Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The genetics of human obesity

Key Points

  • Obesity is a serious health issue in the developed world and is becoming increasingly important on a global scale. The development of an obesogenic environment, due to ease of access to highly calorific food and reduced energy expenditure in work and leisure activities, has increased the proportion of overweight individuals in society.

  • Over and above the increase in overweight individuals, there has been a dramatic rise in those who can be defined as morbidly obese. As suggested by the 'thrifty gene' hypothesis, these individuals might possess 'obesity-promoting' genetic variants that were previously advantageous, but that now lead them to become morbidly obese in the current environment.

  • The physiology of energy balance is complex, with the arcuate nucleus of the hypothalamus having a central role in this mechanism. Mouse models have been useful in initially highlighting many of the genes and proteins that are involved.

  • Rare, monogenic forms of human obesity — such as mutations in genes that encode leptin, its receptor, pro-opiomelanocortin, and the melanocortin 4 receptor — have provided insights into the pathogenesis of obesity. There are also syndromes where obesity is a component of the phenotype; however, their aetiology is more complex.

  • Heritability studies have demonstrated that genetics also has a significant role in common obesity, which is thought to be caused by a combination of multiple genetic and environmental factors.

  • Using both candidate-gene and whole-genome linkage strategies, novel genes and regions have been found to be linked and/or associated with obesity phenotypes. Studies to define the roles of these genes and their products in the pathophysiological mechanisms that lead to obesity are currently in progress.

  • New strategies, such as whole-genome association studies and the use of microarrays, could allow the identification of large numbers of genes that are involved in obesity in the near future.

Abstract

Obesity is an important cause of morbidity and mortality in developed countries, and is also becoming increasingly prevalent in the developing world. Although environmental factors are important, there is considerable evidence that genes also have a significant role in its pathogenesis. The identification of genes that are involved in monogenic, syndromic and polygenic obesity has greatly increased our knowledge of the mechanisms that underlie this condition. In the future, dissection of the complex genetic architecture of obesity will provide new avenues for treatment and prevention, and will increase our understanding of the regulation of energy balance in humans.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Physiological regulation of energy balance.
Figure 2: Genetic-linkage map for obesity.

References

  1. Flegal, K. M., Carroll, M. D., Ogden, C. L. & Johnson, C. L. Prevalence and trends in obesity among US adults, 1999–2000. JAMA 288, 1723–1727 (2002). Provides detailed obesity prevalence figures for the United States.

    Article  PubMed  Google Scholar 

  2. Must, A. et al. The disease burden associated with overweight and obesity. JAMA 282, 1523–1529 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Calle, E. E., Rodriguez, C., Walker-Thurmond, K. & Thun, M. J. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N. Engl. J. Med. 348, 1625–1638 (2003). A prospective study detailing the contribution of overweight and obesity to cancer mortality.

    Article  PubMed  Google Scholar 

  4. Mokdad, A. H., Marks, J. S., Stroup, D. F. & Gerberding, J. L. Actual causes of death in the United States, 2000. JAMA 291, 1238–1245 (2004).

    Article  PubMed  Google Scholar 

  5. Fontaine, K. R., Redden, D. T., Wang, C., Westfall, A. O. & Allison, D. B. Years of life lost due to obesity. JAMA 289, 187–193 (2003).

    Article  PubMed  Google Scholar 

  6. Weiss, K. M. & Terwilliger, J. D. How many diseases does it take to map a gene with SNPs? Nature Genet. 26, 151–157 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. French, S. A., Story, M. & Jeffery, R. W. Environmental influences on eating and physical activity. Annu. Rev. Public Health 22, 309–335 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Friedman, J. M. A war on obesity, not the obese. Science 299, 856–858 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Neel, J. V. Diabetes mellitus: a 'thrifty' genotype rendered detrimental by 'progress'? Am. J. Hum. Genet. 14, 353–362 (1962). A classic paper that proposes the 'thrifty gene' hypothesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Cossrow, N. & Falkner, B. Race/ethnic issues in obesity and obesity-related comorbidities. J. Clin. Endocrinol. Metab. 89, 2590–2594 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Xu, B. et al. Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nature Neurosci. 6, 736–742 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Barsh, G. S. & Schwartz, M. W. Genetic approaches to studying energy balance: perception and integration. Nature Rev. Genet. 3, 589–600 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Air, E. L. et al. Small molecule insulin mimetics reduce food intake and body weight and prevent development of obesity. Nature Med. 8, 179–183 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Friedman, J. M. & Halaas, J. L. Leptin and the regulation of body weight in mammals. Nature 395, 763–770 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Kohno, D., Gao, H. Z., Muroya, S., Kikuyama, S. & Yada, T. Ghrelin directly interacts with neuropeptide-Y-containing neurons in the rat arcuate nucleus: Ca2+ signaling via protein kinase A and N-type channel-dependent mechanisms and cross-talk with leptin and orexin. Diabetes 52, 948–956 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Spiegelman, B. M. & Flier, J. S. Obesity and the regulation of energy balance. Cell 104, 531–543 (2001). A comprehensive review of the physiology of obesity and energy balance.

    Article  CAS  PubMed  Google Scholar 

  17. Flier, J. S., Harris, M. & Hollenberg, A. N. Leptin, nutrition, and the thyroid: the why, the wherefore, and the wiring. J. Clin. Invest. 105, 859–861 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schwartz, M. W. et al. Is the energy homeostasis system inherently biased toward weight gain? Diabetes 52, 232–238 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Considine, R. V. et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 334, 292–295 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Schwartz, M. W., Peskind, E., Raskind, M., Boyko, E. J. & Porte, D. Jr. Cerebrospinal fluid leptin levels: relationship to plasma levels and to adiposity in humans. Nature Med. 2, 589–593 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Carpenter, L. R. et al. Enhancing leptin response by preventing SH2-containing phosphatase 2 interaction with Ob receptor. Proc. Natl Acad. Sci. USA 95, 6061–6066 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Elchebly, M. et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283, 1544–1548 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Mori, H. et al. Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet–induced obesity. Nature Med. 10, 739–743 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994). The identification of the leptin gene.

    Article  CAS  PubMed  Google Scholar 

  25. Tartaglia, L. A. et al. Identification and expression cloning of a leptin receptor, OB-R. Cell 83, 1263–1271 (1995). The identification of the leptin receptor gene.

    Article  CAS  PubMed  Google Scholar 

  26. Naggert, J. K. et al. Hyperproinsulinaemia in obese fat/fat mice associated with a carboxypeptidase E mutation which reduces enzyme activity. Nature Genet. 10, 135–142 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Bultman, S. J., Michaud, E. J. & Woychik, R. P. Molecular characterization of the mouse agouti locus. Cell 71, 1195–1204 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Huszar, D. et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88, 131–141 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Ollmann, M. M. et al. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278, 135–138 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Montague, C. T. et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387, 903–908 (1997). The first monogenic form of obesity to be discovered, with the identification of the leptin gene mutation as a cause of human obesity.

    Article  CAS  PubMed  Google Scholar 

  31. Clement, K. et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 392, 398–401 (1998). The identification of a mutation in the leptin receptor gene as a cause of monogenic human obesity.

    Article  CAS  PubMed  Google Scholar 

  32. Jackson, R. S. et al. Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nature Genet. 16, 303–306 (1997). The identification of prohormone convertase 1 gene mutation as a cause of monogenic human obesity.

    Article  CAS  PubMed  Google Scholar 

  33. Krude, H. et al. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nature Genet. 19, 155–157 (1998). The identification of POMC mutation as a cause of monogenic human obesity.

    Article  CAS  PubMed  Google Scholar 

  34. Farooqi, I. S. et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N. Engl. J. Med. 341, 879–884 (1999). This is a paper that describes the successful use of recombinant leptin to treat a child with congenital leptin deficiency owing to leptin gene mutation.

    Article  CAS  PubMed  Google Scholar 

  35. Farooqi, I. S. et al. Partial leptin deficiency and human adiposity. Nature 414, 34–35 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Vaisse, C., Clement, K., Guy-Grand, B. & Froguel, P. A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nature Genet. 20, 113–114 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Yeo, G. S. et al. A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nature Genet. 20, 111–112 (1998). References 36 and 37 are concurrent reports of the identification of MC4R mutation as a cause of monogenic human obesity.

    Article  CAS  PubMed  Google Scholar 

  38. Lubrano-Berthelier, C. et al. Intracellular retention is a common characteristic of childhood obesity-associated MC4R mutations. Hum. Mol. Genet. 12, 145–153 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Farooqi, I. S. et al. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N. Engl. J. Med. 348, 1085–1095 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Vaisse, C. et al. Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. J. Clin. Invest. 106, 253–262 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Farooqi, I. S. et al. Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J. Clin. Invest. 106, 271–279 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Butler, A. A. & Cone, R. D. Knockout studies defining different roles for melanocortin receptors in energy homeostasis. Ann. NY Acad. Sci. 994, 240–245 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Delrue, M. A. & Michaud, J. L. Fat chance: genetic syndromes with obesity. Clin. Genet. 66, 83–93 (2004).

    Article  PubMed  Google Scholar 

  44. Jiang, Y., Tsai, T. F., Bressler, J. & Beaudet, A. L. Imprinting in Angelman and Prader–Willi syndromes. Curr. Opin. Genet. Dev. 8, 334–342 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Cummings, D. E. et al. Elevated plasma ghrelin levels in Prader–Willi syndrome. Nature Med. 8, 643–644 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Michaud, J. L. et al. Sim1 haploinsufficiency causes hyperphagia, obesity and reduction of the paraventricular nucleus of the hypothalamus. Hum. Mol. Genet. 10, 1465–1473 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Holder, J. L. Jr, Butte, N. F. & Zinn, A. R. Profound obesity associated with a balanced translocation that disrupts the SIM1 gene. Hum. Mol. Genet. 9, 101–108 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Faivre, L. et al. Deletion of the SIM1 gene (6q16. 2) in a patient with a Prader–Willi-like phenotype. J. Med. Genet. 39, 594–596 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Spiegel, A. M. & Weinstein, L. S. Inherited diseases involving G proteins and G protein-coupled receptors. Annu. Rev. Med. 55, 27–39 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Ristow, M. Neurodegenerative disorders associated with diabetes mellitus. J. Mol. Med. 82, 510–529 (2004).

    Article  PubMed  Google Scholar 

  51. Kim, J. C. et al. The Bardet–Biedl protein BBS4 targets cargo to the pericentriolar region and is required for microtubule anchoring and cell cycle progression. Nature Genet. 36, 462–470 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Kulaga, H. M. et al. Loss of BBS proteins causes anosmia in humans and defects in olfactory cilia structure and function in the mouse. Nature Genet. 36, 994–998 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Beales, P. L. et al. Genetic interaction of BBS1 mutations with alleles at other BBS loci can result in non-Mendelian Bardet–Biedl syndrome. Am. J. Hum. Genet. 72, 1187–1199 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Feinleib, M. et al. The NHLBI twin study of cardiovascular disease risk factors: methodology and summary of results. Am. J. Epidemiol. 106, 284–285 (1977). This was the first study to indicate that the observed familial aggregation for obesity was due to genetic factors rather than the environment.

    Article  CAS  PubMed  Google Scholar 

  55. Stunkard, A. J., Foch, T. T. & Hrubec, Z. A twin study of human obesity. J. Am. Med. Assoc. 256, 51–54 (1986). A study of monozygotic and dizygotic twin pairs that gave an estimated heritability for weight similar to that for height.

    Article  CAS  Google Scholar 

  56. Stunkard, A. J. et al. An adoption study of human obesity. N. Engl. J. Med. 314, 193–198 (1986). An adoption study that provides support for a genetic influence on body weight. The authors demonstrate that adopted children have body sizes that are more similar to their biological than their adopted parents across the whole range of body size.

    Article  CAS  PubMed  Google Scholar 

  57. Stunkard, A. J., Harris, J. R., Pedersen, N. L. & McClearn, G. E. The body-mass index of twins who have been reared apart. N. Engl. J. Med. 322, 1483–1487 (1990). A seminal paper examining identical and fraternal twins that were reared together and apart.

    Article  CAS  PubMed  Google Scholar 

  58. Hasstedt, S. J., Ramirez, M. E., Kuida, H. & Williams, R. R. Recessive inheritance of a relative fat pattern. Am. J. Hum. Genet. 45, 917–925 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Selby, J. V. et al. Evidence of genetic influence on central body fat in middle-aged twins. Hum. Biol. 61, 179–194 (1989).

    CAS  PubMed  Google Scholar 

  60. Turula, M., Kaprio, J., Rissanen, A. & Koskenvuo, M. Body weight in the Finnish Twin Cohort. Diabetes Res. Clin. Pract. 10 (Suppl. 1), 33–36 (1990).

    Article  Google Scholar 

  61. Moll, P. P., Burns, T. L. & Lauer, R. M. The genetic and environmental sources of body mass index variability: the Muscatine Ponderosity Family Study. Am. J. Hum. Genet. 49, 1243–1255 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Pietilainen, K. H. et al. Distribution and heritability of BMI in Finnish adolescents aged 16y and 17y: a study of 4884 twins and 2509 singletons. Int. J. Obes. Relat. Metab. Disord. 23, 107–115 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Koeppen-Schomerus, G., Wardle, J. & Plomin, R. A genetic analysis of weight and overweight in 4-year-old twin pairs. Int. J. Obes. Relat. Metab. Disord. 25, 838–844 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Katzmarzyk, P. T. et al. Familial resemblance in fatness and fat distribution. Am. J. Hum. Genet. 12, 395–404 (2000).

    Google Scholar 

  65. Bouchard, C. et al. The response to long-term overfeeding in identical twins. N. Engl. J. Med. 322, 1477–1482 (1990).

    Article  CAS  PubMed  Google Scholar 

  66. Hainer, V. et al. A twin study of weight loss and metabolic efficiency. Int. J. Obes. Relat. Metab. Disord. 25, 533–537 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Faith, M. S. et al. Familial aggregation of energy intake in children. Am. J. Clin. Nutr. 79, 844–850 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Allison, D. B., Faith, M. S. & Nathan, J. S. Risch's λ values for human obesity. Int. J. Obes. Relat. Metab. Disord. 20, 990–999 (1996).

    CAS  PubMed  Google Scholar 

  69. Williams, R. C., Long, J. C., Hanson, R. L., Sievers, M. L. & Knowler, W. C. Individual estimates of European genetic admixture associated with lower body-mass index, plasma glucose, and prevalence of type 2 diabetes in Pima Indians. Am. J. Hum. Genet. 66, 527–538 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Challis, B. G. et al. A missense mutation disrupting a dibasic prohormone processing site in pro-opiomelanocortin (POMC) increases susceptibility to early-onset obesity through a novel molecular mechanism. Hum. Mol. Genet. 11, 1997–2004 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Jiang, Y. et al. Common variants in the 5′ region of the leptin gene are associated with body mass index in men from the National Heart, Lung, and Blood Institute Family Heart Study. Am. J. Hum. Genet. 75, 220–230 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Geller, F. et al. Melanocortin-4 receptor gene variant I103 is negatively associated with obesity. Am. J. Hum. Genet. 74, 572–581 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. McCarthy, M. I. & Froguel, P. Genetic approaches to the molecular understanding of type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 283, e217–e225 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411, 603–606 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Gretarsdottir, S. et al. The gene encoding phosphodiesterase 4D confers risk of ischemic stroke. Nature Genet. 35, 131–138 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Van Eerdewegh, P. et al. Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 418, 426–430 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Allen, M. et al. Positional cloning of a novel gene influencing asthma from chromosome 2q14. Nature Genet. 35, 258–263 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Comuzzie, A. G. et al. A major quantitative trait locus determining serum leptin levels and fat mass is located on human chromosome 2. Nature Genet. 15, 273–276 (1997). The first genome scan that was done for obesity-related traits.

    Article  CAS  PubMed  Google Scholar 

  79. Hager, J. et al. A genome-wide scan for human obesity genes reveals a major susceptibility locus on chromosome 10. Nature Genet. 20, 304–308 (1998). The first genome-wide analysis using nuclear families ascertained specifically for obesity.

    Article  CAS  PubMed  Google Scholar 

  80. Snyder, E. E. et al. The human obesity gene map: the 2003 update. Obes. Res. 12, 369–439 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Mitchell, B. D. et al. A quantitative trait locus influencing BMI maps to the region of the β-3 adrenergic receptor. Diabetes 48, 1863–1867 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Palmer, L. J. et al. A whole-genome scan for obstructive sleep apnea and obesity. Am. J. Hum. Genet. 72, 340–350 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Rice, T. et al. A genomewide linkage scan for abdominal subcutaneous and visceral fat in black and white families: the HERITAGE Family Study. Diabetes 51, 848–855 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Perusse, L. et al. A genome-wide scan for abdominal fat assessed by computed tomography in the Quebec Family Study. Diabetes 50, 614–621 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Feitosa, M. F. et al. Quantitative-trait loci influencing body-mass index reside on chromosomes 7 and 13: the National Heart, Lung, and Blood Institute Family Heart Study. Am. J. Hum. Genet. 70, 72–82 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Hsueh, W. C. et al. Genome-wide scan of obesity in the Old Order Amish. J. Clin. Endocrinol. Metab. 86, 1199–1205 (2001).

    CAS  PubMed  Google Scholar 

  87. Hinney, A. et al. Independent confirmation of a major locus for obesity on chromosome 10. J. Clin. Endocrinol. Metab. 85, 2962–2965 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Price, R. A. et al. A locus affecting obesity in human chromosome region 10p12. Diabetologia 44, 363–366 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Norman, R. A. et al. Genomewide search for genes influencing percent body fat in Pima Indians: suggestive linkage at chromosome 11q21–q22. Pima Diabetes Gene Group. Am. J. Hum. Genet. 60, 166–173 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Hanson, R. L. et al. An autosomal genomic scan for loci linked to type II diabetes mellitus and body-mass index in Pima Indians. Am. J. Hum. Genet. 63, 1130–1138 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Atwood, L. D. et al. Genomewide linkage analysis of body mass index across 28 years of the Framingham Heart Study. Am. J. Hum. Genet. 71, 1044–1050 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Norman, R. A. et al. Autosomal genomic scan for loci linked to obesity and energy metabolism in Pima Indians. Am. J. Hum. Genet. 62, 659–668 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Dong, C. et al. Interacting genetic Loci on chromosomes 20 and 10 influence extreme human obesity. Am. J. Hum. Genet. 72, 115–124 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Hunt, S. C. et al. Linkage of body mass index to chromosome 20 in Utah pedigrees. Hum. Genet. 109, 279–285 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Lee, J. H. et al. Genome scan for human obesity and linkage to markers in 20q13. Am. J. Hum. Genet. 64, 196–209 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kissebah, A. H. et al. Quantitative trait loci on chromosomes 3 and 17 influence phenotypes of the metabolic syndrome. Proc. Natl Acad. Sci. USA 97, 14478–14483 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Walder, K., Hanson, R. L., Kobes, S., Knowler, W. C. & Ravussin, E. An autosomal genomic scan for loci linked to plasma leptin concentration in Pima Indians. Int. J. Obes. Relat. Metab. Disord. 24, 559–565 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Vionnet, N. et al. Genomewide search for type 2 diabetes-susceptibility genes in French whites: evidence for a novel susceptibility locus for early-onset diabetes on chromosome 3q27–qter and independent replication of a type 2-diabetes locus on chromosome 1q21–q24. Am. J. Hum. Genet. 67, 1470–1480 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Francke, S. et al. A genome-wide scan for coronary heart disease suggests in Indo-Mauritians a susceptibility locus on chromosome 16p13 and replicates linkage with the metabolic syndrome on 3q27. Hum. Mol. Genet. 10, 2751–2765 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Wu, X. et al. A combined analysis of genomewide linkage scans for body mass index from the National Heart, Lung, and Blood Institute Family Blood Pressure Program. Am. J. Hum. Genet. 70, 1247–1256 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Luke, A. et al. Linkage for BMI at 3q27 region confirmed in an African–American population. Diabetes 52, 1284–1287 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Stone, S. et al. A major predisposition locus for severe obesity, at 4p15–p14. Am. J. Hum. Genet. 70, 1459–1468 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Rozin, P., Kabnick, K., Pete, E., Fischler, C. & Shields, C. The ecology of eating: smaller portion sizes in France than in the United States help explain the French paradox. Psychol. Sci. 14, 450–454 (2003).

    Article  PubMed  Google Scholar 

  104. ObEpi. Overweight and obesity in France: epidemiological investigation in a sample of the population of French adults and children. INSERM investigation/ Roche Institute for Obesity. SOFRES, 1–5 (2003).

  105. Bell, C. G. et al. Genome-wide linkage analysis for severe obesity in French caucasians finds significant susceptibility locus on chromosome 19q. Diabetes 53, 1857–1865 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Ohman, M. et al. Genome-wide scan of obesity in Finnish sibpairs reveals linkage to chromosome Xq24. J. Clin. Endocrinol. Metab. 85, 3183–3190 (2000).

    CAS  PubMed  Google Scholar 

  107. Meyre, D. et al. A genome-wide scan for childhood obesity-associated traits in French families shows significant linkage on chromosome 6q22.31–q23.2. Diabetes 53, 803–811 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Fox, C. S. et al. Genome-wide linkage to chromosome 6 for waist circumference in the Framingham Heart Study. Diabetes 53, 1399–1402 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Boutin, P. et al. GAD2 on chromosome 10p12 is a candidate gene for human obesity. PLoS Biol. 1, e68 (2003). The first report of positional cloning of an obesity susceptibility gene.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Suviolahti, E. et al. The SLC6A14 gene shows evidence of association with obesity. J. Clin. Invest. 112, 1762–1772 (2003). The report of positional cloning of an obesity susceptibility gene from the X-chromosome locus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ueda, H. et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423, 506–511 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Lonjou, C. et al. A first trial of retrospective collaboration for positional cloning in complex inheritance: assay of the cytokine region on chromosome 5 by the consortium on asthma genetics (COAG). Proc. Natl Acad. Sci. USA 97, 10942–10947 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Austin, M. A., Harding, S. & McElroy, C. Genebanks: a comparison of eight proposed international genetic databases. Community Genet. 6, 37–45 (2003).

    PubMed  Google Scholar 

  114. Nadler, S. T. et al. The expression of adipogenic genes is decreased in obesity and diabetes mellitus. Proc. Natl Acad. Sci. USA 97, 11371–11376 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lopez, I. P. et al. DNA microarray analysis of genes differentially expressed in diet-induced (cafeteria) obese rats. Obes. Res. 11, 188–194 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Linder, K., Arner, P., Flores-Morales, A., Tollet-Egnell, P. & Norstedt, G. Differentially expressed genes in visceral or subcutaneous adipose tissue of obese men and women. J. Lipid Res. 45, 148–154 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Gomez-Ambrosi, J. et al. Gene expression profile of omental adipose tissue in human obesity. FASEB J. 18, 215–217 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Urs, S. et al. Gene expression profiling in human preadipocytes and adipocytes by microarray analysis. J. Nutr. 134, 762–770 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Schadt, E. E. et al. Genetics of gene expression surveyed in maize, mouse and man. Nature 422, 297–302 (2003). This is a description of mouse, plant and human transcriptomes that considers gene-expression values as quantitative traits. The authors identify a gene-expression pattern that is strongly associated with a mouse model of obesity.

    Article  CAS  PubMed  Google Scholar 

  120. Morley, M. et al. Genetic analysis of genome-wide variation in human gene expression. Nature 430, 743–747 (2004). A microarray study of human gene basal expression using expression levels as QTLs in a genome-wide linkage analysis. The authors identified both cis - and trans -acting regulation loci that regulate basal expression of human genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Crawford, D. C. et al. Haplotype diversity across 100 candidate genes for inflammation, lipid metabolism, and blood pressure regulation in two populations. Am. J. Hum. Genet. 74, 610–622 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. John, S. et al. Whole-genome scan, in a complex disease, using 11,245 single-nucleotide polymorphisms: comparison with microsatellites. Am. J. Hum. Genet. 75, 54–64 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Puffenberger, E. G. et al. Mapping of sudden infant death with dysgenesis of the testes syndrome (SIDDT) by a SNP genome scan and identification of TSPYL loss of function. Proc. Natl Acad. Sci. USA 101, 11689–11694 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hirschhorn, J. N. & Daly, M. J. Genome-wide association studies for common diseases and complex traits. Nature Rev. Genet. 6, 95–108 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Wang, W. Y. S., Barratt, B. J., Clayton, D. G. & Todd, J. A. Genome-wide association studies: theoretical and practical concerns. Nature Rev. Genet. 6, 109–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Cohen, J. C. et al. Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science 305, 869–872 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Shendure, J., Mitra, R. D., Varma, C. & Church, G. M. Advanced sequencing technologies: methods and goals. Nature Rev. Genet. 5, 335–344 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Pu, S. et al. Interactions between neuropeptide Y and γ-aminobutyric acid in stimulation of feeding: a morphological and pharmacological analysis. Endocrinol. 140, 933–940 (1999).

    Article  CAS  Google Scholar 

  129. Cowley, M. A. et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411, 480–484 (2001).

    Article  CAS  PubMed  Google Scholar 

  130. Rolandsson, O. et al. Glutamate decarboxylase (GAD65) and tyrosine phosphatase-like protein (IA-2) autoantibodies index in a regional population is related to glucose intolerance and body mass index. Diabetologia 42, 555–559 (1999).

    Article  CAS  PubMed  Google Scholar 

  131. Durand, E. et al. Polymorphisms in the amino acid transporter solute carrier family 6 (neurotransmitter transporter) member 14 gene contribute to polygenic obesity in French Caucasians. Diabetes 53, 2483–2486 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Pagani, F. & Baralle, F. E. Genomic variants in exons and introns: identifying the splicing spoilers. Nature Rev. Genet. 5, 389–396 (2004).

    Article  CAS  PubMed  Google Scholar 

  133. Sloan, J. L. & Mager, S. Cloning and functional expression of a human Na+ and Cl-dependent neutral and cationic amino acid transporter B0+. J. Biol. Chem. 274, 23740–23745 (1999).

    Article  CAS  PubMed  Google Scholar 

  134. Benton, D. Carbohydrate ingestion, blood glucose and mood. Neurosci. Biobehav. Rev. 26, 293–308 (2002).

    Article  CAS  PubMed  Google Scholar 

  135. Blundell, J. E., Goodson, S. & Halford, J. C. Regulation of appetite: role of leptin in signalling systems for drive and satiety. Int. J. Obes. Relat. Metab. Disord. 25 (Suppl. 1), 29–34 (2001).

    Article  Google Scholar 

  136. Li, W. D., Dong, C., Li, D., Zhao, H. & Price, R. A. An obesity-related locus in chromosome region 12q23–24. Diabetes 53, 812–820 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Menzaghi, C. et al. A haplotype at the adiponectin locus is associated with obesity and other features of the insulin resistance syndrome. Diabetes 51, 2306–2312 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Stumvoll, M. et al. Association of the T–G polymorphism in adiponectin (exon 2) with obesity and insulin sensitivity: interaction with family history of type 2 diabetes. Diabetes 51, 37–41 (2002).

    Article  CAS  PubMed  Google Scholar 

  139. Filippi, E. et al. Association of the human adiponectin gene and insulin resistance. Eur. J. Hum. Genet. 12, 199–205 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Oppert, J. M. et al. DNA polymorphisms in the α2- and β2-adrenoceptor genes and regional fat distribution in humans: association and linkage studies. Obes. Res. 3, 249–255 (1995).

    Article  CAS  PubMed  Google Scholar 

  141. Ukkola, O. et al. Interactions among the α2-, β2-, and β3-adrenergic receptor genes and obesity-related phenotypes in the Quebec Family Study. Metabolism 49, 1063–1070 (2000).

    Article  CAS  PubMed  Google Scholar 

  142. Garenc, C. et al. The α2-adrenergic receptor gene and body fat content and distribution: the HERITAGE Family Study. Mol. Med. 8, 88–94 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Heinonen, P. et al. Identification of a three-amino acid deletion in the α2B-adrenergic receptor that is associated with reduced basal metabolic rate in obese subjects. J. Clin. Endocrinol. Metab. 84, 2429–2433 (1999).

    CAS  PubMed  Google Scholar 

  144. Sivenius, K., Lindi, V., Niskanen, L., Laakso, M. & Uusitupa, M. Effect of a three-amino acid deletion in the α2B-adrenergic receptor gene on long-term body weight change in Finnish non-diabetic and type 2 diabetic subjects. Int. J. Obes. Relat. Metab. Disord. 25, 1609–1614 (2001).

    Article  CAS  PubMed  Google Scholar 

  145. Dionne, I. J. et al. Association between obesity and a polymorphism in the β1-adrenoceptor gene (Gly389Arg ADRB1) in Caucasian women. Int. J. Obes. Relat. Metab. Disord. 26, 633–639 (2002).

    Article  CAS  PubMed  Google Scholar 

  146. Large, V. et al. Human β-2 adrenoceptor gene polymorphisms are highly frequent in obesity and associate with altered adipocyte β-2 adrenoceptor function. J. Clin. Invest. 100, 3005–3013 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ishiyama-Shigemoto, S., Yamada, K., Yuan, X., Ichikawa, F. & Nonaka, K. Association of polymorphisms in the β2-adrenergic receptor gene with obesity, hypertriglyceridaemia, and diabetes mellitus. Diabetologia 42, 98–101 (1999).

    Article  CAS  PubMed  Google Scholar 

  148. Mori, Y. et al. The Gln27Glu β2-adrenergic receptor variant is associated with obesity due to subcutaneous fat accumulation in Japanese men. Biochem. Biophys. Res. Commun. 258, 138–140 (1999).

    Article  CAS  PubMed  Google Scholar 

  149. Meirhaeghe, A., Helbecque, N., Cottel, D. & Amouyel, P. Impact of polymorphisms of the human β2-adrenoceptor gene on obesity in a French population. Int. J. Obes. Relat. Metab. Disord. 24, 382–387 (2000).

    Article  CAS  PubMed  Google Scholar 

  150. Ehrenborg, E. et al. The Q/E27 polymorphism in the β2-adrenoceptor gene is associated with increased body weight and dyslipoproteinaemia involving triglyceride-rich lipoproteins. J. Intern. Med. 247, 651–656 (2000).

    Article  CAS  PubMed  Google Scholar 

  151. Garenc, C. et al. Effects of β2-adrenergic receptor gene variants on adiposity: the HERITAGE Family Study. Obes. Res. 11, 612–618 (2003).

    Article  CAS  PubMed  Google Scholar 

  152. Pereira, A. C. et al. β2 adrenoceptor functional gene variants, obesity, and blood pressure level interactions in the general population. Hypertension 42, 685–692 (2003).

    Article  CAS  PubMed  Google Scholar 

  153. Eriksson, P., Dahlman, I., Ryden, M., Hoffstedt, J. & Arner, P. Relationship between β-2 adrenoceptor gene haplotypes and adipocyte lipolysis in women. Int. J. Obes. Relat. Metab. Disord. 28, 185–190 (2004).

    Article  CAS  PubMed  Google Scholar 

  154. Widen, E. et al. Association of a polymorphism in the β3-adrenergic-receptor gene with features of the insulin resistance syndrome in Finns. N. Engl. J. Med. 333, 348–351 (1995).

    Article  CAS  PubMed  Google Scholar 

  155. Kadowaki, H. et al. A mutation in the β3-adrenergic receptor gene is associated with obesity and hyperinsulinemia in Japanese subjects. Biochem. Biophys. Res. Commun. 215, 555–560 (1995).

    Article  CAS  PubMed  Google Scholar 

  156. Clement, K. et al. Genetic variation in the β3-adrenergic receptor and an increased capacity to gain weight in patients with morbid obesity. N. Engl. J. Med. 333, 352–354 (1995).

    Article  CAS  PubMed  Google Scholar 

  157. Oksanen, L. et al. Polymorphism of the β-3-adrenergic receptor gene in morbid obesity. Int. J. Obes. Relat. Metab. Disord. 20, 1055–1061 (1996).

    CAS  PubMed  Google Scholar 

  158. Thomas, G. N., Tomlinson, B., Chan, J. C., Young, R. P. & Critchley, J. A. The Trp64Arg polymorphism of the β3-adrenergic receptor gene and obesity in Chinese subjects with components of the metabolic syndrome. Int. J. Obes. Relat. Metab. Disord. 24, 545–551 (2000).

    Article  CAS  PubMed  Google Scholar 

  159. Corella, D. et al. Gender specific associations of the Trp64Arg mutation in the β3-adrenergic receptor gene with obesity-related phenotypes in a Mediterranean population: interaction with a common lipoprotein lipase gene variation. J. Intern. Med. 250, 348–360 (2001).

    Article  CAS  PubMed  Google Scholar 

  160. Hao, K. et al. β3 Adrenergic receptor polymorphism and obesity-related phenotypes in hypertensive patients. Obes. Res. 12, 125–130 (2004).

    Article  CAS  PubMed  Google Scholar 

  161. Hager, J. et al. A polymorphism in the 5′ UTR region of the human OB gene is associated with morbid obesity and low leptin levels. Int. J. Obes. Relat. Metab. Disord. 22, 200–205 (1998).

    Article  CAS  PubMed  Google Scholar 

  162. Mammes, O. et al. Novel polymorphisms in the 5′ region of the LEP gene: association with leptin levels and response to low-calorie diet in human obesity. Diabetes 47, 487–489 (1998).

    Article  CAS  PubMed  Google Scholar 

  163. Li, W. D. et al. Sequence variants in the 5′ flanking region of the leptin gene are associated with obesity in women. Ann. Hum. Genet. 63, 227–234 (1999).

    Article  CAS  PubMed  Google Scholar 

  164. Mammes, O. et al. Association of the G–2548A polymorphism in the 5′ region of the LEP gene with overweight. Ann. Hum. Genet. 64, 391–394 (2000).

    Article  CAS  PubMed  Google Scholar 

  165. Yiannakouris, N. et al. The Q223R polymorphism of the leptin receptor gene is significantly associated with obesity and predicts a small percentage of body weight and body composition variability. J. Clin. Endocrinol. Metab. 86, 4434–4439 (2001).

    Article  CAS  PubMed  Google Scholar 

  166. Quinton, N. D., Lee, A. J., Ross, R. J., Eastell, R. & Blakemore, A. I. A single nucleotide polymorphism (SNP) in the leptin receptor is associated with BMI, fat mass and leptin levels in postmenopausal Caucasian women. Hum. Genet. 108, 233–236 (2001).

    Article  CAS  PubMed  Google Scholar 

  167. Mattevi, V. S., Zembrzuski, V. M. & Hutz, M. H. Association analysis of genes involved in the leptin-signaling pathway with obesity in Brazil. Int. J. Obes. Relat. Metab. Disord. 26, 1179–1185 (2002).

    Article  CAS  PubMed  Google Scholar 

  168. Mammes, O. et al. LEPR gene polymorphisms: associations with overweight, fat mass and response to diet in women. Eur. J. Clin. Invest. 31, 398–404 (2001).

    Article  CAS  PubMed  Google Scholar 

  169. Liu, Y. J. et al. Tests of linkage and/or association of the LEPR gene polymorphisms with obesity phenotypes in Caucasian nuclear families. Physiol. Genomics 17, 101–106 (2004).

    Article  CAS  PubMed  Google Scholar 

  170. Dobson, M. G., Redfern, C. P., Unwin, N. & Weaver, J. U. The N363S polymorphism of the glucocorticoid receptor: potential contribution to central obesity in men and lack of association with other risk factors for coronary heart disease and diabetes mellitus. J. Clin. Endocrinol. Metab. 86, 2270–2274 (2001).

    CAS  PubMed  Google Scholar 

  171. Lin, R. C., Wang, X. L., Dalziel, B., Caterson, I. D. & Morris, B. J. Association of obesity, but not diabetes or hypertension, with glucocorticoid receptor N363S variant. Obes. Res. 11, 802–808 (2003).

    Article  CAS  PubMed  Google Scholar 

  172. Roussel, R. et al. The N363S polymorphism in the glucocorticoid receptor gene is associated with overweight in subjects with type 2 diabetes mellitus. Clin. Endocrinol. (Oxf.) 59, 237–241 (2003).

    Article  CAS  Google Scholar 

  173. Deeb, S. S. et al. A Pro12Ala substitution in PPARγ2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nature Genet. 20, 284–287 (1998).

    Article  CAS  PubMed  Google Scholar 

  174. Ek, J. et al. Homozygosity of the Pro12Ala variant of the peroxisome proliferation-activated receptor-γ2 (PPAR-γ2): divergent modulating effects on body mass index in obese and lean Caucasian men. Diabetologia 42, 892–895 (1999).

    Article  CAS  PubMed  Google Scholar 

  175. Valve, R. et al. Two polymorphisms in the peroxisome proliferator-activated receptor-γ gene are associated with severe overweight among obese women. J. Clin. Endocrinol. Metab. 84, 3708–3712 (1999).

    CAS  PubMed  Google Scholar 

  176. Meirhaeghe, A. et al. Impact of the peroxisome proliferator activated receptor γ2 Pro12Ala polymorphism on adiposity, lipids and non-insulin-dependent diabetes mellitus. Int. J. Obes. Relat. Metab. Disord. 24, 195–199 (2000).

    Article  CAS  PubMed  Google Scholar 

  177. Doney, A. et al. Haplotype analysis of the PPARγ Pro12Ala and C1431T variants reveals opposing associations with body weight. BMC Genet. 3, 21 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Robitaille, J., Despres, J. P., Perusse, L. & Vohl, M. C. The PPAR-γ P12A polymorphism modulates the relationship between dietary fat intake and components of the metabolic syndrome: results from the Quebec Family Study. Clin. Genet. 63, 109–116 (2003).

    Article  CAS  PubMed  Google Scholar 

  179. Kao, W. H. et al. Pro12Ala of the peroxisome proliferator-activated receptor-γ2 gene is associated with lower serum insulin levels in nonobese African Americans: the atherosclerosis risk in communities study. Diabetes 52, 1568–1572 (2003).

    Article  CAS  PubMed  Google Scholar 

  180. Masud, S. & Ye, S. Effect of the peroxisome proliferator activated receptor-γ gene Pro12Ala variant on body mass index: a meta-analysis. J. Med. Genet. 40, 773–780 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Pihlajamaki, J., Vanhala, M., Vanhala, P. & Laakso, M. The Pro12Ala polymorphism of the PPARγ2 gene regulates weight from birth to adulthood. Obes. Res. 12, 187–190 (2004).

    Article  CAS  PubMed  Google Scholar 

  182. Damcott, C. M. et al. Genetic variation in fatty acid-binding protein-4 and peroxisome proliferator-activated receptor-γ interactively influence insulin sensitivity and body composition in males. Metabolism 53, 303–309 (2004).

    Article  CAS  PubMed  Google Scholar 

  183. Knoblauch, H. et al. Peroxisome proliferator-activated receptor-γ gene locus is related to body mass index and lipid values in healthy nonobese subjects. Arterioscler. Thromb. Vasc. Biol. 19, 2940–2944 (1999).

    Article  CAS  PubMed  Google Scholar 

  184. Oppert, J. M. et al. DNA polymorphism in the uncoupling protein (UCP) gene and human body fat. Int. J. Obes. Relat. Metab. Disord. 18, 526–531 (1994).

    CAS  PubMed  Google Scholar 

  185. Clement, K. et al. Additive effect of A>G (−3826) variant of the uncoupling protein gene and the Trp64Arg mutation of the β3-adrenergic receptor gene on weight gain in morbid obesity. Int. J. Obes. Relat. Metab. Disord. 20, 1062–1066 (1996).

    CAS  PubMed  Google Scholar 

  186. Fumeron, F. et al. Polymorphisms of uncoupling protein (UCP) and β3 adrenoreceptor genes in obese people submitted to a low calorie diet. Int. J. Obes. Relat. Metab. Disord. 20, 1051–1054 (1996).

    CAS  PubMed  Google Scholar 

  187. Heilbronn, L. K. et al. Association of −3826G variant in uncoupling protein-1 with increased BMI in overweight Australian women. Diabetologia 43, 242–244 (2000).

    Article  CAS  PubMed  Google Scholar 

  188. Matsushita, H., Kurabayashi, T., Tomita, M., Kato, N. & Tanaka, K. Effects of uncoupling protein 1 and β3-adrenergic receptor gene polymorphisms on body size and serum lipid concentrations in Japanese women. Maturitas 45, 39–45 (2003).

    Article  CAS  PubMed  Google Scholar 

  189. Herrmann, S. M. et al. Uncoupling protein 1 and 3 polymorphisms are associated with waist-to-hip ratio. J. Mol. Med. 81, 327–332 (2003).

    Article  PubMed  Google Scholar 

  190. Esterbauer, H. et al. A common polymorphism in the promoter of UCP2 is associated with decreased risk of obesity in middle-aged humans. Nature Genet. 28, 178–183 (2001).

    Article  CAS  PubMed  Google Scholar 

  191. Cassell, P. G. et al. An uncoupling protein 2 gene variant is associated with a raised body mass index but not type II diabetes. Diabetologia 42, 688–692 (1999).

    Article  CAS  PubMed  Google Scholar 

  192. Evans, D. et al. Frequency of and interaction between polymorphisms in the β3-adrenergic receptor and in uncoupling proteins 1 and 2 and obesity in Germans. Int. J. Obes. Relat. Metab. Disord. 24, 1239–1245 (2000).

    Article  CAS  PubMed  Google Scholar 

  193. Yanovski, J. A. et al. Associations between uncoupling protein 2, body composition, and resting energy expenditure in lean and obese African American, white, and Asian children. Am. J. Clin. Nutr. 71, 1405–1420 (2000).

    Article  CAS  PubMed  Google Scholar 

  194. Wang, H. et al. Uncoupling protein-2 polymorphisms in type 2 diabetes, obesity, and insulin secretion. Am. J. Physiol. Endocrinol. Metab. 286, e1–e7 (2004).

    Article  CAS  PubMed  Google Scholar 

  195. Damcott, C. M. et al. Genetic variation in uncoupling protein 3 is associated with dietary intake and body composition in females. Metabolism 53, 458–464 (2004).

    Article  CAS  PubMed  Google Scholar 

  196. Lanouette, C. M. et al. Uncoupling protein 3 gene is associated with body composition changes with training in HERITAGE study. J. Appl. Physiol. 92, 1111–1118 (2002).

    Article  CAS  PubMed  Google Scholar 

  197. Halsall, D. J. et al. Uncoupling protein 3 genetic variants in human obesity: the C–55T promoter polymorphism is negatively correlated with body mass index in a UK Caucasian population. Int. J. Obes. Relat. Metab. Disord. 25, 472–477 (2001).

    Article  CAS  PubMed  Google Scholar 

  198. Otabe, S. et al. A genetic variation in the 5′ flanking region of the UCP3 gene is associated with body mass index in humans in interaction with physical activity. Diabetologia 43, 245–249 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the continuing support for their research that is provided by the Medical Research Council and Imperial College London.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Froguel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

AGRP

NPY

POMC

CART

PYY3–36

CCK

MC4R

SIM1

PPARG

OMIM

type II diabetes

Prader–Willi syndrome

Pseudohypoparathyroidism type 1A

Bardet–Biedl syndrome

Swiss-Prot

FURTHER INFORMATION

dbSNP — NCBI Single Nucleotide Polymorphism database

Genetic Association database

HUGO Gene Nomenclature Committee web site

International HapMap Project

Obesity Gene Map database

SNP Consortium

Glossary

BODY MASS INDEX

(BMI). An anthropometric measure of body mass that is calculated by dividing a person's weight in kilograms by the square of their height in metres.

HYPERPHAGIA

Ingestion of a greater than optimal quantity of food; an abnormally increased appetite for and consumption of food.

HYPOTONIA

Decreased muscle tone from the average and reduced resistance to passive stretching of muscles.

HYPOGONADOTROPIC HYPOGONADISM

Absent or decreased function of the male testis or the female ovary (the gonads). It results from the absence of the gonadal stimulating pituitary hormones, FSH (follicle stimulating hormone) and LH (luteinizing hormone).

UNIPARENTAL DISOMY

The presence in a cell of homologous chromosomes from the same parent, with no chromosome of that pair from the other parent. This can result from non-disjunction events during meiosis, and might be composed of both homologous chromosomes from one parent (heterodisomy) or a duplicate of one chromosome (isodisomy).

GS PROTEIN

The heterotrimeric guanine nucleotide-binding protein (G protein) that stimulates adenylyl cyclase and functions as a molecular switch in many signal-transduction pathways.

ROD-CONE DYSTROPHY

Hereditary, progressive degeneration of the neuroepithelium of the retina that is characterized by night blindness and progressive contraction of the visual field.

POLYDACTYLY

A developmental anomaly that is characterized by the presence of more than five fingers on the hand or more than five toes on the foot.

HERITABILITY

The proportion of phenotypic variance that is due to genetic effects.

SUBSCAPULAR SKINFOLD THICKNESS

The skinfold measure that is taken below the inferior angle of the scapula.

SUPRAILIAC SKINFOLD THICKNESS

The skinfold measure that is taken midway between the hip joint and the bottom of the ribcage.

METABOLIC EFFICIENCY

Energy intake per kilogram that is required to maintain bodyweight.

RELATIVE RISK

The ratio of the risk of the expression of a phenotype among individuals with a particular exposure, genotype or haplotype to the risk among those without that exposure, genotype or haplotype.

ADMIXTURE

The mixture of two or more genetically distinct populations.

HAPLOTYPE

A set of closely linked genetic markers on a single chromosome.

MINOR ALLELE FREQUENCY

The frequency of the less common allele of a polymorphism. It has a value between 0 and 0.5, and can vary between populations.

PROBAND

A subject that is ascertained on the basis of their phenotype; often used to identify affected families for genetic studies.

QUANTITATIVE TRAIT

A continuously varying trait; for example, weight, height and skin colour.

VARIANCE COMPONENTS METHOD

The variance components (VC) approach is a method that expresses the phenotypic variances and covariances among individuals as a function of the estimated number of shared alleles that are identical by descent at a given locus.

NUCLEAR FAMILY

A family that is composed of a father, mother and their children.

LONGITUDINAL PROSPECTIVE STUDIES

Studies in which individuals are followed up over time to assess who develops a certain outcome (often disease).

METABOLIC SYNDROME

The occurrence of hyperinsulinaemia, glucose intolerance, dyslipidaemia, hypertension and obesity in an individual.

STRATIFICATION

The presence of several subgroups within a study group, either through genuine population subdivision or recruitment bias. Differences in both allele frequency and disease prevalence between these subgroups can lead to spurious associations with disease.

MULTIPLE-HYPOTHESIS TESTING

Testing more than one hypothesis in an experiment. As a result, the probability of an unusual result occurring by chance in the entire experiment is higher than the individual significance value associated with that result.

PROSPECTIVE STUDY

A study in which participants are divided into groups that are exposed or not exposed to the intervention(s) of interest before the outcomes have occurred.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bell, C., Walley, A. & Froguel, P. The genetics of human obesity. Nat Rev Genet 6, 221–234 (2005). https://doi.org/10.1038/nrg1556

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1556

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing