The expansion of conservation genetics

Key Points

  • Conservation biology is considered to be a 'crisis discipline', and therefore requires an arsenal of approaches and techniques to ensure that educated, rapid decisions about endangered species and threatened areas are made.

  • The expansion of genomic technologies in data acquisition, storage and analysis has assisted in increasing the efficiency of the field of conservation genetics and in helping conservation decision-making.

  • Conservation genetics leads us to a better picture of pattern and process in endangered species, and allows the use of pattern and process in conservation decision-making.

  • The most important applications of conservation genetics in the future will be those that incorporate both pattern and process into a cohesive approach to decision-making.

  • A wide range of unconventional sources for DNA is used in conservation work; this includes faeces, feathers, fur, sloughed-off skin, plants from herbarium sheets and clever direct-biopsy approaches that minimize invasiveness.

  • One approach that will be increasingly important in the expansion of conservation genetics concerns recent efforts to form centralized DNA barcode databases and DNA registries.

  • Conservation genetics itself needs to be placed in the context of the difficulties of working across political boundaries, amidst economic challenges and in the face of the complexity of using science to inform management decisions.


The 'crisis discipline' of conservation biology has voraciously incorporated many technologies to speed up and increase the accuracy of conservation decision-making. Genetic approaches to characterizing endangered species or areas that contain endangered species are prime examples of this. Technical advances in areas such as high-throughput sequencing, microsatellite analysis and non-invasive DNA sampling have led to a much-expanded role for genetics in conservation. Such expansion will allow for more precise conservation decisions to be made and, more importantly, will allow conservation genetics to contribute to area- and landscape-based decision-making processes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Map of conservation priority areas based on levels of human disturbance across all terrestrial landscapes.
Figure 2: Cetacean conservation genetics.
Figure 3: Ex situ conservation genetics: the Amazon parrot example.


  1. 1

    Jablonski, D. Background and mass extinctions: the alternation of macroevolutionary regimes. Science, 231, 129–133 (1986).

    CAS  PubMed  Google Scholar 

  2. 2

    Lande, R. Genetics and demography in biological conservation. Science 241, 1455–1460 (1988). This landmark paper was one of the first to discuss the relevance of genetics and demography in conservation biology.

    CAS  PubMed  Google Scholar 

  3. 3

    Soulé, M. E. Conservation biology: the science of scarcity and diversity (Sinauer Associates, Sunderland, Massachusetts, 1986).

    Google Scholar 

  4. 4

    Schlotterer, C. The evolution of molecular markers — just a matter of fashion? Nature Rev. Genet. 5, 63–69 (2004).

    PubMed  Google Scholar 

  5. 5

    Godwin, I. D., Aitken, E. A. & Smith, L. W. Application of inter-simple sequence repeat (ISSR) markers to plant genetics. Electrophoresis 18, 1524–1528 (1997).

    CAS  PubMed  Google Scholar 

  6. 6

    Zhang, D. X. & Hewitt, G. M. Nuclear DNA analyses in genetic studies of populations: practice, problems and prospects. Mol. Ecol. 12, 563–584 (2003).

    CAS  PubMed  Google Scholar 

  7. 7

    Aitken, N., Smith, S., Schwarz, C. & Morin, P. A. Single nucleotide polymorphism (SNP) discovery in mammals: a targeted-gene approach. Mol. Ecol. 13, 1423–1431 (2004).

    CAS  PubMed  Google Scholar 

  8. 8

    Brumfield, R., Nickerson, D., Beerli, P. & Edwards, S. V. The utility of single nucleotide polymorphisms in inferences of population history. Trends Ecol. Evol. 18, 249–256 (2003).

    Google Scholar 

  9. 9

    Gibson, G. Microarrays in ecology and evolution: a preview. Mol. Ecol. 11, 17–24 (2002).

    CAS  PubMed  Google Scholar 

  10. 10

    Purugganan, M. & Gibson, G. Merging ecology, molecular evolution, and functional genetics. Mol. Ecol. 12, 1109–1112 (2003).

    CAS  PubMed  Google Scholar 

  11. 11

    Bouchier, C., Boyle, T. & Young, A. Forest Conservation Genetics (CSIRO, Australia, 2000).

    Google Scholar 

  12. 12

    Avise, J. & Hamrick, P. Conservation Genetics: Case Histories From Nature (Chapman and Hall, New York, 1996).

    Google Scholar 

  13. 13

    Spellerberg, I. Conservation Biology (Longman Group, Ltd, Harlow, 1997).

    Google Scholar 

  14. 14

    Avise, J. C. Molecular Markers, Natural History and Evolution (Sinauer Associates, Sunderland, Massachusetts, 2004).

    Google Scholar 

  15. 15

    Frankham, R., Ballou, J. D. & Briscoe, D. A. Introduction to Conservation Genetics (Cambridge Univ. Press, Cambridge, United Kingdom, 2003). A comprehensive overview of the state of modern conservation genetics.

    Google Scholar 

  16. 16

    Ryder, O. A. Species conservation and systematics: the dilemma of the subspecies. Trends Ecol. Evol. 1, 9–10 (1986).

    Google Scholar 

  17. 17

    O'Brien, S. J. & Mayr, E. Bureaucratic mischief: recognizing endangered species and subspecies. Science 251, 1187–1188 (1991).

    CAS  PubMed  Google Scholar 

  18. 18

    Amato, G. Species hybridization and protection of endangered animals. Science 253, 250–251 (1991).

    CAS  PubMed  Google Scholar 

  19. 19

    Waples, R. Pacific salmon, Oncorhynchus spp., and the definition of 'species' under the Endangered Species Act. Marine Fisheries Rev. 53, 2–11 (1991).

    Google Scholar 

  20. 20

    Caughley, G. Directions in conservation biology. J. Animal Ecol. 63, 215–244. (1994).

    Google Scholar 

  21. 21

    Hedrick, P. W., Lacy, R. C. Allendorf, F. W. & Soulé, M. E. Directions in conservation biology. Comments on Caughley. Conserv. Biol. 10, 1312–1320 (1996).

    Google Scholar 

  22. 22

    Allendorf, F. W. & Leary, R. F. in Conservation Biology (ed. Soule, M. E.), 57–76 (Sinauer Associates, Sunderland, Massachusetts, 1986).

    Google Scholar 

  23. 23

    Waples, R. S. A generalized approach for estimating effective population size from temporal changes in allele frequency. Genetics 121, 379–391 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Templeton, A. R. & Read, B. Factors eliminating inbreeding depression in a captive herd of Speke's gazelle. Zoo Biol. 3, 177–199 (1984).

    Google Scholar 

  25. 25

    Ralls, K., Ballou, J. D. & Templeton, A. Estimates of lethal equivalents and the cost of inbreeding in mammals. Conserv. Biol. 2, 40–56 (1988).

    Google Scholar 

  26. 26

    Goodnight, K. F. & Quellar, D. C. Computer software for performing likelihood tests of pedigree relationship using genetic markers. Mol. Ecol. 8, 1231–1234 (1999).

    Google Scholar 

  27. 27

    Ritland, K. Marker-inferred relatedness as a tool for detecting heritability in nature. Mol. Ecol. 9, 1195–1204 (2000).

    CAS  PubMed  Google Scholar 

  28. 28

    Blouin, M. S. DNA-based methods for pedigree reconstruction and kinship analysis in natural populations. Trends Ecol. Evol. 18, 503–511 (2003).

    Google Scholar 

  29. 29

    Glaubitz, J. C., Rhodes, E. & Dewoody, J. E. Prospects for inferring pairwise relationships with single nucleotide polymorphisms. Mol. Ecol. 12, 1039–1047 (2003).

    CAS  PubMed  Google Scholar 

  30. 30

    Petit, E., Balloux, F. & Excoffier, L. Mammalian population genetics: why not Y? Trends Ecol. Evol. 17, 28–35 (2002).

    Google Scholar 

  31. 31

    Vekemens, X. & Hardy, O. J. New insights from fine-scale spatial genetic structure analyses in plant populations. Mol. Ecol. 13, 921–935 (2004).

    Google Scholar 

  32. 32

    Lacy, R. C. Should we select genetic alleles in our conservation breeding programs? Zoo Biol. 19, 279–282 (2000).

    Google Scholar 

  33. 33

    Miller, C. R., Adams, J. R. & Waits, L. P. Pedigree-based assignment tests for reversing coyote (Canis latrans) introgression into the wild red wolf (Canis rufus) population. Mol. Ecol. 12, 3287–3299 (2003).

    CAS  PubMed  Google Scholar 

  34. 34

    Geyer, C. J., Ryder, O. A, Chemnick, L. G. & Thompson, E. A. Analysis of relatedness in the California condors, from DNA fingerprints. Mol. Biol. Evol. 10, 571–589 (1993).

    CAS  Google Scholar 

  35. 35

    Russello, M. & Amato, G. Ex situ management in the absence of pedigree information: integration of microsatellite-based estimates of relatedness into a captive breeding strategy for the St. Vincent Amazon Parrot (Amazona guildingii). Mol. Ecol. (in the press).

  36. 36

    Russello, M. & Amato, G. Application of a non-invasive, PCR-based test for sex identification in an endangered parrot, Amazona guildingii. Zoo Biol. 20, 41–45 (2001).

    CAS  PubMed  Google Scholar 

  37. 37

    Templeton, A. R. Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history. Mol. Ecol. 7, 381–397 (1998). A clear description of the nested clade approach and how it can be applied to a better understanding of ecological, demographic and genetic aspects of populations.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Neigel, J. E. Is FST obsolete? Conserv. Genet. 3, 167–173 (2002).

    CAS  Google Scholar 

  39. 39

    Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Schneider, S., Roessli, D. & Excoffier, L. Arlequin: A Software for Population Genetics Data Analysis. Ver 2.000 (Genetics and Biometry Laboratory, Department of Anthropology, Univ. Geneva, 2000).

    Google Scholar 

  41. 41

    Goldstein, P. Z. & DeSalle, R. Phylogenetic species, nested hierarchies, and character fixation. Cladistics 16, 364–384 (2000).

    Google Scholar 

  42. 42

    Davis, J. I. & Nixon, K. C. Populations, genetic variation, and the delimitation of phylogenetic species. Systematic Biol. 41, 421–435 (1992).

    Google Scholar 

  43. 43

    Sites, J. W. & Crandall, K. A. Testing species boundaries in biodiversity studies. Conserv. Biol. 11, 1289–1297 (1997).

    Google Scholar 

  44. 44

    Goldstein, P. Z., DeSalle, R., Amato, G. & Vogler, A. Conservation genetics at the species boundary. Conserv. Biol. 14, 120–131 (2000).

    Google Scholar 

  45. 45

    Sites, J. & Marshall, J. C. Delimiting species: a renaissance issue in systematic biology. Trends Ecol. Evol. 18, 461–471 (2003). An excellent review of the methods and approaches used to delimit species, describing character-based and tree-based methods of inference.

    Google Scholar 

  46. 46

    Losos, J. B. & Glor, R. E. Phylogenetic comparative methods and the geography of speciation. Trends Ecol. Evol. 18, 220–227 (2003).

    Google Scholar 

  47. 47

    Moritz, C. Defining 'evolutionarily significant units' for conservation. Trends Ecol. Evol. 9, 373–375 (1994).

    CAS  PubMed  Google Scholar 

  48. 48

    Posada, D., Crandall, K. A. & Templeton, A. R. GeoDis: a program for the cladistic nested analysis of the geographical distribution of genetic haplotypes. Mol. Ecol. 9, 487–488 (2000).

    CAS  PubMed  Google Scholar 

  49. 49

    Clement, M., Posada, D. & Crandall, K. A. TCS: a computer program to estimate gene genealogies. Mol. Ecol. 9, 1657–1659 (2000).

    CAS  PubMed  Google Scholar 

  50. 50

    Templeton, A. R. Using phylogeographic analyses of gene trees to test species status and processes. Mol. Ecol. 10, 779–791 (2001).

    CAS  PubMed  Google Scholar 

  51. 51

    Templeton, A. R. Statistical phylogeography: methods of evaluating and minimizing inference errors. Mol. Ecol. 13, 789–809 (2004).

    PubMed  Google Scholar 

  52. 52

    Crandall, K. A. Conservation phylogenetics of Ozark crayfishes: assigning priorities for aquatic habitat protection. Biol. Conserv. 84, 107–117 (1998).

    Google Scholar 

  53. 53

    Nixon, K. C. & Wheeler, Q. D. in Extinction and Phylogeny (eds Novacek, M. J. & Wheeler, Q. D.) 216–234 (Columbia Univ. Press, New York, 1992). Clearly and concisely describes the role of systematics in delimiting measures of cladistic diversity that might be useful in conservation biology.

    Google Scholar 

  54. 54

    Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).

    Google Scholar 

  55. 55

    Faith, D. P. Systematics and conservation: on predicting the feature diversity of subsets of taxa. Cladistics 8, 361–373 (1992).

    Google Scholar 

  56. 56

    Faith, D. P. Quantifying biodiversity: a phylogenetic perspective. Conserv. Biol. 16, 248–252 (2002).

    Google Scholar 

  57. 57

    Crozier, R. H. Preserving the information content of species: genetic diversity, phylogeny, and conservation worth. Annu. Rev. Ecol. Systematics 28, 243–268 (1997).

    Google Scholar 

  58. 58

    Neel, M. & Cummings, M. P. Genetic consequences of ecological reserve design guidelines: an empirical investigation. Conserv. Genet. 4, 427–439 (2003).

    CAS  Google Scholar 

  59. 59

    Palumbi, S. R. in Marine Community Ecology (eds Bertness, M. D., Gaines, S. D. & Hay, M. E.) 509–530 (Sinauer Associates, Sunderland, Massachusetts, 2001).

    Google Scholar 

  60. 60

    Moritz, C., Patton, J. L., Schneider, C. J. & Smith, T. B. Diversification of rainforest faunas: an integrated molecular approach. Ann. Rev. Ecol. Syst. 31, 533–563 (2000).

    Google Scholar 

  61. 61

    Gibbs, J. P. & Amato, G. in Turtle Conservation (ed. Klemens, M. W) 207–217 (Smithsonian Institution Press, Washington and London, 2000).

    Google Scholar 

  62. 62

    Roemer, G. W. & Wayne, R. K. Conservation in conflict: a tale of two endangered species. Conserv. Biol. 17, 1251–1260 (2003).

    Google Scholar 

  63. 63

    Brook, B. W., Tonkyn, D. W., O'Grady, J. J. & Frankham, R. Contribution of inbreeding to extinction risk in threatened species. Conserv. Ecol. 6, 6–28 (2002).

    Google Scholar 

  64. 64

    Roman, J. & Palumbi, S. R. Whales before whaling in the North Atlantic. Science 301, 508–510 (2003).

    CAS  PubMed  Google Scholar 

  65. 65

    Rosenbaum, H. C. et al. The effect of different reproductive success on population genetic structures: correlations of life history with matrilines in humpback whales of the Gulf of Maine. J. Hered. 93, 389–399 (2002).

    CAS  PubMed  Google Scholar 

  66. 66

    Lacy, R. C. Structure of the VORTEX simulation model for population viability analysis. Ecol. Bull. 48, 191–203 (2000).

    Google Scholar 

  67. 67

    Templeton, A. R. in Conservation Biology: the Science of Scarcity and Diversity (ed. Soulé, M. E.) 105–116 (Sinauer Associates, Sunderland, Massachusetts, 1986).

    Google Scholar 

  68. 68

    Ballou, J. & Lacy, R. C. in Population Management for Survival and Recovery (eds Ballou, J., Gilpin, M. & Foose, T. J.) 76–111 (Columbia Univ. Press, New York, 1995).

    Google Scholar 

  69. 69

    Ruggiero, L. F., Hayward, G. D. & Squires, J. R. Viability analysis in biological evaluations: concepts of population viability analysis, biological population, and ecological scale. Conserv. Biol. 8, 364–372 (1984).

    Google Scholar 

  70. 70

    Beissinger, S. R. & McCullough, D. R. Population Viability Analysis (Univ. Chicago Press, Chicago, 2002).

    Google Scholar 

  71. 71

    Reed, D. H., O'Grady, J. J., Brook, B. W., Ballou, J. D. & Frankham, R. Estimates of minimum viable population size for vertebrates and factors affecting those estimates. Biological Conserv. 113, 23–34 (2003).

    Google Scholar 

  72. 72

    Wayne, R. K. & Jenks, S. M. Mitochondrial DNA analysis implying extensive hybridization of the endangered red wolf Canis rufus. Nature 351, 565–568 (1991).

    CAS  Google Scholar 

  73. 73

    Roy, M. S., Girman, D. J., Taylor, A. C. & Wayne, R. K. The use of museum specimens to reconstruct the genetic variability and relationships of extinct populations. Experientia 50, 551–557 (1994).

    CAS  PubMed  Google Scholar 

  74. 74

    Garcia-Moreno, J., Roy, M. S., Geffen, E. & Wayne, R. K. Relationships and genetic purity of the endangered Mexican Wolf based on analysis of microsatellite loci. Conserv. Biol. 10, 376–389 (1996).

    Google Scholar 

  75. 75

    Duagherty, C. H., Cree, A., Hay, J. M. & Thompson, M. B. Neglected taxonomy and continuing extinctions of tuatara (Sphenodon) Nature 347, 177–179 (1990).

    Google Scholar 

  76. 76

    DeSalle, R. & Birstein, V. PCR analysis of black caviar. Nature 381, 197–198 (1996).

    CAS  Google Scholar 

  77. 77

    Birstein, V. J., Doukakis, P., Sorkin, B. & DeSalle, R. Population aggregation analysis of three caviar-producing species of sturgeons and implications for the species identification of black caviar. Conserv. Biol. 12, 766–775 (1998).

    Google Scholar 

  78. 78

    Ginsberg, J. CITES at 30, or 40. Conserv. Biol. 12, 1184–1191 (2002).

    Google Scholar 

  79. 79

    Birstein, V. J., Doukakis, P. & DeSalle, R. Caviar species identification and polyphyletic structure of Russian sturgeon. Conserv. Genet. 1, 81–88 (2000).

    CAS  Google Scholar 

  80. 80

    Hedrick, P. W. Gene flow and genetic restoration: the Florida panther; a case study. Conserv. Biol. 9, 996–1007 (1995).

    Google Scholar 

  81. 81

    DeMauro, M. M. Relationship of breeding system to rarity in the lakeside daisy (Hymenoxys acaulis var. glabra). Conserv. Biol. 7, 542–550 (1993).

    Google Scholar 

  82. 82

    Payne, R. B. & Sorensen, M. D. Museum collections as sources of genetic data. Bonner Zoologische Beiträge Band 51, 97–104 (2002).

    Google Scholar 

  83. 83

    Hofreiter, M., Serre, D., Poinar, H. N., Kuch, M. & Paabo, S. Ancient DNA. Nature Rev. Genet. 2, 353–359 (2001).

    CAS  Google Scholar 

  84. 84

    Rosenbaum, H. C. et al. The utility of museum specimens in right whale conservation genetics. Conserv. Biol. 14, 1837–1842 (2000). The authors used century-old baleen samples to elucidate the genetic status of north Atlantic populations of right whales at the turn of the nineteenth century.

    Google Scholar 

  85. 85

    Goldstein, P. Z. & DeSalle, R. Calibrating phylogenetic species formation in a threatened species using DNA from historical specimens. Mol. Ecol. 12, 1993–1998 (2003). The authors used century-old pinned tiger beetles to assess the phylogeographic patterns in this endangered insect along the north-east Atlantic coast.

    CAS  PubMed  Google Scholar 

  86. 86

    Bouzat, J. L., Lewin, H. A. & Paige, K. N. The ghost of genetic diversity past: historical DNA analysis of the greater prairie chicken. American Naturalist 152, 1–6 (1998).

    CAS  PubMed  Google Scholar 

  87. 87

    Bellinger, M. R., Johnson, J. A., Toepfer, J. & Dunn, P. Loss of genetic variation in greater prairie chickens following a population bottleneck in Wisconsin USA. Conserv. Biol. 17, 717–724 (2003).

    Google Scholar 

  88. 88

    Amato, G. et al. The rediscovery of Roosevelt's barking deer (Muntiacus rooseveltorum). J. Mammalogy 80, 639–643 (1999).

    Google Scholar 

  89. 89

    Fleischer, R. C., Olson, S. L., James, H. F. & Cooper, A. C. Identification of the extinct Hawaiian eagle (Haliaeetus) by mtDNA sequence analysis. Auk 117, 1051–1056 (2000).

    Google Scholar 

  90. 90

    Fleischer, R. C., Tarr, C. L., James, H. F., Slikas, B. & Mcintosh, C. E. Phylogenetic placement of the Po'ouli, Melamprosops phaeosoma, based on mitochondrial DNA sequence data and osteological characters. Studies Avian Biol. 22, 98–103 (2001).

    Google Scholar 

  91. 91

    Glenn, T. C., Stephan, W. & Braun, M. J. Effects of a population bottleneck on Whooping Crane mitochondrial DNA variation. Conserv. Biol. 13, 1097–1107 (1999).

    Google Scholar 

  92. 92

    Nielsen, E. E., Hansen, M. M. & Loeschcke, V. Genetic variation in time and space: microsatellite analysis of extinct and extant populations of Atlantic salmon. Evolution 53, 261–268 (1999).

    CAS  PubMed  Google Scholar 

  93. 93

    Hoelzel, A. R. et al. Elephant seal genetic variation and the use of simulation models to investigate historical population bottlenecks. J. Hered. 84, 443–449 (1993).

    CAS  PubMed  Google Scholar 

  94. 94

    Leonard, J. A., Wayne, R. K. & Cooper, A. Population genetics of Ice Age brown bears. Proc. Natl Acad. Sci. USA 97, 1651–1654 (2000).

    CAS  PubMed  Google Scholar 

  95. 95

    Rogers, S. O. & Bendich, A. J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol. Biol. 5, 69–76 (1985).

    CAS  PubMed  Google Scholar 

  96. 96

    Paabo, S. Of bear conservation genetics and the value of time travel. Proc. Natl Acad. Sci. USA 97, 1320–1321 (2000).

    CAS  PubMed  Google Scholar 

  97. 97

    Cooper, A. et al. Ancient DNA and island endemics. Nature 381, 484 (1996).

    CAS  PubMed  Google Scholar 

  98. 98

    Höss, M., Dilling, A., Currant, A. & Pääbo, S. Molecular phylogeny of the extinct ground sloth Mylodon darwinii. Proc. Natl Acad. Sci. USA 93, 181–185 (1996).

    PubMed  Google Scholar 

  99. 99

    Poinar, H., Kuch, M., McDonald, G., Martin, P. & Paabo, S. Nuclear gene sequences from a late pleistocene sloth coprolite. Curr. Biol. 13, 1150–1152 (2003).

    CAS  PubMed  Google Scholar 

  100. 100

    Lanza, R. P. et al. Cloning of an endangered species (Bos gaurus) using interspecies nuclear transfer. Cloning 2, 79–90 (2000).

    CAS  PubMed  Google Scholar 

  101. 101

    Hebert, P. D., Cywinska, A., Ball, S. L. & deWaard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B 270, 313–322 (2003). Articulates the usefulness of DNA sequences for identifying species, and suggests that a single gene — which encodes cytochrome oxidase 1 — will be adequate for 'barcoding' all animal life.

    CAS  Google Scholar 

  102. 102

    Stoeckle, M. Taxonomy, DNA, and the barcode of life. BioScience 53, 2–3 (2003).

    Google Scholar 

  103. 103

    Baker, S., Dalebout, M. L., Lavery, S. & Ross, H. A. www.DNA-surveillance: applied molecular taxonomy for species conservation and discovery. Trends Ecol. Evol. 18, 271–272 (2003). A description of the construction and public availability of a web site for whale surveillance using DNA-sequence variation as data to establish relatedness.

    Google Scholar 

  104. 104

    Tautz, D., Arctander, P., Minelli, A., Thomas, R. H. & Vogler, A. P. A plea for DNA taxonomy. Trends Ecol. Evol. 18, 70–74 (2003).

    Google Scholar 

  105. 105

    Dunn, C. P. Keeping taxonomy based in morphology. Trends Ecol. Evol. 18, 270–271 (2003).

    Google Scholar 

  106. 106

    Seberg, O. et al. Shortcuts in systematics? A commentary on DNA-based taxonomy. Trends Ecol. Systematics 18, 63–64 (2003).

    Google Scholar 

  107. 107

    Lipscomb, D., Platnick, N. & Wheeler, Q. The intellectual content of taxonomy: a comment on DNA taxonomy. Trends Ecol. Systematics 18, 64–65 (2003).

    Google Scholar 

  108. 108

    Cipriano, F. & Palumbi, S. R. Genetic tracking of a protected whale. Nature 397, 307–308 (1999).

    CAS  Google Scholar 

  109. 109

    Angermeier, P. L. The natural imperative for biological conservation. Conserv. Biol. 14, 373–381 (2000).

    Google Scholar 

  110. 110

    Hunter, M. Benchmarks for managing ecosystems: are human activities natural? Conserv. Biol. 10, 695–697 (1996). The context of what is 'natural' is an important aspect of conservation biology, as discussed in this article. The article goes on to define the important aspects of what is natural.

    Google Scholar 

  111. 111

    Haila, Y., Comer, P. J. & Hunter, M. A 'natural' benchmark for ecosystem function. Conserv. Biol. 11, 300–305 (1997).

    Google Scholar 

  112. 112

    Morin, P. A. Genetic resources: opportunities and perspectives for the new century. Conserv. Genet. 1, 271–275 (2000).

    Google Scholar 

  113. 113

    Moran, P. Current conservation genetics: building an ecological approach to the synthesis of molecular and quantitative genetic methods. Ecol. Freshwater Fish 11, 30–55 (2002).

    Google Scholar 

  114. 114

    Bertotorelle, G., Bruford, M., Chemini, C., Vernesi, C. & Hauffe, H. C. New flexible Bayesian methods to revolutionize conservation genetics. Conserv. Biol. 18, 584–585 (2004).

    Google Scholar 

  115. 115

    Freyfogle, E. T. & Lutz Newton, J. Putting science in its place. Conserv. Biol. 16, 863–873 (2002).

    Google Scholar 

  116. 116

    Sanderson, E. W. et al. The human footprint and the last of the wild. Bioscience 52, 891–904 (2002).

    Google Scholar 

Download references


The authors thank M. Russello for assistance in preparing figure 3e and acknowledge the continued support to the Conservation Genetics Program from the American Museum of Natural History (AMNH) Center for Biodiversity Conservation. R.D. thanks the Louis and Dorothy Cullman Program for Molecular Systematics at the AMNH.

Author information



Corresponding author

Correspondence to Rob DeSalle.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links


Bacterial Nomenclature Up-to-Date



The field of biology concerned with the diversity of life on Earth. Systematics is usually viewed as having two components — phylogenetics and taxonomy.


(RAPD). DNA fragments that are generated by PCR using one or two randomly selected oligonucleotides or primers and are polymorphic in size.


Regions of DNA in which repeat units of 6–100 bp are arranged in tandem arrays that are 0.5–30 kb in length


(RFLP). A fragment-length variant of a DNA sequence that is generated through the gain or loss of a restriction site due to a DNA substitution.


Co-dominant nuclear DNA markers that consist of enzymes that differ in their mobility on a charged gel.


A term applied to a clade of organisms that includes the most recent common ancestor of all of its members, but not all of the descendants of that most recent common ancestor.


(AFLP). A DNA marker generated by digestion of genomic DNA with two restriction enzymes to create many DNA fragments, followed by ligation of specific sequences of DNA (adaptors) to the ends of these fragments, amplification by PCR (using primers corresponding to the adaptors plus random combinations of three additional bases at the end) and visualization of the fragments by gel electrophoresis.


Co-dominant nuclear DNA markers that consist of sets of short, repeated nucleotide sequences.


(ISSR). DNA fragments found between adjacent, oppositely oriented microsatellites. DNA is amplified by PCR, separated by gel electrophoresis and scored for the presence or absence of fragments.


A physically distinct subunit of a species.


(ESU). A population of organisms that is reproductively isolated from other populations of the same species, and represents an important component in the evolutionary legacy of the species.


Reduction in fitness or vigour caused by one or more generations of inbreeding.


The number of individuals that make up the breeding population in an idealized population.


An estimate of the smallest number of individuals in a population that is capable of maintaining that population without significant manipulation.


Measures of inbreeding in a sub-population first devised by Sewall Wright to describe the amount of homozygosity in a population due to inbreeding. Measures of inbreeding at different hierarchical levels of comparison can be obtained using this approach.


A means of investigating the shared genealogical history of genes. A genealogy is constructed backwards in time, starting with the present-day sample. Lineages coalesce when they have a common ancestor.


(PVA). The process of identifying threats faced by a species and incorporating these threats into an estimation of the likelihood of persistence of a species for a given time in the future.


(PAA). Provides a straightforward criterion for demarcating a phylogenetic break between aggregates of individuals. An aggregate is said to be distinct when an attribute or combination of attributes in one aggregate is fixed and different from an attribute or combination of attributes in another aggregate.


A measurement that ranks areas for biodiversity-conservation priorities based on information in cladograms or phylogenetic trees. Also called phylogenetic diversity.


Geographical areas where maximal numbers of endemic species exist.


An aquatic mammal of the order Cetacea, including whales, porpoises and dolphins.


The highly variable, non-coding, portion of the mammalian mitochondrial genome. A D-loop is the configuration found during DNA replication of chloroplast and mitochondrial chromosomes wherein the origin of replication is different on the two strands. The first structure formed is a displacement loop or D-loop.


Programmes established by the American Zoo and Aquarium Association to ensure the survival of selected wild or captive species through cooperative genetic and demographic management.


(CITES). A convention first started in 1973 and established amongst participating nations to restrict the international commerce of plant and animal species harmed by international trade.


(MU). A population, stock or group of stocks of a species that are aggregated for the purposes of achieving a desired conservation objective.


An emerging species in the early stages of speciation.


A newly formed species pair.


(ESA). A US congressional act established in 1973 that articulates guidelines and rules for the protection of species on the brink of extinction.


A thing is natural if it is not made by humans. Naturalness is the degree to which something is natural.


An essential and urgent duty to restore some aspect of the environment to its 'natural' state.


Also known as the Conference of the Parties to the Convention on Biological Diversity. An international organization dedicated to fostering conservation, sustainable use and equitable benefit-sharing concerning biological diversity.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

DeSalle, R., Amato, G. The expansion of conservation genetics. Nat Rev Genet 5, 702–712 (2004).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing