X-linked mental retardation

Key Points

  • X-linked genetic defects are important causes of mental retardation, and recent years have seen important progress in the identification of the genes involved in X-linked mental retardation (XLMR).

  • There are two main forms of XLMR — syndromic XLMR (S-XLMR), which is associated with additional phenotypes, and non-syndromic XLMR (NS-XLMR).

  • Whereas most of the genetic defects that underlie S-XLMR are either known or have been mapped to small chromosomal regions, fewer than 50% of those that underlie NS-XLMR have been identified.

  • Genes that are involved in S-XLMR can be identified using standard techniques for identifying genes involved in monogenic disorders. However, it is not as straightforward for NS-XLMR, mainly because of the genetic heterogeneity of this condition.

  • Recent years have seen concerted efforts to identify genes that are involved in XLMR. Studies of chromosomal rearrangements, the availability of large numbers of families for genetic analysis and large-scale mutational screening have all been important in this work.

  • The identification of XLMR-associated genes has provided insights into brain function. The genes that are affected in these conditions have roles in processes such as neuronal outgrowth, synaptic structure and function, synaptic plasticity and learning and memory, and might also be determinants of intelligence.

  • Polymorphisms that predispose to mental retardation — but are not sufficient to cause symptoms on their own — might be present within the protein-coding regions of genes, their regulatory regions or in genes that encode small regulatory RNAs. Allelic variants of genes that are involved in XLMR might be candidates for such polymorphisms.

  • Understanding the genetic causes of XLMR will be important in developing diagnostic, preventive and therapeutic strategies for the treatment and management of this condition.


Genetic factors have an important role in the aetiology of mental retardation. However, their contribution is often underestimated because in developed countries, severely affected patients are mainly sporadic cases and familial cases are rare. X-chromosomal mental retardation is the exception to this rule, and this is one of the reasons why research into the genetic and molecular causes of mental retardation has focused almost entirely on the X-chromosome. Here, we review the remarkable recent progress in this field, its promise for understanding neural function, learning and memory, and the implications of this research for health care.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Identification of genes that are involved in non-syndromic cases of X-linked mental retardation (NS-XLMR).
Figure 2: Chromosomal rearrangements: clues to the identity of X-linked mental retardation (XLMR) genes.


  1. 1

    Leonard, H. & Wen, X. The epidemiology of mental retardation: challenges and opportunities in the new millennium. Ment. Retard. Dev. Disabil. Res. Rev. 8, 117–134 (2002). A comprehensive meta-analysis on the aetiology and prevalence of mental retardation in males and females.

    PubMed  Google Scholar 

  2. 2

    Polder, J. J., Meerding, W. J., Koopmanschap, M. A., Bonneux, L. & van der Maas, P. J. The cost of sickness in the Netherlands in 1994. Ned. Tijdschr. Geneesk. 142, 1607–1611 (1998). A comparative evaluation of disease-related costs, concluding that mental retardation is the most important cost factor in health care.

    CAS  Google Scholar 

  3. 3

    Penrose, L. S. A Clinical and Genetic Study of 1280 Cases of Mental Defect Vol. 229 (HMSO, London, 1938).

    Google Scholar 

  4. 4

    Lehrke, R. A theory of X-linkage of major intellectual traits. Am. J. Ment. Defic. 76, 611–619 (1972).

    CAS  PubMed  Google Scholar 

  5. 5

    Lehrke, R. G. X-linked mental retardation and verbal disability. Birth Defects Orig. Artic. Ser. 10, 1–100 (1974). References 4 and 5 are influential early publications that postulate an important role for X-linked genes in cognition and mental retardation.

    CAS  PubMed  Google Scholar 

  6. 6

    Verkerk, A. J. et al. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in Fragile X Syndrome. Cell 65, 905–914 (1991). This is a landmark paper that describes the cloning of the gene for Fra(X) mental retardation, one of the first trinucleotide-repeat expansion disorders.

    CAS  Google Scholar 

  7. 7

    Chelly, J. & Mandel, J. L. Monogenic causes of X-linked mental retardation. Nature Rev. Genet. 2, 669–680 (2001).

    CAS  Google Scholar 

  8. 8

    Fishburn, J., Turner, G., Daniel, A. & Brookwell, R. The diagnosis and frequency of X-linked conditions in a cohort of moderately retarded males with affected brothers. Am. J. Med. Genet. 14, 713–724 (1983). The only available study that provides empirical data on the relative frequency of syndromic and non-syndromic XLMR.

    CAS  PubMed  Google Scholar 

  9. 9

    Gecz, J., Gedeon, A. K., Sutherland, G. R. & Mulley, J. C. Identification of the gene FMR2, associated with FRAXE mental retardation. Nature Genet. 13, 105–108 (1996).

    CAS  PubMed  Google Scholar 

  10. 10

    Gu, Y., Shen, Y., Gibbs, R. A. & Nelson, D. L. Identification of FMR2, a novel gene associated with the FRAXE CCG repeat and CpG island. Nature Genet. 13, 109–113 (1996).

    CAS  PubMed  Google Scholar 

  11. 11

    van der Maarel, S. M. et al. Cloning and characterization of DXS6673E, a candidate gene for X-linked mental retardation in Xq13.1. Hum. Mol. Genet. 5, 887–897 (1996).

    CAS  PubMed  Google Scholar 

  12. 12

    Cantagrel, V. et al. Disruption of a new X-linked gene highly expressed in brain in a family with two mentally retarded males. J. Med. Genet. 41, 736–742 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Kalscheuer, V. M. et al. Disruption of the serine/threonine kinase 9 gene causes severe X-linked infantile spasms and mental retardation. Am. J. Hum. Genet. 72, 1401–1411 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Tao, J. et al. Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5/STK9) gene are associated with severe neurodevelopmental retardation. Am. J. Hum. Genet. 75, 1149–1154 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Weaving, L. S. et al. Mutations of CDKL5 cause a severe neurodevelopmental disorder with infantile spasms and mental retardation. Am. J. Hum. Genet. 75, 1079–1093 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Stromme, P. et al. Mutations in the human ortholog of Aristaless cause X-linked mental retardation and epilepsy. Nature Genet. 30, 441–445 (2002). This paper describes the identification of the ARX gene, which is mutated in several XLMR syndromes and in many families with NS-XLMR.

    CAS  PubMed  Google Scholar 

  17. 17

    Meloni, I. et al. FACL4, encoding fatty acid-CoA ligase 4, is mutated in nonspecific X-linked mental retardation. Nature Genet. 30, 436–440 (2002).

    CAS  PubMed  Google Scholar 

  18. 18

    Ropers, H. H. et al. Nonsyndromic X-linked mental retardation: where are the missing mutations? Trends Genet. 19, 316–320 (2003). Meta-analysis of published linkage intervals reveals regional clustering of mutations that underlie NS-XLMR.

    CAS  PubMed  Google Scholar 

  19. 19

    Kalscheuer, V. M. et al. Mutations in the polyglutamine binding protein 1 gene cause X-linked mental retardation. Nature Genet. 35, 313–315 (2003).

    CAS  PubMed  Google Scholar 

  20. 20

    Freude, K. et al. Mutations in the FTSJ1 gene coding for a novel S-adenosylmethionine-binding protein cause nonsyndromic X-linked mental retardation. Am. J. Hum. Genet. 75, 305–309 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Shoichet, S. A. et al. Mutations in the ZNF41 gene are associated with cognitive deficits: identification of a new candidate for X-linked mental retardation. Am. J. Hum. Genet. 73, 1341–1354 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Jensen, L. R. et al. Mutations in the JARID1C gene, encoding a protein involved in transcriptional regulation and chromatin remodeling, cause X–linked mental retardation. Am. J. Hum. Genet. (in the press).

  23. 23

    Tarpey, P. et al. Mutations in the DLG3 gene cause nonsyndromic X-Linked mental retardation. Am. J. Hum. Genet. 75, 318–324 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Jin, P. et al. Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nature Neurosci. 7, 113–117 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Jin, P., Alisch, R. S. & Warren, S. T. RNA and microRNAs in fragile X mental retardation. Nature Cell Biol. 6, 1048–1053 (2004).

    CAS  PubMed  Google Scholar 

  26. 26

    Willemsen, R., Oostra, B. A., Bassell, G. J. & Dictenberg, J. The fragile X syndrome: from molecular genetics to neurobiology. Ment. Retard. Dev. Disabil. Res. Rev. 10, 60–67 (2004).

    PubMed  Google Scholar 

  27. 27

    Chelly, J. Breakthroughs in molecular and cellular mechanisms underlying X-linked mental retardation. Hum. Mol. Genet. 8, 1833–1838 (1999).

    CAS  PubMed  Google Scholar 

  28. 28

    Ramakers, G. J. Rho proteins, mental retardation and the cellular basis of cognition. Trends Neurosci. 25, 191–199 (2002).

    CAS  PubMed  Google Scholar 

  29. 29

    Billuart, P. et al. Oligophrenin-1 encodes a rhoGAP protein involved in X-linked mental retardation. Nature 392, 923–926 (1998). This is a seminal paper on the cloning of OPHN1 , then considered as one of the first genes for NS-XLMR.

    CAS  PubMed  Google Scholar 

  30. 30

    Allen, K. M. et al. PAK3 mutation in nonsyndromic X-linked mental retardation. Nature Genet. 20, 25–30 (1998).

    CAS  PubMed  Google Scholar 

  31. 31

    Kutsche, K. et al. Mutations in ARHGEF6, encoding a guanine nucleotide exchange factor for Rho GTPases, in patients with X-linked mental retardation. Nature Genet. 26, 247–250 (2000).

    CAS  PubMed  Google Scholar 

  32. 32

    Lebel, R. R. et al. Non-syndromic X-linked mental retardation associated with a missense mutation (P312L) in the FGD1 gene. Clin. Genet. 61, 139–145 (2002).

