The centrosome in human genetic disease

Key Points

  • Historically, the centrosome has been linked to cell-cycle control and its role in cancer has been studied extensively. More recent evidence has shown, however, that the centrosome is also involved in several cellular processes, including protein degradation, cell migration and axonal growth.

  • Ubiquitin-proteasome degradation is crucial for the regulation of a number of cellular processes, and the centrosome seems to be a cellular location in which the proteasome machinery, as well as target proteins, accumulate. This spatial association seems to be important at the functional level, as dissociation of the proteasome from the centrosome impedes ubiquitin-proteasome degradation.

  • Defects in protein clearance have been implicated in neurodegenerative diseases such as Parkinson disease. As such, centrosomal dysfunction might have a direct or indirect role in the pathogenesis of this type of human disorders.

  • The centrosome also has a crucial role in cell migration, as exemplified by the defects in neuronal migration that are due to defects in several centrosomal or centrosome-associated proteins.

  • The cytoskeletal organizing capabilities of the centrosome are required not only for axonal growth but also for axonal maintenance; defects in the centrosome-associated protein spastin lead to axonal degeneration in hereditary spastic paraplegia.

  • Defective microtubule-dependent vesicular transport is likely to underlie the pathogenesis of Huntington disease and centrosomal function might be relevant to disease onset and progression.

  • The link between cilia, the centrosome and the structurally and biochemically related basal body are highlighted by recent findings on Bardet–Biedl syndrome; defects in these structures lead to a number of human disorders that range from the development of cystic kidneys to perturbed left–right symmetry.


The centrosome is an indispensable component of the cell-cycle machinery of eukaryotic cells, and the perturbation of core centrosomal or centrosome-associated proteins is linked to cell-cycle misregulation and cancer. Recent work has expanded our understanding of the functional complexity and importance of this organelle. The centrosomal localization of proteins that are involved in human genetic disease, and the identification of novel centrosome-associated proteins, has shown that numerous, seemingly unrelated, cellular processes can be perturbed by centrosomal dysfunction. Here, we review the mechanistic relationship between human disease phenotypes and the function of the centrosome, and describe some of the newly-appreciated functions of this organelle in animal cells.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic representation of the centrosome.
Figure 2: Ubiquitin-mediated protein degradation is concentrated at the centrosome.
Figure 3: The centrosome in cell migration.
Figure 4: Potential functional links between the cilia and the cell interior.


  1. 1

    Boveri, T. Uber die Natur der Centrosomen. Jena. Z. Med. Naturw. 28, 1–220 (1901) (in German).

    Google Scholar 

  2. 2

    Doxsey, S. Re-evaluating centrosome function. Nature Rev. Mol. Cell Biol. 2, 688–698 (2001).

    CAS  Google Scholar 

  3. 3

    Bornens, M. Centrosome composition and microtubule anchoring mechanisms. Curr. Opin. Cell Biol. 14, 25–34 (2002).

    CAS  PubMed  Google Scholar 

  4. 4

    Blagden, S. P. & Glover, D. M. Polar expeditions — provisioning the centrosome for mitosis. Nature Cell Biol. 5, 505–511 (2003).

    CAS  PubMed  Google Scholar 

  5. 5

    Nigg, E. A. Centrosomes in Development and Disease (Wiley-VCH, Weinheim, 2004). This comprehensive book is focused on the centrosome and its associated proteins.

    Google Scholar 

  6. 6

    Thyberg, J. & Moskalewski, S. Role of microtubules in the organization of the Golgi complex. Exp. Cell Res. 246, 263–279 (1999).

    CAS  PubMed  Google Scholar 

  7. 7

    Khodjakov, A., Cole, R. W., Oakley, B. R. & Rieder, C. L. Centrosome-independent mitotic spindle formation in vertebrates. Curr. Biol. 10, 59–67 (2000).

    CAS  PubMed  Google Scholar 

  8. 8

    Hinchcliffe, E. H., Miller, F. J., Cham, M., Khodjakov, A. & Sluder, G. Requirement of a centrosomal activity for cell cycle progression through G1 into S phase. Science 291, 1547–1550 (2001). This paper elegantly shows, using laser ablation, that centrosomes are not necessary to complete mitosis once cells are in S phase, but are required for the progression from G1 into S phase.

    CAS  PubMed  Google Scholar 

  9. 9

    Varmark, H. Functional role of centrosomes in spindle assembly and organization. J. Cell. Biochem. 91, 904–914 (2004).

    CAS  PubMed  Google Scholar 

  10. 10

    Hinchcliffe, E. H. & Sluder, G. 'It takes two to tango': understanding how centrosome duplication is regulated throughout the cell cycle. Genes Dev. 15, 1167–1181 (2001).

    CAS  PubMed  Google Scholar 

  11. 11

    Robbins, E., Jentzsch, G. & Micali, A. The centriole cycle in synchronized HeLa cells. J. Cell Biol. 36, 329–339 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Nigg, E. A. Centrosome aberrations: cause or consequence of cancer progression? Nature Rev. Cancer 2, 815–825 (2002).

    CAS  Google Scholar 

  13. 13

    Xu, X. et al. Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol. Cell 3, 389–395 (1999).

    CAS  PubMed  Google Scholar 

  14. 14

    Pihan, G. A. et al. Centrosome defects and genetic instability in malignant tumors. Cancer Res. 58, 3974–3985 (1998).

    CAS  PubMed  Google Scholar 

  15. 15

    Fukasawa, K., Choi, T., Kuriyama, R., Rulong, S. & Vande Woude, G. F. Abnormal centrosome amplification in the absence of p53. Science 271, 1744–1747 (1996).

    CAS  PubMed  Google Scholar 

  16. 16

    Brinkley, B. R. & Goepfert, T. M. Supernumerary centrosomes and cancer: Boveri's hypothesis resurrected. Cell Motil. Cytoskeleton 41, 281–288 (1998).

    CAS  PubMed  Google Scholar 

  17. 17

    Pihan, G. A., Wallace, J., Zhou, Y. & Doxsey, S. J. Centrosome abnormalities and chromosome instability occur together in pre-invasive carcinomas. Cancer Res. 63, 1398–1404 (2003).

    CAS  PubMed  Google Scholar 

  18. 18

    Duensing, S. & Munger, K. Centrosome abnormalities and genomic instability induced by human papillomavirus oncoproteins. Prog. Cell Cycle Res. 5, 383–391 (2003).

    PubMed  Google Scholar 

  19. 19

    Duensing, S. et al. The human papillomavirus type 16 E6 and E7 oncoproteins cooperate to induce mitotic defects and genomic instability by uncoupling centrosome duplication from the cell division cycle. Proc. Natl Acad. Sci. USA 97, 10002–10007 (2000).

    CAS  PubMed  Google Scholar 

  20. 20

    Rios, R. M., Sanchis, A., Tassin, A. M., Fedriani, C. & Bornens, M. GMAP-210 recruits γ-tubulin complexes to cis-Golgi membranes and is required for Golgi ribbon formation. Cell 118, 323–335 (2004).

    CAS  PubMed  Google Scholar 

  21. 21

    Andersen, J. S. et al. Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426, 570–574 (2003). This is the first global study of the protein content of the centrosome using a proteomics approach.

    CAS  PubMed  Google Scholar 

  22. 22

    Izzi, L. & Attisano, L. Regulation of the TGFβ signalling pathway by ubiquitin-mediated degradation. Oncogene 23, 2071–2078 (2004).

    CAS  PubMed  Google Scholar 

  23. 23

    DiAntonio, A. & Hicke, L. Ubiquitin-dependent regulation of the synapse. Annu. Rev. Neurosci. 27, 223–246 (2004).

    CAS  PubMed  Google Scholar 

  24. 24

    Peters, J. M. The anaphase-promoting complex: proteolysis in mitosis and beyond. Mol. Cell 9, 931–943 (2002).

    CAS  PubMed  Google Scholar 

  25. 25

    Pickart, C. M. & Cohen, R. E. Proteasomes and their kin: proteases in the machine age. Nature Rev. Mol. Cell Biol. 5, 177–187 (2004). A comprehensive review of ubiquitin-proteasome protein degradation.

    CAS  Google Scholar 

  26. 26

    Wojcik, C., Schroeter, D., Wilk, S., Lamprecht, J. & Paweletz, N. Ubiquitin-mediated proteolysis centers in HeLa cells: indication from studies of an inhibitor of the chymotrypsin-like activity of the proteasome. Eur. J. Cell Biol. 71, 311–318 (1996).

    CAS  PubMed  Google Scholar 

  27. 27

    Wigley, W. C. et al. Dynamic association of proteasomal machinery with the centrosome. J. Cell Biol. 145, 481–490 (1999). This article shows the centrosomal localization of various members of the ubiquitin-proteasome degradation pathway, indicating that the centrosome functions as a cellular centre for protein folding, aggregation and proteolysis.

    CAS  PubMed  Google Scholar 

  28. 28

    Fabunmi, R. P., Wigley, W. C., Thomas, P. J. & DeMartino, G. N. Activity and regulation of the centrosome-associated proteasome. J. Biol. Chem. 275, 409–413 (2000).

    CAS  PubMed  Google Scholar 

  29. 29

    Gordon, C. The intracellular localization of the proteasome. Curr. Top. Microbiol. Immunol. 268, 175–184 (2002).

    CAS  PubMed  Google Scholar 

  30. 30

    Nussbaum, R. L. & Ellis, C. E. Alzheimer's disease and Parkinson's disease. N. Engl. J. Med. 348, 1356–1364 (2003).

    CAS  PubMed  Google Scholar 

  31. 31

    Ishikawa, A. & Tsuji, S. Clinical analysis of 17 patients in 12 Japanese families with autosomal-recessive type juvenile parkinsonism. Neurology 47, 160–166 (1996).

    CAS  PubMed  Google Scholar 

  32. 32

    Takahashi, H. et al. Familial juvenile parkinsonism: clinical and pathologic study in a family. Neurology 44, 437–441 (1994).

    CAS  PubMed  Google Scholar 

  33. 33

    Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608 (1998).

    CAS  PubMed  Google Scholar 

  34. 34

    Imai, Y., Soda, M. & Takahashi, R. Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitin-protein ligase activity. J. Biol. Chem. 275, 35661–35664 (2000).

    CAS  PubMed  Google Scholar 

  35. 35

    Shimura, H. et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nature Genet. 25, 302–305 (2000). The authors report that parkin is a ubiquitin-protein ligase, raising the possibility that accumulation of parkin targets might underlie the pathogenesis of Parkinson disease.

    CAS  PubMed  Google Scholar 

  36. 36

    Zhao, J., Ren, Y., Jiang, Q. & Feng, J. Parkin is recruited to the centrosome in response to inhibition of proteasomes. J. Cell Sci. 116, 4011–4019 (2003).

    CAS  PubMed  Google Scholar 

  37. 37

    Spillantini, M. G., Crowther, R. A., Jakes, R., Hasegawa, M. & Goedert, M. α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with lewy bodies. Proc. Natl Acad. Sci. USA 95, 6469–6473 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Spillantini, M. G. et al. α-Synuclein in Lewy bodies. Nature 388, 839–840 (1997).

    CAS  Google Scholar 

  39. 39

    McNaught, K. S. et al. Impairment of the ubiquitin-proteasome system causes dopaminergic cell death and inclusion body formation in ventral mesencephalic cultures. J. Neurochem. 81, 301–306 (2002).

    CAS  PubMed  Google Scholar 

  40. 40

    Wakabayashi, K. et al. Synphilin-1 is present in Lewy bodies in Parkinson's disease. Ann. Neurol. 47, 521–523 (2000).

    CAS  PubMed  Google Scholar 

  41. 41

    Weinreb, P. H., Zhen, W., Poon, A. W., Conway, K. A. & Lansbury, P. T. Jr. NACP, a protein implicated in Alzheimer's disease and learning, is natively unfolded. Biochemistry 35, 13709–13715 (1996).

    CAS  PubMed  Google Scholar 

  42. 42

    Borden, K. L. Structure/function in neuroprotection and apoptosis. Ann. Neurol. 44, S65–S71 (1998).

    CAS  PubMed  Google Scholar 

  43. 43

    Conway, K. A., Harper, J. D. & Lansbury, P. T. Accelerated in vitro fibril formation by a mutant α-synuclein linked to early-onset Parkinson's disease. Nature Med. 4, 1381–1320 (1998).

    Google Scholar 

  44. 44

    Conway, K. A. et al. Acceleration of oligomerization, not fibrillization, is a shared property of both α-syunclein mutations linked to early-onset Parkinson's disease: implications for pathogenesis and therapy. Proc. Natl Acad. Sci. USA 91, 571–576 (2000).

    Google Scholar 

  45. 45

    Polymeropoulos, M. H. et al. Mutation in the α-synuclein gene identified in families with Parkinson's disease. Science 276, 2045–2047 (1997).

    CAS  Google Scholar 

  46. 46

    Bennett, M. C. et al. Degradation of α-synuclein by proteasome. J. Biol. Chem. 274, 33855–33858 (1999).

    CAS  PubMed  Google Scholar 

  47. 47

    Ellis, R. J. Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr. Opin. Struct. Biol. 11, 114–119 (2001).

    CAS  PubMed  Google Scholar 

  48. 48

    Shtilerman, M. D., Ding, T. T. & Lansbury, P. T. Molecular crowding accelerates fibrillization of α-synuclein: could an increase in the cytoplasmic protein concentration induce Parkinson's disease? Biochemistry 41, 3855–3860 (2002).

    CAS  PubMed  Google Scholar 

  49. 49

    Uversky, V. N., Cooper, E. M., Bower, K. S., Li, J. & Fink, A. L. Accelerated α-synuclein fibrillization in crowded milieu. FEBS Lett. 515, 99–103 (2002).

    CAS  PubMed  Google Scholar 

  50. 50

    Hatten, M. E. New directions in neuronal migration. Science 297, 1660–1663 (2002).

    CAS  PubMed  Google Scholar 

  51. 51

    Gotlieb, A. I., May, L. M., Subrahmanyan, L. & Kalnins, V. I. Distribution of microtubule organizing centers in migrating sheets of endothelial cells. J. Cell Biol. 91, 589–594 (1981).

    CAS  PubMed  Google Scholar 

  52. 52

    Ueda, M., Graf, R., MacWilliams, H. K., Schliwa, M. & Euteneuer, U. Centrosome positioning and directionality of cell movements. Proc. Natl Acad. Sci. USA 94, 9674–9678 (1997).

    CAS  PubMed  Google Scholar 

  53. 53

    Walsh, C. A. Genetic malformations of the human cerebral cortex. Neuron 23, 19–29 (1999).

    CAS  PubMed  Google Scholar 

  54. 54

    Wynshaw-Boris, A. & Gambello, M. J. LIS1 and dynein motor function in neuronal migration and development. Genes Dev. 15, 639–651 (2001).

    CAS  PubMed  Google Scholar 

  55. 55

    Francis, F. et al. Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron 23, 247–256 (1999).

    CAS  PubMed  Google Scholar 

  56. 56

    Hattori, M., Adachi, H., Tsujimoto, M., Arai, H. & Inoue, K. Miller–Dieker lissencephaly gene encodes a subunit of brain platelet-activating factor acetylhydrolase. Nature 370, 216–218 (1994).

    CAS  PubMed  Google Scholar 

  57. 57

    Reiner, O. et al. Isolation of a Miller–Dieker lissencephaly gene containing G protein β-subunit-like repeats. Nature 364, 717–721 (1993).

    CAS  PubMed  Google Scholar 

  58. 58

    Morris, N. R., Efimov, V. P. & Xiang, X. Nuclear migration, nucleokinesis and lissencephaly. Trends Cell Biol. 8, 467–470 (1998).

    CAS  PubMed  Google Scholar 

  59. 59

    Zhang, J., Li, S., Fischer, R. & Xiang, X. Accumulation of cytoplasmic dynein and dynactin at microtubule plus ends in Aspergillus nidulans is kinesin dependent. Mol. Biol. Cell 14, 1479–1488 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Sapir, T., Elbaum, M. & Reiner, O. Reduction of microtubule catastrophe events by LIS1, platelet-activating factor acetylhydrolase subunit. EMBO J. 16, 6977–6984 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Smith, D. S. et al. Regulation of cytoplasmic dynein behaviour and microtubule organization by mammalian Lis1. Nature Cell Biol. 2, 767–775 (2000). This paper describes the interaction between LIS1 and dynein, and the role of LIS1 in the regulation of dynein activity with emphasis on neuronal migration and axonal growth.

    CAS  PubMed  Google Scholar 

  62. 62

    Abal, M. et al. Microtubule release from the centrosome in migrating cells. J. Cell Biol. 159, 731–737 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Willins, D. A., Liu, B., Xiang, X. & Morris, N. R. Mutations in the heavy chain of cytoplasmic dynein suppress the nudF nuclear migration mutation of Aspergillus nidulans. Mol. Gen. Genet. 255, 194–200 (1997).

    CAS  PubMed  Google Scholar 

  64. 64

    Morris, S. M., Albrecht, U., Reiner, O., Eichele, G. & Yu-Lee, L. Y. The lissencephaly gene product Lis1, a protein involved in neuronal migration, interacts with a nuclear movement protein, NudC. Curr. Biol. 8, 603–606 (1998).

    CAS  PubMed  Google Scholar 

  65. 65

    Aumais, J. P. et al. NudC associates with Lis1 and the dynein motor at the leading pole of neurons. J. Neurosci. 21, RC187 (2001).

    CAS  PubMed  Google Scholar 

  66. 66

    Niethammer, M. et al. NUDEL is a novel Cdk5 substrate that associates with LIS1 and cytoplasmic dynein. Neuron 28, 697–711 (2000).

    CAS  PubMed  Google Scholar 

  67. 67

    Sasaki, S. et al. A LIS1/NUDEL/cytoplasmic dynein heavy chain complex in the developing and adult nervous system. Neuron 28, 681–696 (2000).

    CAS  PubMed  Google Scholar 

  68. 68

    Feng, Y. et al. LIS1 regulates CNS lamination by interacting with mNudE, a central component of the centrosome. Neuron 28, 665–679 (2000).

    CAS  PubMed  Google Scholar 

  69. 69

    Bielas, S. L. & Gleeson, J. G. Cytoskeletal-associated proteins in the migration of cortical neurons. J. Neurobiol. 58, 149–159 (2004).

    CAS  PubMed  Google Scholar 

  70. 70

    Shu, T. et al. Ndel1 operates in a common pathway with LIS1 and cytoplasmic dynein to regulate cortical neuronal positioning. Neuron 44, 263–277 (2004). This shows the role of NDEL1 in facilitating the interaction between LIS1 and dynein, its impact in the regulation of dynein activity, and its role in neuronal migration in mice.

    CAS  PubMed  Google Scholar 

  71. 71

    Cardoso, C. et al. Refinement of a 400-kb critical region allows genotypic differentiation between isolated lissencephaly, Miller–Dieker syndrome, and other phenotypes secondary to deletions of 17p13.3. Am. J. Hum. Genet. 72, 918–930 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Toyo-oka, K. et al. 14-3-3ε is important for neuronal migration by binding to NUDEL: a molecular explanation for Miller–Dieker syndrome. Nature Genet. 34, 274–285 (2003). The authors show that 14-3-3ε is involved in neuronal migration, binds to CDK5–p35-phosphorylated NDEL1 to maintain it in its phosphorylated state, and links the CDK5–p35 and LIS1 pathways of neuronal migration.

    CAS  PubMed  Google Scholar 

  73. 73

    Rivas, R. J. & Hatten, M. E. Motility and cytoskeletal organization of migrating cerebellar granule neurons. J. Neurosci. 15, 981–989 (1995).

    CAS  PubMed  Google Scholar 

  74. 74

    Tanaka, T. et al. Lis1 and doublecortin function with dynein to mediate coupling of the nucleus to the centrosome in neuronal migration. J. Cell Biol. 165, 709–721 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Sapir, T. et al. Doublecortin mutations cluster in evolutionarily conserved functional domains. Hum. Mol. Genet. 9, 701–712 (2000).

    Google Scholar 

  76. 76

    Horesh, D. et al. Doublecortin, a stabilizer of microtubules. Hum. Mol. Genet. 8, 1599–1610 (1999).

    CAS  PubMed  Google Scholar 

  77. 77

    Caspi, M., Atlas, R., Kantor, A., Sapir, T. & Reiner, O. Interaction between LIS1 and doublecortin, two lissencephaly gene products. Hum. Mol. Genet. 9, 2205–2213 (2000).

    CAS  PubMed  Google Scholar 

  78. 78

    Miyoshi, K. et al. DISC1 localizes to the centrosome by binding to kendrin. Biochem. Biophys. Res. Commun. 317, 1195–1199 (2004).

    CAS  PubMed  Google Scholar 

  79. 79

    Morris, J. A., Kandpal, G., Ma, L. & Austin, C. P. DISC1 (Disrupted-In-Schizophrenia 1) is a centrosome-associated protein that interacts with MAP1A, MIPT3, ATF4/5 and NUDEL: regulation and loss of interaction with mutation. Hum. Mol. Genet. 12, 1591–1608 (2003).

    CAS  PubMed  Google Scholar 

  80. 80

    Kato, T. Molecular genetics of bipolar disorder. Neurosci. Res. 40, 105–113 (2001).

    CAS  PubMed  Google Scholar 

  81. 81

    Brandon, N. J. et al. Disrupted in schizophrenia 1 and nudel form a neurodevelopmentally regulated protein complex: implications for schizophrenia and other major neurological disorders. Mol. Cell. Neurosci. 25, 42–55 (2004).

    CAS  PubMed  Google Scholar 

  82. 82

    Miyoshi, K. et al. Disrupted-in-schizophrenia 1, a candidate gene for schizophrenia, participates in neurite outgrowth. Mol. Psychiatry 8, 685–694 (2003).

    CAS  PubMed  Google Scholar 

  83. 83

    Ozeki, Y. et al. Disrupted-in-schizophrenia-1 (DISC-1): mutant truncation prevents binding to nudE-like (NUDEL) and inhibits neurite outgrowth. Proc. Natl Acad. Sci. USA 100, 289–294 (2003).

    CAS  PubMed  Google Scholar 

  84. 84

    Ahmad, F. J., Echeverri, C. J., Vallee, R. B. & Baas, P. W. Cytoplasmic dynein and dynactin are required for the transport of microtubules into the axon. J. Cell Biol. 140, 391–401 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Ahmad, F. J. & Baas, P. W. Microtubules released from the neuronal centrosome are transported into the axon. J. Cell Sci. 108, 2761–2769 (1995).

    CAS  PubMed  Google Scholar 

  86. 86

    Ahmad, F. J., Joshi, H. C., Centonze, V. E. & Baas, P. W. Inhibition of microtubule nucleation at the neuronal centrosome compromises axon growth. Neuron 12, 271–280 (1994).

    CAS  PubMed  Google Scholar 

  87. 87

    Fink, J. K. & Rainier, S. Hereditary spastic paraplegia: spastin phenotype and function. Arch. Neurol. 61, 830–833 (2004).

    PubMed  Google Scholar 

  88. 88

    Hazan, J. et al. Spastin, a new AAA protein, is altered in the most frequent form of autosomal dominant spastic paraplegia. Nature Genet. 23, 296–303 (1999).

    CAS  PubMed  Google Scholar 

  89. 89

    Karabay, A., Yu, W., Solowska, J. M., Baird, D. H. & Baas, P. W. Axonal growth is sensitive to the levels of katanin, a protein that severs microtubules. J. Neurosci. 24, 5778–5788 (2004).

    CAS  PubMed  Google Scholar 

  90. 90

    McNally, F. J. & Vale, R. D. Identification of katanin, an ATPase that severs and disassembles stable microtubules. Cell 75, 419–429 (1993).

    CAS  PubMed  Google Scholar 

  91. 91

    Errico, A., Claudiani, P., D'Addio, M. & Rugarli, E. I. Spastin interacts with the centrosomal protein NA14, and is enriched in the spindle pole, the midbody and the distal axon. Hum. Mol. Genet. 13, 2121–2132 (2004). This paper shows the subcellular localization of spastin to regions of dynamic microtubule organization, including the centrosome, providing an intriguing explanation for axonal degeneration in hereditary spastic paraplegia.

    CAS  PubMed  Google Scholar 

  92. 92

    Trotta, N., Orso, G., Rossetto, M. G., Daga, A. & Broadie, K. The hereditary spastic paraplegia gene, spastin, regulates microtubule stability to modulate synaptic structure and function. Curr. Biol. 14, 1135–1147 (2004).

    CAS  PubMed  Google Scholar 

  93. 93

    Pfannenschmid, F. et al. Chlamydomonas DIP13 and human NA14: a new class of proteins associated with microtubule structures is involved in cell division. J. Cell Sci. 116, 1449–1462 (2003).

    CAS  PubMed  Google Scholar 

  94. 94

    Marszalek, J. R. & Goldstein, L. S. Understanding the functions of kinesin-II. Biochim. Biophys. Acta 1496, 142–150 (2000).

    CAS  PubMed  Google Scholar 

  95. 95

    Harjes, P. & Wanker, E. E. The hunt for huntingtin function: interaction partners tell many different stories. Trends Biochem. Sci. 28, 425–433 (2003).

    CAS  PubMed  Google Scholar 

  96. 96

    Engelender, S. et al. Huntingtin-associated protein 1 (HAP1) interacts with the p150Glued subunit of dynactin. Hum. Mol. Genet. 6, 2205–2212 (1997).

    CAS  PubMed  Google Scholar 

  97. 97

    Gauthier, L. R. et al. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 118, 127–138 (2004). This article demonstrates that the huntingtin protein is involved in vesicular transport of brain-derived neurotrophic factor (BDNF) along microtubules and proposes that defects in this process are relevant to Huntington disease.

    CAS  PubMed  Google Scholar 

  98. 98

    Kalchman, M. A. et al. HIP1, a human homologue of S. cerevisiae Sla2p, interacts with membrane-associated huntingtin in the brain. Nature Genet. 16, 44–53 (1997).

    CAS  PubMed  Google Scholar 

  99. 99

    Wanker, E. E. et al. HIP-I: a huntingtin interacting protein isolated by the yeast two-hybrid system. Hum. Mol. Genet. 6, 487–495 (1997).

    CAS  PubMed  Google Scholar 

  100. 100

    Gervais, F. G. et al. Recruitment and activation of caspase-8 by the Huntingtin-interacting protein Hip-1 and a novel partner Hippi. Nature Cell Biol. 4, 95–105 (2002).

    CAS  PubMed  Google Scholar 

  101. 101

    Baker, S. A., Freeman, K., Luby-Phelps, K., Pazour, G. J. & Besharse, J. C. IFT20 links kinesin II with a mammalian intraflagellar transport complex that is conserved in motile flagella and sensory cilia. J. Biol. Chem. 278, 34211–34218 (2003).

    CAS  PubMed  Google Scholar 

  102. 102

    Pazour, G. J. et al. The intraflagellar transport protein, IFT88, is essential for vertebrate photoreceptor assembly and maintenance. J. Cell Biol. 157, 103–113 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103

    Sathasivam, K. et al. Centrosome disorganization in fibroblast cultures derived from R6/2 Huntington's disease (HD) transgenic mice and HD patients. Hum. Mol. Genet. 10, 2425–2435 (2001).

    CAS  PubMed  Google Scholar 

  104. 104

    Pazour, G. J. & Witman, G. B. The vertebrate primary cilium is a sensory organelle. Curr. Opin. Cell Biol. 15, 105–110 (2003).

    CAS  PubMed  Google Scholar 

  105. 105

    Rosenbaum, J. L. & Witman, G. B. Intraflagellar transport. Nature Rev. Mol. Cell Biol. 3, 813–825 (2002). A comprehensive review that describes the ultrastructure of cilia, flagella, the process of intraflagellar transport and some of the phenotypic consequences of perturbations in this process.

    CAS  Google Scholar 

  106. 106

    Yokoyama, T. et al. Reversal of left–right asymmetry: a situs inversus mutation. Science 260, 679–682 (1993).

    CAS  PubMed  Google Scholar 

  107. 107

    Eley, L. et al. A perspective on inversin. Cell Biol. Int. 28, 119–124 (2004).

    CAS  PubMed  Google Scholar 

  108. 108

    Morgan, D. et al. Expression analyses and interaction with the anaphase promoting complex protein Apc2 suggest a role for inversin in primary cilia and involvement in the cell cycle. Hum. Mol. Genet. 11, 3345–3350 (2002).

    CAS  PubMed  Google Scholar 

  109. 109

    Watanabe, D. et al. The left–right determinant inversin is a component of node monocilia and other 9+0 cilia. Development 130, 1725–1734 (2003). The authors describe the subcellular localization patterns of inversin, as well as the specific expression of this protein in primary cilia.

    CAS  PubMed  Google Scholar 

  110. 110

    Sorokin, S. Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. J. Cell Biol. 15, 363–377 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111

    Katsanis, N. The oligogenic properties of Bardet–Biedl syndrome. Hum. Mol. Genet. 13, R65–R71 (2004).

    CAS  PubMed  Google Scholar 

  112. 112

    Kulaga, H. M. et al. Loss of BBS proteins causes anosmia in humans and defects in olfactory cilia structure and function in the mouse. Nature Genet. 36, 994–998 (2004).

    CAS  PubMed  Google Scholar 

  113. 113

    Kim, J. C. et al. The Bardet–Biedl protein BBS4 targets cargo to the pericentriolar region and is required for microtubule anchoring and cell cycle progression. Nature Genet. 36, 462–470 (2004). This is the first functional characterization of a Bardet–Biedl syndrome protein, BBS4, showing it to be involved in the transport of centrosomal proteins to the pericentriolar region in a dynein-dependent manner.

    CAS  PubMed  Google Scholar 

  114. 114

    Blacque, O. E. et al. Loss of C. elegans BBS-7 and BBS-8 protein function results in cilia defects and compromised intraflagellar transport. Genes Dev. 18, 1630–1642 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115

    Ansley, S. J. et al. Basal body dysfunction is a likely cause of pleiotropic Bardet–Biedl syndrome. Nature 425, 628–633 (2003). Provides the first link between the pleiotropic phenotype of Bardet–Biedl syndrome with ciliary dysfunction.

    CAS  PubMed  Google Scholar 

  116. 116

    Dammermann, A. & Merdes, A. Assembly of centrosomal proteins and microtubule organization depends on PCM-1. J. Cell Biol. 159, 255–266 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117

    Kubo, A., Sasaki, H., Yuba-Kubo, A., Tsukita, S. & Shiina, N. Centriolar satellites: molecular characterization, ATP-dependent movement toward centrioles and possible involvement in ciliogenesis. J. Cell Biol. 147, 969–979 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118

    Chiang, A. P. et al. Comparative genomic analysis identifies an ADP-ribosylation factor-like gene as the cause of Bardet–Biedl syndrome (BBS3). Am. J. Hum. Genet. 75, 475–484 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119

    Fan, Y. et al. Mutations in a member of the Ras superfamily of small GTP-binding proteins causes Bardet–Biedl syndrome. Nature Genet. 36, 989–993 (2004).

    CAS  PubMed  Google Scholar 

  120. 120

    Takai, Y., Sasaki, T. & Matozaki, T. Small GTP-binding proteins. Physiol. Rev. 81, 153–208 (2001).

    CAS  PubMed  Google Scholar 

  121. 121

    Yoder, B. K., Hou, X. & Guay-Woodford, L. M. The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J. Am. Soc. Nephrol. 13, 2508–2516 (2002).

    CAS  PubMed  Google Scholar 

  122. 122

    Nauli, S. M. et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nature Genet. 33, 129–137 (2003).

    CAS  PubMed  Google Scholar 

  123. 123

    Otto, E. A. et al. Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left–right axis determination. Nature Genet. 34, 413–420 (2003).

    CAS  PubMed  Google Scholar 

  124. 124

    Mogensen, M. M., Malik, A., Piel, M., Bouckson-Castaing, V. & Bornens, M. Microtubule minus-end anchorage at centrosomal and non-centrosomal sites: the role of ninein. J. Cell Sci. 113, 3013–3023 (2000).

    CAS  PubMed  Google Scholar 

  125. 125

    Capdevila, J., Vogan, K. J., Tabin, C. J. & Izpisúa Belmonte, J. C. Mechanisms of left–right determination in vertebrates. Cell 101, 9–21 (2000).

    CAS  PubMed  Google Scholar 

  126. 126

    Pazour, G. J. & Rosenbaum, J. L. Intraflagellar transport and cilia-dependent diseases. Trends Cell Biol. 12, 551–555 (2002).

    CAS  PubMed  Google Scholar 

  127. 127

    Pazour, G. J. et al. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J. Cell Biol. 151, 709–718 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128

    Kim, J. C. et al. MKKS/BBS6, a divergent chaperonin-like protein linked to the obesity disorder Bardet–Biedl syndrome, is a novel centrosomal component required for cytokinesis. J. Cell Sci. (in the press).

  129. 129

    Takeda, S. et al. Left–right asymmetry and kinesin superfamily protein KIF3A: new insights in determination of laterality and mesoderm induction by kif3A−/− mice analysis. J. Cell Biol. 145, 825–836 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130

    Payne, C., St John, J. C., Ramalho-Santos, J. & Schatten, G. LIS1 association with dynactin is required for nuclear motility and genomic union in the fertilized mammalian oocyte. Cell Motil. Cytoskeleton 56, 245–251 (2003).

    CAS  PubMed  Google Scholar 

  131. 131

    Palazzo, R. E. Centrosome and spindle pole body dynamics. Review and abstracts of the EMBO/EMBL Conference on Centrosomes and Spindle Pole Bodies, Heidelberg, September 13–17, 2002. Cell Motil. Cytoskeleton 54, 148–194 (2003).

    Google Scholar 

  132. 132

    Baarends, W. M. et al. Histone ubiquitination and chromatin remodeling in mouse spermatogenesis. Dev. Biol. 207, 322–333 (1999).

    CAS  PubMed  Google Scholar 

  133. 133

    Thompson, W. E., Ramalho-Santos, J. & Sutovsky, P. Ubiquitination of prohibitin in mammalian sperm mitochondria: possible roles in the regulation of mitochondrial inheritance and sperm quality control. Biol. Reprod. 69, 254–260 (2003).

    CAS  PubMed  Google Scholar 

  134. 134

    Andrade, L. E., Chan, E. K., Peebles, C. L. & Tan, E. M. Two major autoantigen-antibody systems of the mitotic spindle apparatus. Arthritis Rheum. 39, 1643–1653 (1996).

    CAS  PubMed  Google Scholar 

  135. 135

    Balczon, R., Bao, L. & Zimmer, W. E. PCM-1, a 228-kD centrosome autoantigen with a distinct cell cycle distribution. J. Cell Biol. 124, 783–793 (1994).

    CAS  PubMed  Google Scholar 

  136. 136

    Oliver, J. M., Osborne, W. R., Pfeiffer, J. R., Child, F. M. & Berlin, R. D. Purine nucleoside phosphorylase is associated with centrioles and basal bodies. J. Cell Biol. 91, 837–847 (1981).

    CAS  PubMed  Google Scholar 

  137. 137

    Sasaki, Y. et al. Direct evidence of autosomal recessive inheritance of Arg24 to termination codon in purine nucleoside phosphorylase gene in a family with a severe combined immunodeficiency patient. Hum. Genet. 103, 81–85 (1998).

    CAS  PubMed  Google Scholar 

  138. 138

    Takatsuki, A., Nakamura, M. & Kono, Y. Possible implication of Golgi-nucleating function for the centrosome. Biochem. Biophys. Res. Commun. 291, 494–500 (2002).

    CAS  PubMed  Google Scholar 

  139. 139

    Nishisho, I. et al. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 253, 665–669 (1991).

    CAS  PubMed  Google Scholar 

  140. 140

    Li, J. B. et al. Comparative genomic identification of conserved flagellar and basal body proteins that includes a novel gene for Bardet–Biedl syndrome. Cell 117, 541–552 (2004).

    CAS  PubMed  Google Scholar 

  141. 141

    Guasch, G. et al. FGFR1 is fused to the centrosome-associated protein CEP110 in the 8p12 stem cell myeloproliferative disorder with t(8;9)(p12;q33). Blood 95, 1788–1796 (2000).

    CAS  PubMed  Google Scholar 

  142. 142

    Mack, G. J. et al. Autoantibodies to a group of centrosomal proteins in human autoimmune sera reactive with the centrosome. Arthritis Rheum. 41, 551–558 (1998).

    CAS  PubMed  Google Scholar 

  143. 143

    Niwa, J. et al. Dorfin ubiquitylates mutant SOD1 and prevents mutant SOD1-mediated neurotoxicity. J. Biol. Chem. 277, 36793–36798 (2002).

    CAS  PubMed  Google Scholar 

  144. 144

    Takeuchi, H. et al. Dorfin prevents cell death by reducing mitochondrial localizing mutant superoxide dismutase 1 in a neuronal cell model of familial amyotrophic lateral sclerosis. J. Neurochem. 89, 64–72 (2004).

    CAS  PubMed  Google Scholar 

  145. 145

    Engle, L. J. & Kennett, R. H. Cloning, analysis, and chromosomal localization of myoxin (MYH12), the human homologue to the mouse dilute gene. Genomics 19, 407–416 (1994).

    CAS  PubMed  Google Scholar 

  146. 146

    Espreafico, E. M. et al. Localization of myosin-V in the centrosome. Proc. Natl Acad. Sci. USA 95, 8636–8641 (1998).

    CAS  PubMed  Google Scholar 

  147. 147

    Arber, D. A. et al. Detection of NPM/MLF1 fusion in t(3;5)-positive acute myeloid leukemia and myelodysplasia. Hum. Pathol. 34, 809–813 (2003).

    CAS  PubMed  Google Scholar 

  148. 148

    Pascual, M. et al. A poly(ADP-ribose) polymerase haplotype spanning the promoter region confers susceptibility to rheumatoid arthritis. Arthritis Rheum. 48, 638–641 (2003).

    CAS  PubMed  Google Scholar 

  149. 149

    von Kobbe, C. et al. Central role for the Werner syndrome protein/poly(ADP-ribose) polymerase 1 complex in the poly(ADP-ribosyl)ation pathway after DNA damage. Mol. Cell Biol. 23, 8601–8613 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. 150

    Corvi, R., Berger, N., Balczon, R. & Romeo, G. RET/PCM-1: a novel fusion gene in papillary thyroid carcinoma. Oncogene 19, 4236–4242 (2000).

    CAS  PubMed  Google Scholar 

  151. 151

    Simizu, S. & Osada, H. Mutations in the Plk gene lead to instability of Plk protein in human tumour cell lines. Nature Cell Biol. 2, 852–854 (2000).

    CAS  PubMed  Google Scholar 

  152. 152

    Ninkina, N. N. et al. Organization, expression and polymorphism of the human persyn gene. Hum. Mol. Genet. 7, 1417–1424 (1998).

    CAS  PubMed  Google Scholar 

Download references


There has been a huge amount of data from laboratories around the world on the biochemical, cellular and genetic properties of the centrosome and we apologize to colleagues whose work we were unable to represent owing to space constraints. We thank P. Beales, M. Leroux and the members of the Katsanis laboratory for their critical evaluation of the manuscript. This work was supported in part by a National Institute of Child Health and Development, National Institutes of Health grant to N.K.

Author information



Corresponding author

Correspondence to Nicholas Katsanis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

















Alstrom syndrome

oro-facial digital syndrome

Parkinson disease

autosomal recessive juvenile parkinsonism


Miller–Dieker syndrome


Huntington disease

Bardet–Biedl syndrome

Cohen syndrome

Meckel–Gruber syndrome


Katsanis laboratory



The increased probability of acquiring chromosomal aberrations owing to defects in processes such as DNA repair, replication or chromosome segregation.


The structure found at the base of eukaryotic cilia and flagella that consists of an array of nine microtubule triplets, as well as other proteins, and which is involved in the organization and assembly of the ciliary axoneme.


A human disorder that is characterized by retinitis pigmentosa, obesity, diabetes mellitus and perceptive deafness.


An X-linked dominant condition, which is lethal in males, that is characterized by oral cavity, face and digit malformations and is often associated with brain defects and polycystic kidneys.


The assembly of cilia.


A cytosolic protein complex that degrades proteins that have been marked for destruction by the ubiquitination pathway.


A principal component of the proteinaceous inclusions — termed Lewy bodies — which are characteristic of certain neurodegenerative disorders such as Parkinson disease.


The connective tissue of the central nervous system that consists of astrocytes, oligodendrocytes and microglia.


The transient extension of the cell membrane that is used for locomotion or feeding in some microorganisms.


An abnormal localization of cells or organs.


A microtubule-dependent motor protein that is involved in several processes which, in the case of cytoplasmic dynein, includes organelle transport and mitosis, and in the case of ciliary dynein, provides the force for the movement of cilia and flagella.


A switch from growth to the rapid shortening of microtubule fibres, which is due to increased depolimerization of tubulin monomers.


A mental disorder that is characterized by, among other disturbances, the separation between emotions and thought processes, delusions and hallucinations, mood perturbations and autistic behaviour.


A bundle of nerve fibres that directly link the cerebral cortex to the spinal cord.


A protein family with members that share a conserved region of approximately 220 amino-acid residues that contains an ATP-binding site. AAA stands for 'ATPases associated with diverse cellular activities'.


A human cell line that is derived from the cervical carcinoma of Henrietta Lacks.


The region of the brain that receives both input and output signals from the cortex and controls complex motor activity.


Presence of an abnormal number of chromosomes. For example, in the case of trisomies, an extra copy of a chromosome is present.


The cytoplasmic bridge that links daughter cells at the end of cytokinesis.


A condition that is characterized by the abnormal accumulation of cerebrospinal fluid in the ventricles of the brain, which lead to elevated intracranial pressure that causes the skull bones to expand and results in an enlargement of the head.


Reversal of the left–right body axis of symmetry owing to the failure to align left–right with respect to the antero-posterior and dorso-ventral axes.


A congenital defect that is characterized by the presence of extra digits.


These are electron-dense structures that associate peripherally with the chromosome.


A rare autosomal-recessive human disorder that is characterized by psychomotor retardation, microcephaly, characteristic facial features, retinal dystrophy and myopia, among other phenotypic features.


A syndrome that is characterized by cleft palate, polydactyly and polycystic kidneys, as well as anomalies of the central nervous system, including occipital encephalocele and microcephaly.


The spiral-shaped structure in the middle ear that contains the hair cells responsible for sensing sound to produce the hearing signals that are sent to the brain.


A centrosomal protein that is required for the microtubule organizing activity of the centrosome.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Badano, J., Teslovich, T. & Katsanis, N. The centrosome in human genetic disease. Nat Rev Genet 6, 194–205 (2005).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing