Abstract
Gene targeting in mouse embryonic stem cells has become the 'gold standard' for determining gene function in mammals. Since its inception, this technology has revolutionized the study of mammalian biology and human medicine. Here I provide a personal account of the work that led to the generation of gene targeting which now lies at the centre of functional genomic analysis.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Necessity of integrated genomic analysis to establish a designed knock-in mouse from CRISPR-Cas9-induced mutants
Scientific Reports Open Access 27 November 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
References
Capecchi, M. R. Generating mice with targeted mutations. Nature Med. 7, 1086–1090 (2001).
Wigler, M. et al. Transfer of purified herpes virus thymidine kinase gene to cultured mouse cells. Cell 11, 223–232 (1977).
Capecchi, M. R. High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell 22, 479–488 (1980).
Gordon, J. W., Scangos, G. A., Plotkin, D. J., Barbosa, J. A. & Ruddle, F. H. Genetic transformation of mouse embryos by microinjection of purified DNA. Proc. Natl Acad. Sci. USA 77, 7380–7384 (1980).
Brinster, R. L. et al. Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs. Cell 27, 223–231 (1981).
Costantini, F. & Lacy, E. Introduction of a rabbit β-globin gene into the mouse germ line. Nature 294, 92–94 (1981).
Wagner, E. F., Stewart, T. A. & Mintz, B. The human β-globin gene and a functional thymidine kinase gene in developing mice. Proc. Natl Acad. Sci. USA 78, 5016–5020 (1981).
Wagner, T. E. et al. Microinjection of a rabbit β-globin gene in zygotes and its subsequent expression in adult mice and their offspring. Proc. Natl Acad. Sci. USA 78, 6376–6380 (1981).
Luciw, P. A., Bishop, J. M., Varmus, H. E. & Capecchi, M. R. Location and function of retroviral and SV40 sequences that enhance biochemical transformation after microinjection of DNA. Cell 33, 705–716 (1983).
Levinson, B., Khoury, G., VandeWoude, G. & Gruss, P. Activation of SV40 genome by 72-base pair tandem repeats of Moloney sarcoma virus. Nature 295, 568–572 (1982).
Folger, K. R., Wong, E. A., Wahl, G. & Capecchi, M. R. Patterns of integration of DNA microinjected into cultured mammalian cells: evidence for homologous recombination between injected plasmid DNA molecules. Mol. Cell. Biol. 2, 1372–1387 (1982).
Hinnen, A., Hicks, J. B. & Fink, G. R. Transformation of yeast. Proc. Natl Acad. Sci. USA 75, 1929–1933 (1978).
Thomas, K. R., Folger, K. R. & Capecchi, M. R. High frequency targeting of genes to specific sites in the mammalian genome. Cell 44, 419–428 (1986).
Wong, E. A. & Capecchi, M. R. Analysis of homologous recombination in cultured mammalian cells in transient expression and stable transformation assays. Somat. Cell Mol. Genet. 12, 63–72 (1986).
Folger, K. R., Thomas, K. R. & Capecchi, M. R. Nonreciprocal exchanges of information between DNA duplexes coinjected into mammalian cell nuclei. Mol. Cell. Biol. 2, 1372–1387 (1985).
Folger, K., Thomas, K. & Capecchi, M. R. Analysis of homologous recombination in cultured mammalian cells. Cold Spring Harbor Symp. Quant. Biol. 49, 123–138 (1984).
Smithies, O., Gregg, R. G., Boggs, S. S., Koralewski, M. A. & Kucherlapati, R. S. Insertion of DNA sequences into the human chromosomal β-globin locus by homologous recombination. Nature 317, 230–234 (1985).
Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981).
Bradley, A., Evans, M., Kaufman, M. H. & Robertson, E. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309, 255–256 (1984).
Thomas, K. R. & Capecchi, M. R. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51, 503–512 (1987).
Thomas, K. R., Deng, C. & Capecchi, M. R. High-fidelity gene targeting in embryonic stem cells by using sequence replacement vectors. Mol. Cell. Biol. 12, 2919–2923 (1992).
Deng, C. & Capecchi, M. R. Reexamination of gene targeting frequency as a function of the extent of homology between the targeting vector and the target locus. Mol. Cell. Biol. 12, 3365–3371 (1992).
Deng, C., Thomas, K. R. & Capecchi, M. R. Location of crossovers during gene targeting with insertion and replacement vectors. Mol. Cell. Biol. 13, 2134–2140 (1993).
Joyner, A. L., Skarnes, W. C. & Rossant, J. Production of a mutation in mouse En-2 gene by homologous recombination in embryonic stem cells. Nature 338, 153–156 (1989).
Zijlstra, M., Li, E., Sajjadi, F., Subramani, S. & Jaenisch, R. Germ-line transmission of a disrupted β2-microglobulin gene produced by homologous recombination in embryonic stem cells. Nature 342, 435–438 (1989).
Schwartzberg, P. L., Goff, S. P. & Robertson, E. J. Germ-line transmission of a c-abl mutation produced by targeted gene disruption in ES cells. Science 246, 799–803 (1989).
DeChiara, T. M., Efstratiadis, A. & Robertson, E. J. A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature 345, 78–80 (1990).
Koller, B. H., Marrack, P., Kappler, J. W. & Smithies, O. Normal development of mice deficient in β2M, MHC class I proteins, and CD8+ T cells. Science 248, 1227–1230 (1990).
Thomas, K. R. & Capecchi, M. R. Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature 346, 847–850 (1990).
Mansour, S. L., Thomas, K. R. & Capecchi, M. R. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336, 348–352 (1988).
Austin et al. The Knockout Mouse Project. Nature Genet. 36, 921–924 (2004).
Gu, H., Marth, J. D., Orban, P. C., Mossmann, H. & Rajewsky, K. Deletion of a DNA polymerase β-gene segment in T cells using cell type-specific gene targeting. Science 265, 103–106 (1994).
Bunting, M., Bernstein, K. E., Greer, J. M., Capecchi, M. R. & Thomas, K. R. Targeting genes for self-excision in the germline. Genes Dev. 13, 1524–1528 (1999).
Moon, A. M., Boulet, A. M. & Capecchi, M. R. Normal limb development in conditional mutants of Fgf4. Development 127, 989–996 (2000).
Schmidt, E. E., Taylor, D. S., Prigge, J. R., Barnett, S. & Capecchi, M. R. Illegitimate Cre-dependent chromosome rearrangements in transgenic mouse spermatids. Proc. Natl Acad. Sci. USA 97, 13702–13707 (2000).
Moon, A. M. & Capecchi, M. R. Fgf8 is required for outgrowth and patterning of the limbs. Nature Genet. 26, 455–459 (2000).
Barrow, J. R. et al. Ectodermal Wnt3/βcatenin signalling is required for the establishment and the maintenance of the apical ectodermal ridge. Genes Dev. 17, 394–409 (2003).
Boulet, A. M. & Capecchi, M. R. Multiple roles of Hoxa11 and Hoxd11 in the formation of the mammalian forelimb zeugopod. Development 131, 299–309 (2004).
Davis, A. P., Witte, D. P., Hsieh-Li, H. M., Potter, S. S. & Capecchi, M. R. Absence of radius and ulna in mice lacking hoxa-11 and hoxd-11. Nature 375, 791–795 (1995).
Goddard, J. M., Rossel, M., Manley, N. R. & Capecchi, M. R. Mice with targeted disruption of Hoxb-1 fail to form the motor nucleus of the VIIth nerve. Development 122, 3217–3228 (1996).
Greer, J. M., Puetz, J., Thomas, K. R. & Capecchi, M. R. Maintenance of functional equivalence during paralogous Hox gene evolution. Nature 403, 661–665 (2000).
Wellik, D. M. & Capecchi, M. R. Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton. Science 301, 363–367 (2003).
Arenkiel, B. R., Tvrdik, P., Gaufo, G. O. & Capecchi, M. R. Hoxb1 functions in both motoneurons and target tissues to establish and maintain proper neuronal circuitry. Development (2004).
Greer, J. M. & Capecchi, M. R. Hoxb8 is required for normal grooming behavior in the mouse. Neuron 33, 23–34 (2002).
Keller, C., Hansen, M. S., Coffin, C. M. & Capecchi, M. R. Pax3:Fkhr interferes with embryonic Pax3 and Pax7 function: implications for alveolar rhabdomyosarcoma cell of origin. Genes Dev. 18, 2608–2613 (2004).
Keller, C. et al. Alveolar rhabdomyosarcomas in conditional Pax3:Fkhr mice: cooperativity of Ink4a/ARF and Trp53 loss of function. Genes Dev. 18, 2614–2626 (2004).
Acknowledgements
I would like to thank all those who have worked in my laboratory.
Author information
Authors and Affiliations
Ethics declarations
Competing interests
The author declares no competing financial interests.
Related links
Glossary
- ALLELIC SERIES
-
A series of alleles that can be present at the same locus, which produces graded phenotypes.
- HYPOMORPHIC MUTATION
-
A mutation of which the phenotypic effects are less severe relative to a null mutation in the same gene.
- PLURIPOTENT
-
When referring to stem cells, having the capacity to contribute to the formation of all cell types, such as embryonic stem cells.
Rights and permissions
About this article
Cite this article
Capecchi, M. Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat Rev Genet 6, 507–512 (2005). https://doi.org/10.1038/nrg1619
Issue Date:
DOI: https://doi.org/10.1038/nrg1619
This article is cited by
-
An Overview of Targeted Genome Editing Strategies for Reducing the Biosynthesis of Phytic Acid: an Anti-nutrient in Crop Plants
Molecular Biotechnology (2024)
-
New CRISPR Technology for Creating Cell Models of Lipoprotein Assembly and Secretion
Current Atherosclerosis Reports (2023)
-
Strategies for generation of mice via CRISPR/HDR-mediated knock-in
Molecular Biology Reports (2023)
-
Genetic modification strategies for enhancing plant resilience to abiotic stresses in the context of climate change
Functional & Integrative Genomics (2023)
-
Generation of a recessive dystrophic epidermolysis bullosa mouse model with patient-derived compound heterozygous mutations
Laboratory Investigation (2022)