    CAS  PubMed  Google Scholar 

  33. 33

    Pasteris, N. G. et al. Isolation and analysis of the faciogenital dysplasia (Aarskog-Scott syndrome) gene: a putative, rho/rac guanine nucleotide exchange factor. Cell 79, 669–678 (1994).

    CAS  PubMed  Google Scholar 

  34. 34

    Govek, E. E. et al. The X-linked mental retardation protein oligophrenin-1 is required for dendritic spine morphogenesis. Nature Neurosci. 7, 364–372 (2004). An important paper providing insights into the pathomechanism of OPHN1.

    CAS  PubMed  Google Scholar 

  35. 35

    Fox, J. W. et al. Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia. Neuron 21, 1315–1325 (1998).

    CAS  PubMed  Google Scholar 

  36. 36

    Robertson, S. P. et al. OPD-spectrum Disorders Clinical Collaborative Group. Localized mutations in the gene encoding the cytoskeletal protein filamin A cause diverse malformations in humans. Nature Genet. 33, 487–491 (2003).

    CAS  PubMed  Google Scholar 

  37. 37

    Laumonnier, F. et al. X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family. Am. J. Hum. Genet. 74, 552–557 (2004). This paper establishes a link between defective synapse induction and mental retardation.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Jamain, S. et al. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nature Genet. 34, 27–29 (2003).

    CAS  PubMed  Google Scholar 

  39. 39

    Scheiffele, P., Fan, J., Choih, J., Fetter, R. & Serafini, T. Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101, 657–669 (2000).

    CAS  PubMed  Google Scholar 

  40. 40

    Dean, C. et al. Neurexin mediates the assembly of presynaptic terminals. Nature Neurosci. 6, 708–716 (2003).

    CAS  PubMed  Google Scholar 

  41. 41

    Chih, B., Afridi, S. K., Clark, L. & Scheiffele, P. Disorder-associated mutations lead to functional inactivation of neuroligins. Hum. Mol. Genet. 13, 1471–1477 (2004).

    CAS  PubMed  Google Scholar 

  42. 42

    Giovedí, S. et al. Synapsin is a novel Rab3 effector protein on small synaptic vesicles: I. Identification and characterization of the synapsin I–Rab3 interactions in vitro and in intact nerve terminals. J. Biol. Chem. 279, 43760–43768 (2004).

    PubMed  Google Scholar 

  43. 43

    Giovedí, S., Darchen, F., Valtorta, F., Greengard, P. & Benfenati, F. Synapsin is a novel Rab3 effector protein on small synaptic vesicles: II. Functional effects of the Rab3A-synapsin I interaction. J. Biol. Chem. 279, 43769–43779 (2004).

    PubMed  Google Scholar 

  44. 44

    Garcia, C. C. et al. Identification of a mutation in synapsin I, a synaptic vesicle protein, in a family with epilepsy. J. Med. Genet. 41, 183–187 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    D'Adamo, P. et al. Mutations in GDI1 are responsible for X-linked non-specific mental retardation. Nature Genet. 19, 134–139 (1998).

    CAS  PubMed  Google Scholar 

  46. 46

    D'Adamo, P. et al. Deletion of the mental retardation gene Gdi1 impairs associative memory and alters social behavior in mice. Hum. Mol. Genet. 11, 2567–2580 (2002).

    CAS  Google Scholar 

  47. 47

    McFerran, B. W., Graham, M. E. & Burgoyne, R. D. Neuronal Ca2+ sensor 1, the mammalian homologue of frequenin, is expressed in chromaffin and PC12 cells and regulates neurosecretion from dense-core granules. J. Biol. Chem. 273, 22768–22772 (1998).

    CAS  PubMed  Google Scholar 

  48. 48

    McFerran, B. W., Weiss, J. L. & Burgoyne, R. D. Neuronal Ca2+ sensor 1. Characterization of the myristoylated protein, its cellular effects in permeabilized adrenal chromaffin cells, Ca2+-independent membrane association, and interaction with binding proteins, suggesting a role in rapid Ca2+ signal transduction. J. Biol. Chem. 274, 30258–30265 (1999).

    CAS  PubMed  Google Scholar 

  49. 49

    Ferrante, M. I., Ghiani, M., Bulfone, A. & Franco, B. IL1RAPL2 maps to Xq22 and is specifically expressed in the central nervous system. Gene 275, 217–221 (2001).

    CAS  PubMed  Google Scholar 

  50. 50

    Gibbons, R. J., Picketts, D. J., Villard, L. & Higgs, D. Mutations in a putative global transcriptional regulator cause X-linked mental retardation with α-thalassemia (ATR-X syndrome). Cell 80, 837–845 (1995). The authors describe the identification of the ATR-X gene that later turned out to be mutated in a wide variety of XLMR syndromes.

    CAS  PubMed  Google Scholar 

  51. 51

    Villard, L. & Fontes, M. α-Thalassemia/mental retardation syndrome, X-Linked (ATR-X, MIM #301040, ATR-X/XNP/XH2 gene MIM #300032). Eur. J. Hum. Genet. 10, 223–225 (2002).

    CAS  PubMed  Google Scholar 

  52. 52

    Picketts, D. J. et al. The ATR–X mental retardation syndrome gene is required for neuronal survival during corticogenesis. Genet. Couns. 15, 252 (2004).

    Google Scholar 

  53. 53

    Villard, L. et al. Two affected boys in a Rett syndrome family: clinical and molecular findings. Neurology 55, 1188–1193 (2000).

    CAS  PubMed  Google Scholar 

  54. 54

    Meloni, I. et al. A mutation in the Rett syndrome gene, MECP2, causes X-linked mental retardation and progressive spasticity in males. Am. J. Hum. Genet. 67, 982–985 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Watson, P. et al. Angelman syndrome phenotype associated with mutations in MECP2, a gene encoding a methyl CpG binding protein. J. Med. Genet. 38, 224–228 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Kleefstra, T. et al. De novo MECP2 frameshift mutation in a boy with moderate mental retardation, obesity and gynaecomastia. Clin. Genet. 61, 359–362 (2002).

    CAS  PubMed  Google Scholar 

  57. 57

    Orrico, A. et al. MECP2 mutation in male patients with non-specific X-linked mental retardation. FEBS Lett. 481, 285–288 (2000).

    CAS  PubMed  Google Scholar 

  58. 58

    Chen, W. G. et al. Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 302, 885–889 (2003). This paper identifies the BDNF gene as a specific target for the Rett gene, MECP2.

    CAS  PubMed  Google Scholar 

  59. 59

    Pang, P. T. et al. Cleavage of proBDNF by tPA/Plasmin is essential for long-term hippocampal plasticity. Science 306, 487–491 (2004). The authors link BDNF and tPA/plasmin to late-phase long-term potentiation

    CAS  PubMed  Google Scholar 

  60. 60

    Stancheva, I., Collins, A. L., van den Veyver, I. B., Zoghbi, H. & Meehan, R. R. A mutant form of MeCP2 protein associated with human Rett syndrome cannot be displaced from methylated DNA by notch in Xenopus embryos. Mol. Cell 12, 425–435 (2003).

    CAS  PubMed  Google Scholar 

  61. 61

    Young, J. I. & Zoghbi, H. Y. X-Chromosome inactivation patterns are unbalanced and affect the phenotypic outcome in a mouse model of Rett syndrome. Am. J. Hum. Genet. 74, 511–520 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Miyashiro, K. Y. et al. RNA cargoes associating with FMRP reveal deficits in cellular functioning in Fmr1 null mice. Neuron 37, 417–431 (2003). Establishes the role of the FMR protein in the intracellular transport of specific mRNAs.

    CAS  PubMed  Google Scholar 

  63. 63

    Eastman, K., Martinez, J. A. & McCabe, E. R. B. Glycerol kinase: Role in nuclear translocation of the activated glucocorticoid receptor complex (GRC). ASHG Abstracts 257, 69 (2004).

    Google Scholar 

  64. 64

    Ng, D. et al. Oculofaciocardiodental and Lenz microphthalmia syndromes result from distinct classes of mutations in BCOR. Nature Genet. 36, 411–416 (2004).

    CAS  PubMed  Google Scholar 

  65. 65

    Merienne, K. et al. A missense mutation in RPS6KA3 (RSK2) responsible for non-specific mental retardation. Nature Genet. 22, 13–14 (1999).

    CAS  PubMed  Google Scholar 

  66. 66

    Ginty, D. D., Bonni, A. & Greenberg, M. E. Nerve growth factor activates a Ras-dependent protein kinase that stimulates c-fos transcription via phosphorylation of CREB. Cell 77, 713–725 (1994).

    PubMed  Google Scholar 

  67. 67

    Yang, X., Matsuda, K. et al. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology: implication for Coffin-Lowry syndrome. Cell 117, 387–398 (2004).

    CAS  PubMed  Google Scholar 

  68. 68

    Lower, K. M. et al. Mutations in PHF6 are associated with Börjeson-Forssman-Lehmann syndrome. Nature Genet. 32, 661–665 (2002).

    CAS  PubMed  Google Scholar 

  69. 69

    Siderius, L. E. et al. X-linked mental retardation associated with cleft lip/palate maps to Xp11.3-q21.3. Am. J. Med. Genet. 85, 216–220 (1999).

    CAS  PubMed  Google Scholar 

  70. 70

    Gu, Y. & Nelson, D. L. FMR2 function: insight from a mouse knockout model. Cytogenet. Genome Res. 100, 129–139 (2003).

    CAS  PubMed  Google Scholar 

  71. 71

    Kleefstra, T. et al. Zinc finger 81 (ZNF81) mutations associated with X-linked mental retardation. J. Med. Genet. 41, 394–399 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Agulnik, A. I. et al. A novel X gene with a widely transcribed Y-linked homologue escapes X-inactivation in mouse and human. Hum. Mol. Genet. 3, 879–884 (1994).

    CAS  PubMed  Google Scholar 

  73. 73

    Scott, D. M. et al. Identification of a mouse male-specific transplantation antigen, H-Y. Nature 376, 695–698 (1995).

    CAS  PubMed  Google Scholar 

  74. 74

    Clissold, P. M. & Ponting, C. P. JmjC: cupin metalloenzyme-like domains in jumonji, hairless and phospholipase A2β. Trends Biochem. Sci. 26, 7–9 (2001).

    CAS  PubMed  Google Scholar 

  75. 75

    Turner, G. & Partington, M. W. Genes for intelligence on the X chromosome. J. Med. Genet. 28, 429 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Loat, C. S., Asbury, K., Galsworthy, M. J., Plomin, R. & Craig, I. W. X inactivation as a source of behavioural differences in monozygotic female twins. Twin Res. 7, 54–61 (2004).

    PubMed  Google Scholar 

  77. 77

    Skuse, D. H. et al. Evidence from Turner's syndrome of an imprinted X-linked locus affecting cognitive function. Nature 387, 652–653 (1997).

    Google Scholar 

  78. 78

    Ohno, S. Ancient linkage groups and frozen accidents. Nature 244, 259–262 (1973).

    Google Scholar 

  79. 79

    Ryan, S. G. et al. Epilepsy and mental retardation limited to females: an X-linked dominant disorder with male sparing. Nature Genet. 17, 92–95 (1997).

    CAS  PubMed  Google Scholar 

  80. 80

    Sargent, C. A. et al. The sequence organization of Yp/proximal Xq homologous regions of the human sex chromosomes is highly conserved. Genomics 32, 200–209 (1996).

    CAS  PubMed  Google Scholar 

  81. 81

    Plomin, R. & Spinath, F. M. Intelligence: genetics, genes, and genomics. J. Pers. Soc. Psychol. 86, 112–129 (2004).

    PubMed  Google Scholar 

  82. 82

    Herbst, D. S. & Miller, J. R. Nonspecific X-linked mental retardation II: the frequency in British Columbia. Am. J. Med. Genet. 7, 461–469 (1980). Another classical study that infers the prevalence of (mild and severe) XLMR from the frequency of affected brother and sister pairs.

    CAS  PubMed  Google Scholar 

  83. 83

    de Vries, B. B. et al. Screening and diagnosis for the fragile X syndrome among the mentally retarded: an epidemiological and psychological survey. Am. J. Hum. Genet. 61, 660–667 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Turner, G., Webb, T., Wake, S. & Robinson, H. Prevalence of fragile X syndrome. Am J Hum Genet 64, 196–197 (1996). References 83 and 84 are two studies which document that the prevalence of Fra(X) mental retardation is much lower than previously estimated.

    CAS  Google Scholar 

  85. 85

    Biancalana, V. et al. Five years of molecular diagnosis of Fragile X syndrome (1997–2001): a collaborative study reporting 95% of the activity in France. Am. J. Med. Genet. 129A, 218–224 (2004).

    PubMed  Google Scholar 

  86. 86

    Grønskov, K., Hjalgrim, H., Nielsen, I. M. & Brondum-Nielsen, K. Screening of the ARX gene in 682 retarded males. Eur. J. Hum. Genet. 12, 701–705 (2004).

    PubMed  Google Scholar 

  87. 87

    Mandel, J. L. & Chelly, J. Monogenic X-linked mental retardation: is it as frequent as currently estimated? The paradox of the ARX (Aristaless X) mutations. Eur. J. Hum. Genet. 12, 689–693 (2004). This paper contains an interesting speculation on the existence of X-chromosomal risk factors for mental retardation.

    CAS  PubMed  Google Scholar 

  88. 88

    Brunner, H. G., Nelen, M., Breakefield, X. O., Ropers, H. H. & van Oost, B. A. Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science 262, 578–580 (1993).

    CAS  PubMed  Google Scholar 

  89. 89

    Caspi, A. et al. Role of genotype in the cycle of violence in maltreated children. Science 297, 851–854 (2002).

    CAS  PubMed  Google Scholar 

  90. 90

    Smits, A. P. et al. The fragile X syndrome: no evidence for any recent mutations. J. Med. Genet. 30, 94–96 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Mulley, J. C., Kerr, B., Stevenson, R. & Lubs, H. Nomenclature guidelines for X-linked mental retardation. Am. J. Med. Genet. 43, 383–391 (1992).

    CAS  PubMed  Google Scholar 

  92. 92

    Bienvenu, T. et al. ARX, a novel Prd-class-homeobox gene highly expressed in the telencephalon, is mutated in X-linked mental retardation. Hum. Mol. Genet. 11, 981–991 (2002).

    CAS  PubMed  Google Scholar 

  93. 93

    Rosenberg, E. H. et al. High prevalence of SLC6A8 deficiency in X-linked mental retardation. Am. J. Hum. Genet. 75, 97–105 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Salomons, G. S. et al. X-linked creatine-transporter gene (SLC6A8) defect: a new creatine-deficiency syndrome. Am. J. Hum. Genet. 68, 1497–1500 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Longo, I. et al. A third MRX family (MRX68) is the result of mutation in the long chain fatty acid-CoA ligase 4 (FACL4) gene: proposal of a rapid enzymatic assay for screening mentally retarded patients. J. Med. Genet. 40, 11–17 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Friesema, E. C. H. et al. Association between mutations in a thyroid hormone transporter and severe X-linked psychomotor retardation. Lancet 364, 1435–1437 (2004).

    CAS  PubMed  Google Scholar 

  97. 97

    Carson, A. L. et al. X-linked spermine synthase gene (SMS) defect: the first polyamine deficiency syndrome. Eur. J. Hum. Genet. 11, 937–944 (2003).

    Google Scholar 

  98. 98

    Ramser, J. et al. Impairment of the renin receptor prevents ERK1/2 activation in a patient suffering from mental retardation and epilepsy. Eur. J. Hum. Genet. 12, 72–73 (2004).

    Google Scholar 

  99. 99

    Bonhoeffer, T. & Yuste, R. Spine motility. Phenomenology, mechanism, and function. Neuron 35, 1019–1027 (2002).

    CAS  PubMed  Google Scholar 

  100. 100

    Yuste, R. & Bonhoeffer, T. Genesis of dendritic spines: insights from ultrastructural and imaging studies. Nature Rev. Neurosci. 5, 24–34 (2004). References 99 and 100 are two articles that illustrate the unexpected plasticity of dendritic-spine formation and maintenance.

    CAS  Google Scholar 

  101. 101

    Jin, P. & Warren, S. T. New insights into fragile X syndrome: from molecules to neurobehaviors. TiBS 28, 152–158 (2003).

    CAS  PubMed  Google Scholar 

  102. 102

    Huber, K. Gallagher, S. M., Warren, S. T. & Bear, M. F. Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc. Natl Acad. Sci. USA 99, 7746–7750 (2002).

    CAS  PubMed  Google Scholar 

  103. 103

    Flint, J. et al. The detection of subtelomeric chromosomal rearrangements in idiopathic mental retardation. Nature Genet. 9, 132–140 (1995).

    CAS  PubMed  Google Scholar 

  104. 104

    Knight, S. J. et al. Subtle chromosomal rearrangements in children with unexplained mental retardation. Lancet 354, 1676–1681 (1999).

    CAS  PubMed  Google Scholar 

  105. 105

    Ishkanian, A. S. et al. A tiling resolution DNA microarray with complete coverage of the human genome. Nature Genet. 36, 299–303 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Vissers, L. E. et al. Array-based comparative genomic hybridization for the genomewide detection of submicroscopic chromosomal abnormalities. Am. J. Hum. Genet. 73, 1261–1270 (2003). This is the first application of array CGH to screen patients with unexplained mental retardation for submicroscopic genomic imbalances.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Shah-Smith, C. et al. Microarray based comparative genomic hybridisation (array-CGH) detects submicroscopic chromosomal deletions and duplications in patients with learning disability/mental retardation and dysmorphic features. J. Med. Genet. 41, 241–248 (2004).

    Google Scholar 

  108. 108

    Bhalla, K. et al. The de novo chromosome 16 translocations of two patients with abnormal phenotypes (mental retardation and epilepsy) disrupt the A2BP1 gene. J. Hum. Genet. 49, 308–311 (2004).

    PubMed  Google Scholar 

  109. 109

    Fernandez, T. et al. Disruption of contactin 4 (CNTN4) results in developmental delay and other features of 3p deletion syndrome. Am. J. Hum. Genet. 74, 1286–1293 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110

    Nothwang, H. G. et al. Functional hemizygosity of PAFAH1B3 due to a PAFAH1B3–CLK2 fusion gene in a female with mental retardation, ataxia and atrophy of the brain. Hum. Mol. Genet. 10, 797–806 (2001).

    CAS  PubMed  Google Scholar 

  111. 111

    Bonaglia, M. C. et al. Disruption of the ProSAP2 gene in a t(12;22)(q24.1;q13.3) is associated with the 22q13.3 deletion syndrome. Am. J. Hum. Genet. 69, 261–268 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112

    Endris, V. et al. The novel Rho-GTPase activating gene MEGAP/srGAP3 has a putative role in severe mental retardation. Proc. Natl Acad. Sci. USA 99, 11754–11759 (2002).

    CAS  PubMed  Google Scholar 

  113. 113

    Giorda, R. et al. Selective disruption of muscle and brain-specific BPAG1 isoforms in a girl with a 6;15 translocation, cognitive and motor delay, and tracheo-oesophageal atresia. J. Med. Genet. 41, e71 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114

    Molinari, F. et al. Truncating neurotrypsin mutation in autosomal recessive nonsyndromic mental retardation. Science 298, 1779–1781 (2002). Identification of the first gene defect that underlies autosomal-recessive mental retardation.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115

    Bond, J. et al. ASPM is a major determinant of cerebral cortical size. Nature Genet. 32, 316–320 (2002).

    CAS  PubMed  Google Scholar 

  116. 116

    Sheen, V. L. et al. Mutations in ARFGEF2 implicate vesicle trafficking in neural progenitor proliferation and migration in the human cerebral cortex. Nature Genet. 36, 69–76 (2004).

    CAS  PubMed  Google Scholar 

  117. 117

    Cohn, E. S. & Kelley, P. M. Clinical phenotype and mutations in connexin 26 (DFNB1/GJB2), the most common cause of childhood hearing loss. Am. J. Med. Genet. 89, 130–136 (1999).

    CAS  PubMed  Google Scholar 

  118. 118

    American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders 4th edn (Washington DC, 1994).

  119. 119

    World Health Organization. International classification of impairments, disabilities and handicaps. (World Health Organization, Geneva, 1980).

  120. 120

    Guo, W. et al. Genomic scanning for expressed sequences in Xp21 identifies the glycerol kinase gene. Nature Genet. 4, 367–371 (1993).

    CAS  PubMed  Google Scholar 

  121. 121

    Gibbons, R. J. & Higgs, D. R. Molecular-clinical spectrum of the ATR-X syndrome. Am. J. Med. Genet. 97, 204–212 (2000).

    CAS  PubMed  Google Scholar 

  122. 122

    Lossi, A. M. et al. Mutation of the XNP/ATR-X gene in a family with severe mental retardation, spastic paraplegia and skewed pattern of X inactivation: demonstration that the mutation is involved in the inactivation bias. Am. J. Hum. Genet. 65, 558–562 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123

    Pasteris, N. G. et al. Cloning and regional localization of the mouse faciogenital dysplasia (Fgd1) gene. Mamm. Genome 6, 658–661 (1995).

    CAS  PubMed  Google Scholar 

  124. 124

    Shahbazian, M. D. & Zoghbi, H. Y. Rett syndrome and MeCP2: linking epigenetics and neuronal function. Am. J. Hum. Genet. 71, 1259–1272 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125

    Amir, R. E. et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature Genet. 23, 185–188 (1999). The authors describe the identification of the gene that is involved in Rett syndrome.

    CAS  PubMed  Google Scholar 

  126. 126

    Salomons, G. S. et al. X-linked creatine transporter defect: an overview. J. Inherit. Metab. Dis. 26, 309–318 (2003).

    CAS  PubMed  Google Scholar 

  127. 127

    Kitamura, K. et al. Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nature Genet. 32, 359–369 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128

    Frints, S. G., Borghgraef, M., Froyen, G., Marynen, P. & Fryns, J. P. Clinical study and haplotype analysis in two brothers with Partington syndrome. Am. J. Med. Genet. 112, 361–368 (2002).

    PubMed  Google Scholar 

  129. 129

    Kato, M. et al. Mutations of ARX are associated with striking pleiotropy and consistent genotype-phenotype correlation. Hum. Mutat. 23, 147–159 (2004).

    CAS  PubMed  Google Scholar 

  130. 130

    Friesema, E. C. H. et al. Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter. J. Biol. Chem. 278, 40128–40135 (2003).

    CAS  PubMed  Google Scholar 

  131. 131

    Bahi, N. et al. IL1 receptor accessory protein like, a protein involved in X-linked mental retardation, interacts with Neuronal Calcium Sensor-1 and regulates exocytosis. Hum. Mol. Genet. 12, 1415–1425 (2003).

    CAS  PubMed  Google Scholar 

  132. 132

    Carrie, A. et al. A new member of the IL-1 receptor family highly expressed in hippocampus and involved in X-linked mental retardation. Nature Genet. 23, 25–31 (1999).

    CAS  PubMed  Google Scholar 

  133. 133

    Kuchenbecker, K. et al. Arhgef6-deficient mice, a model for non-specific X–linked mental retardation, show a decrease of mature dendritic spines. Eur. J. Hum. Genet. 12, 73 (2004).

    Google Scholar 

  134. 134

    Kopczynski, C. C., Davis, G. W. & Goodman, C. S. A neural tetraspanin, encoded by late bloomer, that facilitates synapse formation. Science 271, 1867–1870 (1996).

    CAS  PubMed  Google Scholar 

  135. 135

    Fradkin, L. G., Kamphorst, J. T., DiAntonio, A., Goodman, C. S. & Noordermeer, J. N. Genomewide analysis of the Drosophila tetraspanins reveals a subset with similar function in the formation of the embryonic synapse. Proc. Natl Acad. Sci. USA 99, 13663–13668 (2002).

    CAS  PubMed  Google Scholar 

  136. 136

    Zemni, R. et al. A new gene involved in X-linked mental retardation identified by analysis of an X;2 balanced translocation. Nature Genet. 24, 167–170 (2000).

    CAS  PubMed  Google Scholar 

  137. 137

    Bérubé, N. G., Smeenk, C. A. & Picketts, D. J. Cell cycle-dependent phosphorylation of the ATRX protein correlates with changes in nuclear matrix and chromatin association. Hum. Mol. Genet. 9, 539–547 (2000).

    PubMed  Google Scholar 

  138. 138

    Meloni, I. et al. FACL4 and mental retardation: protein characterization and cellular knock-out model. Eur. J. Hum. Genet. 12, 334 (2004).

    Google Scholar 

  139. 139

    Ichiki, T. et al. Effects on blood pressure and exploratory behaviour of mice lacking angiotensin II type-2 receptor. Nature 377, 748–750 (1995).

    CAS  PubMed  Google Scholar 

  140. 140

    Vervoort, V. S. et al. AGTR2 mutations in X-linked mental retardation. Science 296, 2401–2403 (2002).

    CAS  PubMed  Google Scholar 

  141. 141

    Ramser, J. et al. A splice site mutation in the methyltransferase gene FTSJ1 in Xp11.23 is associated with non-syndromic mental retardation in a large Belgian family (MRX9). J. Med. Genet. 41, 679–683 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142

    Fukami, M. et al. A member of a gene family on Xp22.3, VCX-A, is deleted in patients with X-linked nonspecific mental retardation. Am. J. Hum. Genet. 67, 563–573 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. 143

    Schroer, A. et al. Cosegregation of T108A Elk-1 with mental retardation. Am. J. Med. Genet. 95, 404–405 (2000).

    CAS  PubMed  Google Scholar 

  144. 144

    Lossi, A. M. et al. Abnormal expression of the KLF8 (ZNF741) gene in a female patient with an X;autosome translocation t(X;21)(p11.2;q22.3) and non-syndromic mental retardation. J. Med. Genet. 39, 113–117 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. 145

    Frints, S. G. et al. Inv(X)(p21.1;q22.1) in a man with mental retardation, short stature, general muscle wasting, and facial dysmorphism: clinical study and mutation analysis of the NXF5 gene. Am. J. Med. Genet. 119A, 367–374 (2003).

    PubMed  Google Scholar 

Download references


We thank C. E. Schwartz and R. Stevenson (Greenwood), A. Meindl, J. Ramser and E. Holinski-Feder (München), G. Turner and M. Partington (Newcastle, Australia) as well as all members of the EURO-MRX Consortium for sharing with us information about linkage intervals and mutations identified in families with NS-XLMR. Thanks are also due to R. Plomin and I. Craig (London), J.-L. Mandel (Strasbourg), A. Bird (Edinburg) and colleagues from our own institutions for allowing us to cite their unpublished results or work that is in the press; to H. Markert and V. Kalscheuer for their help with the preparation of the manuscript and figures; and to J. Gecz (Adelaide) for his comments on an early version of this review.

Author information



Corresponding author

Correspondence to H.-Hilger Ropers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links


















Fragile X syndrome

Rett syndrome

Epilepsy, female restricted, with mental retardation


e! project ENSEMBL MartView

European XLMR Consortium

Greenwood Genetic Centre — XLMR update

Max Planck Institute for Molecular Genetics — Nonsyndromic X-linked mental retardation

XLMR Genes Update



Chromosomal rearrangements that change the chromosomal gene order but do not remove or duplicate any of the DNA from the chromosomes. The two most simple classes of balanced rearrangements are inversions and reciprocal translocations.


A branching extension from the cell body that receives synaptic input from the axon of another neuron.


A multi-component, ribonucleoprotein complex that cleaves specific mRNAs that are targeted for degradation by homologous dsRNAs during the process of RNA interference.


Any process that extends from the cell body of the neuron, such as the dendrite or axon.


A family of small GTPases that are components of a number of signal-transduction pathways.


Specialized regions of the dendrite that receive synaptic inputs from other neurons.


An electron-dense thickening of the postsynaptic membrane that contains a high concentration of neurotransmitter receptors, scaffolding proteins and signalling molecules.


First identified in the Ena/VASP family of proteins in Drosophila melanogaster, EVH1 domains bind poly-proline rich regions that are recognized by various binding partners.


A change in the functional properties of a synapse as a result of use.


Large diameter (80–200 nm) secretory vesicles that have high electron density when visualized by electron microscopy. They usually contain neuropeptides or catecholamines (hormones that affect the sympathetic nervous system).


Inability to coordinate movement.


A genetic disorder that is caused by deletion or disruption of UBE3A (E6-AP). The symptoms of Angelman syndrome include hyperactivity, ataxia, problems with speech and language, and an unusually happy demeanour.


A genetic disorder that is caused by loss of gene function on chromosome 15. Features of the disorder include excessive eating (hyperphagia), obesity, short stature, mental retardation or learning disabilities, and behavioural problems.


A mesenchymal cell with the capacity to differentiate into bone tissue.


A highly conserved sequence motif, usually comprising 60 amino acids, that includes a DNA-binding region.


A form of imaging in which a fluorochrome that would normally be excited by a single photon is stimulated quasi-simultaneously by two photons of lower energy. This allows reduced light scattering and less photodamage of the sample.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ropers, HH., Hamel, B. X-linked mental retardation. Nat Rev Genet 6, 46–57 (2005). https://doi.org/10.1038/nrg1501

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing