in a case of gonadal dysgenesis (Turner's syndrome). Lancet 1, 711–713 (1959).

    Article  CAS  PubMed  Google Scholar 

  115. Nowell, P. C. & Hungerford, D. A. A minute chromosome in human chronic granulocytic leukemia. Science 132, 1497 (1960).

    Google Scholar 

  116. Caspersson, T., Zech, L. & Johansson, C. Analysis of human metaphase chromosome set by aid of DNA-binding fluorescent agents. Exp. Cell Res. 62, 490–492 (1970).

    Article  CAS  PubMed  Google Scholar 

  117. Rowley, J. D. A new consistent chromosomal abnormality in chronic myelogenous leukemia identified by quinacrine fluorescence and Giemsa staining. Nature 243, 290–293 (1973).

    Article  CAS  PubMed  Google Scholar 

  118. Gall, J. G. & Pardue, M. L. Formation and detection of RNA–DNA hybrid molecules in cytological preparations. Proc. Natl Acad. Sci. USA 63, 378–383 (1969).

    Article  CAS  PubMed  Google Scholar 

  119. Rudkin, G. T. & Stollar, B. D. High resolution detection of DNA–RNA hybrids in situ by indirect immunofluorescence. Nature 265, 472–473 (1977).

    Article  CAS  PubMed  Google Scholar 

  120. Bauman, J. G., Wiegant, J., Borst, P. & van Duijn, P. A new method for fluorescence microscopical localization of specific DNA sequences by in situ hybridization of fluorochromelabelled RNA. Exp. Cell Res. 128, 485–490 (1980).

    Article  CAS  PubMed  Google Scholar 

  121. Langer, P. R., Waldrop, A. A. & Ward, D. C. Enzymatic synthesis of biotin-labeled polynucleotides: novel nucleic acid affinity probes. Proc. Natl Acad. Sci. USA 78, 6633–6637 (1981).

    Article  CAS  PubMed  Google Scholar 

  122. Landegent, J. E., Jansen in de Wal, N., Dirks, R. W., Baas, F. & van der Ploeg, M. Use of whole cosmid cloned genomic sequences for chromosomal localization by non-radioactive in situ hybridization. Hum. Genet. 77, 366–370 (1987).

    Article  CAS  PubMed  Google Scholar 

  123. Pinkel, D. et al. Fluorescence in situ hybridization with human chromosome-specific libraries: detection of trisomy 21 and translocations of chromosome 4. Proc. Natl Acad. Sci. USA 85, 9138–9142 (1988).

    Article  CAS  PubMed  Google Scholar 

  124. Lichter, P., Cremer, T., Borden, J., Manuelidis, L. & Ward, D. C. Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Hum. Genet. 80, 224–234 (1988).

    Article  CAS  PubMed  Google Scholar 

  125. Cremer, T., Lichter, P., Borden, J., Ward, D. C. & Manuelidis, L. Detection of chromosome aberrations in metaphase and interphase tumor cells by in situ hybridization using chromosome-specific library probes. Hum. Genet. 80, 235–246 (1988).

    Article  CAS  PubMed  Google Scholar 

  126. Albertson, D. G. et al. Chromosome aberrations in solid tumors. Nature Genet. 34, 369–376 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to T. Cremer, A. Bolzer, J. Kraus and H. Fiegler for providing images. Research in the laboratory of M.R.S. is supported by the Deutsche Forschungsgemeinschaft (DFG), the Deutsche Krebshilfe, the Wilhelm Sander-Stiftung, and the BMBF (Bundesministerium für Bildung und Forschung). N.P.C. is supported by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Speicher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

HER2

OMIM

B-cell leukaemia

CHARGE

Down syndrome

Duchenne muscular dystrophy

SwissProt

H2AX

H3 histone

FURTHER INFORMATION

Charité CGH database

Chroma filter sets

Ensembl Cytoview

Mitelman Database of Chromosome Aberrations in Cancer

NCBI Map-Viewer

NCBI SKY/M-FISH & CGH database

NCBI SNP-data base

Probe resources from the University of Bari Cytogenetics Unit

Progenetix CGH database

Tokyo Medical and Dental University CGH database

UCSC genome browser

Glossary

BANDING

A method that uses chemical treatments to produce differentially stained regions on chromosomes.

BIOTIN

A vitamin and mobile carrier of activated CO2 that has a high affinity for avidin and is used for non-radioactive labelling.

COT-1 DNA

DNA that is mainly composed of repetitive sequences. It is produced when short fragments of denatured genomic DNA are re-annealed.

METAPHASE SPREAD

Preparations of chromosomes in dividing cells that have been artificially arrested at metaphase, when chromosomes are highly condensed and shortened, so that they are visible under a light microscope.

DEGENERATE OLIGONUCLEOTIDE-PRIMED PCR

A method for the unbiased amplification of any DNA source using partially degenerate primers.

CHROMOSOME MICRODISSECTION

A technique in which an entire chromosome or region of a chromosome (for example, a chromosome arm or a chromosome band) is isolated using a micro-manipulated glass needle or highly focused laser beam. The sample is then transferred to a tube for subsequent amplification and probe labelling.

FLUOROCHROMES

Non-radioactive labels that can emit fluorescence after excitation by light. Also known as fluorophores.

NICK TRANSLATION

A widely used method for DNA-probe labelling. Nick translation uses a combination of DNase I to nick double-stranded probe DNA, and the polymerase and endonuclease activity of DNA polymerase I to proceed along the target strand from the nicks, incorporating labelled nucleotides.

RANDOM-PRIMED LABELLING

A method for labelling single-stranded probe DNA that uses a mixture of random short oligonucleotides to prime the incorporation of labelled nucleotides using polymerase.

HAPTEN

A small molecule that has binding affinity for a protein receptor.

MULTIPLEX-FISH

Painting of the entire chromosome complement such that each chromosome is labelled with a different combination of fluorophores. Images are collected with a fluorescence microscope that has filter sets for each fluorochrome, and a combinatorial labelling algorithm allows separation and identification of all chromosomes, which are visualized in characteristic pseudocolours.

SPECTRAL KARYOTYPING

Similar to M-FISH, except that an interferometer is used for fluorochrome discrimination and imaging.

COMBINED BINARY RATIO LABELLING

A multicolour karyotyping system that uses a combination of combinatorial and ratio labelling for probe discrimination.

CROSS-SPECIES COLOUR SEGMENTATION

A FISH-based multicolour banding technology that uses flow-sorted gibbon chromosome paints, which generate a cross-species banding pattern when hybridized to human metaphase spreads.

PSEUDOCOLOUR BANDING PATTERN

A fluorescence multicolour banding pattern along chromosomes that is generated by hybridization of multiple differentially labelled region-specific probes.

COOLED CHARGE-COUPLED DEVICE

A highly sensitive area imager that is widely used for capturing FISH images. Cooling, which reduces random noise during long exposures, is often not required as modern fluorochromes with microscope optics usually require only short exposure times.

MINIMAL RESIDUAL DISEASE

The low numbers of tumour cells that remain after therapy, which are often below the detection limits of classical morphological methods.

TRASTUZUMAB

A monoclonal antibody that targets cancer cells that overexpress HER2, which is found on the surface of some cancer cells.

TELOMERE CRISIS

The erosion of the telomeres so that chromosome ends are no longer protected, resulting in unstable chromosomes.

MOLECULAR COMBING

High molecular-weight DNA in solution is stretched at the meniscus as a glass slide is removed from the solution at a constant rate, generating fields of evenly stretched DNA fibres that have a parallel orientation.

LOSS OF HETEROZYGOSITY

A loss of one of the alleles at a given locus as a result of a genomic change, such as mitotic deletion, gene conversion or chromosome missegregration.

UNIPARENTAL DISOMY

A condition in which an individual or embryo carries two chromosomes that are inherited from the same parent.

CONSTITUTIONAL REARRANGEMENTS

Chromosomal rearrangements that are present in an individual at birth.

TILING CLONE ARRAY

A high-resolution array consisting of multiple overlapping clones.

FLOW SORTING

After staining with base-pair-specific fluorochromes, cells or chromosomes are sorted according to their DNA content and base pair ratio using a flow cytometer.

DOUBLE MINUTE

An acentric, extra-chromosomally amplified chromatin, which usually contains a particular chromosomal segment or gene. Double minutes occur frequently in cancer cells.

ACROCENTRIC CHROMOSOME

A chromosome with a near-terminal centromere so that one arm is very short. The short arms of acrocentric chromosomes consist mainly of repetitive DNA sequences.

CpG ISLANDS

Sequences of 200 bp or more that have high GC content and a high frequency of CpG dinucleotides. CpG islands are found upstream of many mammalian genes.

REPLICATION BANDING

Chromosome banding using differences in staining between early and late replicating regions of the genome after timed incorporation of bromodeoxyuridine (BrdU), a nucleoside that substitutes for thymidine in DNA.

CHROMOSOME TERRITORIES

Compartments within a cell nucleus that are occupied by a chromosome.

DECONVOLUTION ALGORITHMS

Computational techniques for removing out-of-focus haze from stacks of optical sections, so restoring sharpness and clarity to an image.

KARYOTYPING

A process in which metaphase chromosomes are ordered and numbered according to morphology, size, arm-length ratio and banding pattern.

DIGITAL KARYOTYPING

A technique that provides quantitative analysis of DNA copy number by isolation and enumeration of short sequence tags from specific genomic loci.

PADLOCK PROBE

A probe with two target-complementary segments, which on hybridization are brought close to each other so that they can be covalently linked, resulting in a circularized probe.

ROLLING-CIRCLE AMPLIFICATION

A method for the general amplification of DNA by DNA polymerase, which replicates circularized oligonucleotide probes with either linear or geometrical kinetics under isothermal conditions.

HYPERBRANCHED STRAND-DISPLACEMENT AMPLIFICATION

Isothermal amplification of genomic DNA that is driven by strand-displacing polymerases, such as phage φ29, for random-primed amplification of human genomic DNA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Speicher, M., Carter, N. The new cytogenetics: blurring the boundaries with molecular biology. Nat Rev Genet 6, 782–792 (2005). https://doi.org/10.1038/nrg1692

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1692

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing