Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

One tissue, two fates: molecular genetic events that underlie testis versus ovary development

Key Points

  • The gonad arises as a bipotential organ primordium. Expression of the Y-linked gene, Sry, in the bipotential gonad leads to the differentiation of Sertoli cells, which orchestrate testis development.

  • SRY is a high-mobility group (HMG)-type DNA-binding protein that might act as a classic transcription factor, or might be involved in regulating chromatin.

  • Establishment of the testis pathway requires proliferation of the pre-Sertoli-cell population and maintenance of Sox9 in the Sertoli-cell nucleus, both of which depend on Fgf9 signalling.

  • Migration of endothelial and peri-endothelial cells from the mesonephros into the gonad occurs specifically in XY gonads, gives rise to the arterial system in the testis and is required for testis-cord formation.

  • Fetal Leydig-cell development in the testis requires the DHH and PDGF signalling pathways, as well as the non-cell-autonomous activity of the aristaless-related homeobox gene, Arx.

  • XX or XY germ cells differentiate on the basis of their somatic-cell environment: in an XY environment, they arrest in G0–G1 of mitosis, whereas in an XX environment, they spontaneously enter meiosis and might suppress male development.

  • Several new genes that are specific to the ovarian pathway have been identified, and genomic and mutagenesis methods promise to reveal many more players in both male and female pathways in the near future.

Abstract

The pivotal point of vertebrate sex determination is the development of the gonad into a testis or ovary, which governs phenotypic sex through the production of hormones. The identification of Sry, the genetic switch that controls testis development in mammals, fuelled the race for the discovery of downstream pathways. Comparative analyses of XY versus XX gonadogenesis in both mouse and human genetic mutants have uncovered a burgeoning network of intra- and extra-cellular pathways. Here, we review the old and new players that are involved in the initial steps of testis and ovary development.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Genetic pathways with a characterized functional role in the divergent development of XX and XY gonads.
Figure 2: Compartmentalization of the testis.
Figure 3: XY-specific proliferation of coelomic epithelial cells.
Figure 4: Cellular events downstream of Sry rapidly organize testis structure.

References

  1. Gubbay, J. et al. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 346, 245–250 (1990).

    Article  CAS  PubMed  Google Scholar 

  2. Lovell-Badge, R. & Robertson, E. XY female mice resulting from a heritable mutation in the murine primary testis determining gene, Tdy. Development 109, 635–646 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Koopman, P., Gubbay, J., Vivian, N., Goodfellow, P. & Lovell-Badge, R. Male development of chromosomally female mice transgenic for Sry. Nature 351, 117–121 (1991). This paper provided the first direct evidence that a 14-kb region that encodes the Sry gene could recapitulate male development when expressed as a transgene in XX embryos.

    Article  CAS  PubMed  Google Scholar 

  4. Hawkins, J. R. et al. Mutational analysis of SRY: nonsense and missense mutations in XY sex reversal. Hum. Genet. 88, 471–474 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Miyamoto, N., Yoshida, M., Kuratani, S., Matsuo, I. & Aizawa, S. Defects of urogenital development in mice lacking Emx2. Development 124, 1653–1664 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Luo, X., Ikeda, Y. & Parker, K. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 77, 481–490 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Kriedberg, J. A. et al. Wt-1 is required for early kidney development. Cell 74, 679–691 (1993).

    Article  Google Scholar 

  8. Birk, O. et al. The LIM homeobox gene Lhx9 is essential for mouse gonad formation. Nature 403, 909–913 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Katoh-Fukui, Y. et al. Male to female sex reversal in M33 mutant mice. Nature 393, 688–692 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Schedl, A. & Hastie, N. Multiple roles for the Wilms' tumour suppressor gene, WT1 in genitourinary development. Mol. Cell. Endocrin. 140, 65–69 (1998).

    Article  CAS  Google Scholar 

  11. Skinner, M. K., Tung, P. S. & Fritz, I. B. Cooperativity between Sertoli cells and testicular peritubular cells in the production and deposition of extracellular matrix components. J. Cell Biol. 100, 1941–1947 (1985).

    Article  CAS  PubMed  Google Scholar 

  12. Tung, P. S. & Fritz, I. B. Morphogenetic restructuring and formation of basement membranes by Sertoli cells and testis peritubular cells in co-culture: inhibition of the morphogenetic cascade by cyclic AMP derivatives and by blocking direct cell contact. Dev. Biol. 120, 139–153 (1987).

    Article  CAS  PubMed  Google Scholar 

  13. Hacker, A., Capel, B., Goodfellow, P. & Lovell-Badge, R. Expression of Sry, the mouse sex determining gene. Development 121, 1603–1614 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Bullejos, M. & Koopman, P. Spatially dynamic expression of Sry in mouse genital ridges. Dev. Dyn. 221, 201–205 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Albrecht, K. & Eicher, E. Evidence that Sry is expressed in pre-Sertoli cells and Sertoli and granulosa cells have a common precursor. Dev. Biol. 240, 92–107 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Lovell-Badge, R., Canning, C. & Sekido, R. Sex-determining genes in mice: building pathways. Novartis Found. Symp. 244, 4–18 (2002). This paper, which tracked the expression of the SRY protein through a MYC tag and promoter activation through alkaline phosphatase, showed that SRY is transiently expressed in each pre-Sertoli cell.

    CAS  PubMed  Google Scholar 

  17. Hammes, A. et al. Two splice variants of the Wilms' tumor 1 gene have distinct functions during sex determination and nephron formation. Cell 106, 319–329 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Tevosian, S. G. et al. Gonadal differentiation, sex determination and normal Sry expression in mice require direct interaction between transcription partners GATA4 and FOG2. Development 129, 4627–4634 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Ferrari, S. et al. SRY, like HMG1, recognizes sharp angles in DNA. EMBO J. 11, 4497–4506 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pontiggia, A. et al. Sex-reversing mutations affect the architecture of SRY-DNA complexes. EMBO J. 13, 6115–6124 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Harley, V. et al. Defective importin β recognition and nuclear import of the sex-determining factor SRY are associated with XY sex-reversing mutations. Proc. Natl Acad. Sci USA 100, 7045–7050 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Clarkson, M. J. & Harley, V. R. Sex with two SOX on: SRY and SOX9 in testis development. Trends Endocrinol. Metab. 13, 106–111 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Kanai, Y. & Koopman, P. Structural and functional characterization of the mouse Sox9 promoter: implications for campomelic dysplasia. Hum. Mol. Genet. 8, 691–696 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Canning, C. A. & Lovell-Badge, R. Sry and sex determination: how lazy can it be? Trends Genet. 18, 111–113 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Katoh-Fukui, Y. et al. Male to female sex reversal in M33 mutant mice. Nature 393, 688–692 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Gibbons, R. J. & Higgs, D. R. Molecular-clinical spectrum of the ATR-X syndrome. Am. J. Med. Genet. 97, 204–212 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Palmer, S. J. & Burgoyne, P. S. In situ analysis of fetal, prepuberal and adult XX–XY chimaeric mouse testes: Sertoli cells are predominantly, but not exclusively, XY. Development 112, 265–268 (1991). This classic paper provided the first evidence that the Sry gene was required only in Sertoli cells in the developing testis. It also argued strongly for a threshold effect on the initiation of the testis pathway.

    Article  CAS  PubMed  Google Scholar 

  28. Mittwoch, U. Sex differentiation in mammals and tempo of growth: probabilities vs. switches. J. Theor. Biol. 137, 445–455 (1989).

    Article  CAS  PubMed  Google Scholar 

  29. Schmahl, J., Yao, H. H., Pierucci-Alves, F. & Capel, B. Co-localization of WT1 and cell proliferation reveals conserved mechanisms in temperature-dependent sex determination. Genesis 35, 193–201 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Schmahl, J., Eicher, E. M., Washburn, L. L. & Capel, B. Sry induces cell proliferation in the mouse gonad. Development 127, 65–73 (2000). This paper identified a difference in the rate of proliferation as the earliest effect of Sry expression in the XY gonad. Subsequent work has reinforced the idea that proliferation is crucial for the initation of the male pathway.

    Article  CAS  PubMed  Google Scholar 

  31. Karl, J. & Capel, B. Sertoli cells of the mouse testis originate from the coelomic epithelium. Dev. Biol. 203, 323–333 (1998). These experiments used DiI labelling to trace the origin of Sertoli cells to the coelomic epithelium of the early gonad.

    Article  CAS  PubMed  Google Scholar 

  32. Schmahl, J. & Capel, B. Cell proliferation is necessary for the determination of male fate in the gonad. Dev. Biol. 258, 264–276 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Nef, S. et al. Testis determination requires insulin receptor family function in mice. Nature 426, 291–295 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Colvin, J. S., Green, R. P., Schmahl, J., Capel, B. & Ornitz, D. M. Male-to-female sex reversal in mice lacking fibroblast growth factor 9. Cell 104, 875–889 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Schmahl, J., Kim, Y., Colvin, J. S., Ornitz, D. M. & Capel, B. Fgf9 induces proliferation and nuclear localization of FGFR2 in Sertoli precursors during male sex determination. Development (in the press) This work indicates that FGF signalling has several roles in proliferation and Sertoli differentiation in the XY gonad.

  36. Meeks, J. J. et al. Dax1 regulates testis cord organization during gonadal differentiation. Development 130, 1029–1036 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Meeks, J. J., Weiss, J. & Jameson, J. L. Dax1 is required for testis determination. Nature Genet. 34, 32–33 (2003). This paper, together with reference 36, challenges the original hypothesis that DAX1 acts as an antagonist of the male pathway and shows that, instead, DAX1 is important in promoting testis development.

    Article  CAS  PubMed  Google Scholar 

  38. Muscatelli, F. et al. Mutations in the DAX-1 gene give rise to both X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism. Nature 372, 672–676 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Swain, A., Narvaez, S., Burgoyne, P., Camerino, G. & Lovell-Badge, R. Dax1 antagonizes Sry action in mammalian sex determination. Nature 391, 761–767 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Ludbrook, L. M. & Harley, V. R. Sex determination: a 'window' of DAX1 activity. Trends Endocrinol. Metab. 15, 116–121 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Ikeda, Y. et al. Comparative localization of DAX-1 and Ad4BP/SF-1 during development of the hypothalamic-pituitary-gonadal axis suggests their closely related and distinct functions. Dev. Dyn. 220, 363–376 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Meeks, J. J. et al. Leydig cell-specific expression of DAX1 improves fertility of the Dax1-deficient mouse. Biol. Reprod. 69, 154–160 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Eicher, E. et al. Sex-determining genes on mouse autosomes identified by linkage analysis of C57BL/6J-YPOS. Nature Genet. 14, 206–209 (1996). This paper is one of the first to use an elegant backcross strategy to define autosomal regions that encode genes that act as modifying loci — in this case, in sex-determination pathways.

    Article  CAS  PubMed  Google Scholar 

  44. da Silva, S. M. et al. Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds. Nature Genet. 14, 62–68 (1996).

    Article  Google Scholar 

  45. Kent, J., Wheatley, S. C., Andrews, J. E., Sinclair, A. H. & Koopman, P. A male-specific role for SOX9 in vertebrate sex determination. Development 122, 2813–2822 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Bergstrom, D. E., Young, M., Albrecht, K. H. & Eicher, E. M. Related function of mouse SOX3, SOX9, and SRY HMG domains assayed by male sex determination. Genesis 28, 111–124 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Daneau, I. et al. The porcine SRY promoter is transactivated within a male genital ridge environment. Genesis 33, 170–180 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Bishop, C. et al. A trangenic insertion upstream of Sox9 is associated with dominant XX sex reversal in the mouse. Nature Genet. 26, 490–494 (2000). This paper, together with reference 49, provides strong evidence that the expression of Sox9 can lead to sex reversel in an XX embryo in a manner that is indistinguishable from Sry.

    Article  CAS  PubMed  Google Scholar 

  49. Vidal, V. P., Chaboissier, M. C., de Rooij, D. G. & Schedl, A. Sox9 induces testis development in XX transgenic mice. Nature Genet. 28, 216–217 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Arango, N., Lovell-Badge, R. & Behringer, R. Targeted mutagenesis of the endogenous mouse Mis gene promoter: in vivo definition of genetic pathways of vertebrate sexual development. Cell 99, 409–419 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. De Santa Barbara P. et al. Direct interaction of SRY-related protein SOX9 and steroidogenic factor 1 regulates transcription of the human anti-Mullerian hormone gene. Mol. Cell. Biol. 18, 6653–6665 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sock, E., Schmidt, K., Hermanns-Borgmeyer, I., Bosl, M. R. & Wegner, M. Idiopathic weight reduction in mice deficient in the high-mobility-group transcription factor Sox8. Mol. Cell Biol. 21, 6951–6959 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Weiss, J. et al. Sox3 is required for gonadal function, but not sex determination, in males and females. Mol. Cell Biol. 23, 8084–8091 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rizzoti, K. et al. Sox3 is required during the formation of the hypothalamo-pituitary axis. Nature Genet. 36, 247–255 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Schepers, G., Wilson, M., Wilhelm, D. & Koopman, P. SOX8 is expressed during testis differentiation in mice and synergizes with SF1 to activate the Amh promoter in vitro. J. Biol. Chem. 278, 28101–28108 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Harley, V. R., Lovell-Badge, R., Goodfellow, P. N. & Hextall, P. J. The HMG box of SRY is a calmodulin binding domain. FEBS Lett. 391, 24–28 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Forwood, J. K., Harley, V. & Jans, D. A. The C-terminal nuclear localization signal of the SRY HMG domain mediates nuclear import through importin β1. J. Biol. Chem. (2001).

  58. Argentaro, A. et al. A SOX9 defect of calmodulin-dependent nuclear import in campomelic dysplasia/autosomal sex reversal. J. Biol. Chem. 278, 33839–33847 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Gasca, S. et al. A nuclear export signal within the high mobility group domain regulates the nucleocytoplasmic translocation of SOX9 during sexual determination. Proc. Natl Acad. Sci. USA 99, 11199–111204 (2002). This in vitro study is provocative and indicates that stabilizing SOX9 in the nucleus triggers the testis pathway, which points the field in a new direction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Goldfarb, M. Signaling by fibroblast growth factors: the inside story. Sci. STKE. 106, PE37 (2001).

    Google Scholar 

  61. Wells, A. & Marti, U. Signalling shortcuts: cell-surface receptors in the nucleus? Nature Rev. Mol. Cell Biol. 3, 697–702 (2002).

    Article  CAS  Google Scholar 

  62. Clevenger, C. V. Nuclear localization and function of polypeptide ligands and their receptors: a new paradigm for hormone specificity within the mammary gland? Breast Cancer Res. 5, 181–187 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Buehr, M., Gu, S. & McLaren, A. Mesonephric contribution to testis differentiation in the fetal mouse. Development 117, 273–281 (1993).

    Article  CAS  PubMed  Google Scholar 

  64. Merchant-Larios, H., Moreno-Mendoza, N. & Buehr, M. The role of the mesonephros in cell differentiation and morphogenesis of the mouse fetal testis. Int. J. Dev. Biol. 37, 407–415 (1993).

    CAS  PubMed  Google Scholar 

  65. Martineau, J., Nordqvist, K., Tilmann, C., Lovell-Badge, R. & Capel, B. Male-specific cell migration into the developing gonad. Curr. Biol. 7, 958–968 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Capel, B., Albrecht, K. H., Washburn, L. L. & Eicher, E. M. Migration of mesonephric cells into the mammalian gonad depends on Sry. Mech. Dev. 84, 127–131 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Albrecht, K. H., Capel, B., Washburn, L. L. & Eicher, E. M. Defective mesonephric cell migration is associated with abnormal testis cord development in C57BL/6J XYMus domesticus mice. Dev. Biol. 225, 26–36 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Tilmann, K. & Capel, B. Mesonephric cell migration induces testis cord formation and Sertoli cell differentiation in the mammalian gonad. Development 126, 2883–2890 (1999). This paper indicates that the migration of cells from the mesonephros promotes testis development during a specific window of gonad development.

    Article  CAS  PubMed  Google Scholar 

  69. Burgoyne, P. & Palmer, S. in Gonadal Development and Function (ed. Hillier, S. G.) 17–29 (Raven, New York, 1993).

    Google Scholar 

  70. Ricci, G., Catizone, A., Innocenzi, A. & Galdieri, M. Hepatocyte growth factor (HGF) receptor expression and role of HGF during embryonic mouse testis development. Dev. Biol. 216, 340–347 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Brennan, J., Tilmann, C. & Capel, B. Pdgfr-α mediates testis cord organization and fetal Leydig cell development in the XY gonad. Genes Dev. 17, 800–810 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ross, A. J., Tilmann, C., Yao, H., MacLaughlin, D. & Capel, B. AMH induces mesonephric cell migration in XX gonads. Mol. Cell. Endocrinol. 211, 1–7 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cupp, A. S., Kim, G. H. & Skinner, M. K. Expression and action of neurotropin-3 and nerve growth factor in embryonic and early postnatal rat testis development. Biol. Reprod. 63, 1617–1628 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Cupp, A. S., Uzumcu, M. & Skinner, M. K. Chemotactic role of neurotropin 3 in the embryonic testis that facilitates male sex determination. Biol. Reprod. 68, 2033–2037 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Cupp, A. S., Tessarollo, L. & Skinner, M. K. Testis developmental phenotypes in neurotropin receptor trkA and trkC null mutations: role in formation of seminiferous cords and germ cell survival. Biol. Reprod. 66, 1838–1845 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Bullejos, M., Bowles, J. & Koopman, P. Extensive vascularization of developing mouse ovaries revealed by caveolin-1 expression. Dev. Dyn. 225, 95–99 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Brennan, J., Karl, J. & Capel, B. Divergent vascular mechanisms downstream of Sry establish the arterial system in the XY gonad. Dev. Biol. 244, 418–428 (2002). This work showed that the male-specific vasculature is an arterial system that functions downstream of Sry expression.

    Article  CAS  PubMed  Google Scholar 

  78. Matsumoto, K., Yoshitomi, H., Rossant, J. & Zaret, K. S. Liver organogenesis promoted by endothelial cells prior to vascular function. Science 294, 559–563 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Lammert, E., Cleaver, O. & Melton, D. Induction of pancreatic differentiation by signals from blood vessels. Science 294, 564–567 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Habert, R., Lejeune, H. & Saez, J. Origin, differentiation and regulation of fetal and adult Leydig cells. Mol. Cell. Endocrin. 179, 47–74 (2001).

    Article  CAS  Google Scholar 

  81. Hatano, O., Takakusu, A., Nomura, M. & Morohashi, K. Identical origin of adrenal cortex and gonad revealed by expression profiles of Ad4BP/SF1. Genes Cells 1, 663–671 (1996).

    Article  CAS  PubMed  Google Scholar 

  82. Vanio, S., Heikkila, M., Kispert, A., Chin, N. & McMahon, A. Female development in mammals is regulated by Wnt-4 signaling. Nature 397, 405–409 (1999).

    Article  CAS  Google Scholar 

  83. Heikkila, M. et al. Wnt-4 deficiency alters mouse adrenal cortex function, reducing aldosterone production. Endocrinology 143, 4358–4365 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Jeays-Ward, K. et al. Endothelial and steroidogenic cell migration are regulated by WNT4 in the developing mammalian gonad. Development 130, 3663–3670 (2003). The finding that WNT4 (and Follistatin; see reference 118) blocks the formation of the male-specific vessel in XX gonads implies that migration of endothelial cells in the XY gonad is a default pathway that is actively blocked in XX gonads.

    Article  CAS  PubMed  Google Scholar 

  85. Hatano, O. et al. Sex-dependent expression of a transcription factor, Ad4BP, regulating steroidogenic P-450 genes in the gonads during prenatal and postnatal rat development. Development 120, 2787–2797 (1994).

    Article  CAS  PubMed  Google Scholar 

  86. Bitgood, M. J., Shen, L. & McMahon, A. P. Sertoli cell signaling by Desert hedgehog regulates the male germline. Curr. Biol. 6, 298–304 (1996).

    Article  CAS  PubMed  Google Scholar 

  87. Clark, A., Garland, K. & Russell, L. Desert Hedgehog (Dhh) gene is required in the mouse testis for formation of adult-type Leydig cells and normal development of peritubular cells and seminiferous tubules. Biol. Reproduc. 63, 1825–1838 (2000).

    Article  CAS  Google Scholar 

  88. Yao, H. H., Whoriskey, W. & Capel, B. Desert Hedgehog/Patched 1 signaling specifies fetal Leydig cell fate in testis organogenesis. Genes Dev. 16, 1433–1440 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kitamura, K. et al. Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nature Genet. 32, 359–369 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Mintz, B. & Russell, E. S. Gene-induced embryological modifications of primordial germ cells in the mouse. J. Exp. Zool. 134, 207–237 (1957).

    Article  CAS  PubMed  Google Scholar 

  91. Solter, D. & Knowles, B. Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc. Natl Acad. Sci. USA 75, 5565–5569 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Toyooka, Y. et al. Expression and intracellular localization of mouse Vasa-homologue protein during germ cell development. Mech. Dev. 93, 139–149 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Enders, G. C. & May, J. J. Developmentally regulated expression of a mouse germ cell nuclear antigen examined from embryonic day 11 to adult in male and female mice. Dev. Biol. 163, 331–140 (1994).

    Article  CAS  PubMed  Google Scholar 

  94. Kimura, T., Yomogida, K., Iwai, N., Kato, Y. & Nakano, T. Molecular cloning and genomic organization of mouse homologue of Drosophila germ cell-less and its expression in germ lineage cells. Biochem. Biophys. Res. Commun. 262, 223–230 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Di Carlo, A. & De Felici, M. A role for E-cadherin in mouse primordial germ cell development. Dev. Biol. 226, 209–219 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Toyoda-Ohno, H., Obinata, M. & Matsui, Y. Members of the ErbB receptor tyrosine kinases are involved in germ cell development in fetal mouse gonads. Dev. Biol. 215, 399–406 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Donovan, P. J. Growth factor regulation of mouse primordial germ cell development. Curr. Top. Dev. Biol. 29, 189–225 (1994).

    Article  CAS  PubMed  Google Scholar 

  98. Adams, I. R. & McLaren, A. Sexually dimorphic development of mouse primordial germ cells: switching from oogenesis to spermatogenesis. Development 129, 1155–1164 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Merchant, H. Rat gonadal and ovarian organogenesis with and without germ cells. An ultrastructural study. Dev. Biol. 44, 1–21 (1975).

    Article  CAS  PubMed  Google Scholar 

  100. Merchant-Larios, H. & Centeno, B. Morphogenesis of the ovary from the sterile W/Wv mouse. Prog. Clin. Biol. Res. 59B, 383–392 (1981).

    CAS  PubMed  Google Scholar 

  101. McLaren, A. Germ Cell and Soma: A New Look at an Old Problem (Yale University, New Haven, Connecticut, 1981).

    Google Scholar 

  102. Couse, J. F. et al. Postnatal sex reversal of the ovaries in mice lacking estrogen receptors α and β. Science 286, 2328–2331 (1999).

    Article  CAS  PubMed  Google Scholar 

  103. McLaren, A. Germ cells and germ cell sex. Phil. Trans. R. Soc. Lond. B 350, 229–233 (1995).

    Article  CAS  Google Scholar 

  104. Burgoyne, P. S., Mahadevaiah, S. K., Sutcliffe, M. J. & Palmer, S. J. Fertility in mice requires X–Y pairing and a Y-chromosomal 'spermiogenesis' gene mapping to the long arm. Cell 71, 391–398 (1992).

    Article  CAS  PubMed  Google Scholar 

  105. McLaren, A. & Southee, D. Entry of mouse embryonic germ cells into meiosis. Dev. Biol. 187, 107–113 (1997). This paper provided evidence that entry into meiosis is an intrinsic property of germ cells that is blocked in the XY gonad.

    Article  CAS  PubMed  Google Scholar 

  106. Yao, H. H., DiNapoli, L. & Capel, B. Meiotic germ cells antagonize mesonephric cell migration and testis cord formation in mouse gonads. Development 130, 5895–5902 (2003). This work indicated that once germ cells enter meiosis, they interfere with testis development, indicating that blocking meiosis is a crucial step in initiating testis development.

    Article  CAS  PubMed  Google Scholar 

  107. Eicher, E. M., Washburn, L. L., Whitney, I. J. & Morrow, K. E. Mus poschiavinus Y chromosome in the C57BL/6J murine genome causes sex reversal. Science 217, 535–537 (1982).

    Article  CAS  PubMed  Google Scholar 

  108. Nagamine, C., Morohashi, K., Carlisle, C. & Chang, D. Sex reversal caused by Mus musculus domesticus Y chromosome linked to variant expression of the testis determining gene. Dev. Biol. 216, 182–194 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Albrecht, K. H., Young, M., Washburn, L. L. & Eicher, E. M. Sry expression level and protein isoform differences play a role in abnormal testis development in C57BL/6J mice carrying certain Sry alleles. Genetics 164, 277–288 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Menke, D. B., Koubova, J. & Page, D. C. Sexual differentiation of germ cells in XX mouse gonads occurs in an anterior-to-posterior wave. Dev. Biol. 262, 303–312 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. McLaren, A. Primordial germ cells in the mouse. Dev. Biol. 262, 1–15 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Eicher, E. M. & Washburn, L. L. Genetic control of primary sex determination in mice. Ann. Rev. Genet. 20, 327–360 (1986).

    Article  CAS  PubMed  Google Scholar 

  113. McElreavey, K., Vilain, E., Abbas, N., Herskowitz, I. & Fellous, M. A regulatory cascade hypothesis for mammalian sex determination: SRY represses a negative regulator of male development. Proc. Natl Acad. Sci. USA 90, 3368–3372 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Goodfellow, P. & Lovell-Badge, R. SRY and sex determination in mammals. Annu. Rev. Genet. 27, 71–92 (1993).

    Article  CAS  PubMed  Google Scholar 

  115. Jimenez, R., Sanchez, A., Burgos, M. & De La Guardia, R. D. Puzzling out the genetics of mammalian sex determination. Trends Genet. 12, 164–166 (1996).

    Article  CAS  PubMed  Google Scholar 

  116. Jordan, B. K., Shen, J. H., Olaso, R., Ingraham, H. A. & Vilain, E. Wnt4 overexpression disrupts normal testicular vasculature and inhibits testosterone synthesis by repressing steroidogenic factor 1/β-catenin synergy. Proc. Natl Acad. Sci. USA 100, 10866–10871 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yao, H. H. -C. et al. Follistatin operates downstream of Wnt4 in mammalian ovary organogenesis. Dev. Dyn. 230, 210–215 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Menke, D. B. & Page, D. C. Sexually dimorphic gene expression in the developing mouse gonad. Gene Expr. Patterns 2, 359–367 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Pailhoux, E. et al. Time course of female-to-male sex reversal in 38, XX fetal and postnatal pigs. Dev. Dyn. 222, 328–340 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Pailhoux, E. et al. A 11.7-kb deletion triggers intersexuality and polledness in goats. Nature Genet. 29, 453–458 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Loffler, K. A., Zarkower, D. & Koopman, P. Etiology of ovarian failure in blepharophimosis ptosis epicanthus inversus syndrome: FOXL2 is a conserved, early-acting gene in vertebrate ovarian development. Endocrinology 144, 3237–3243 (2003).

    Article  CAS  PubMed  Google Scholar 

  122. Schmidt, D. et al. The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance. Development 131, 933–942 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Sinclair, A. H. et al. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346, 240–244 (1990).

    Article  CAS  PubMed  Google Scholar 

  124. Foster, J. et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 372, 525–529 (1994).

    Article  CAS  PubMed  Google Scholar 

  125. Bardoni, B. et al. A dosage sensitive locus at chromosome Xp21 is involved in male to female sex reversal. Nature Genet. 7, 497–501 (1994).

    Article  CAS  PubMed  Google Scholar 

  126. Matsuda, M. et al. DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature 417, 559–563 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Ottolenghi, C. & McElreavey, K. Deletions of 9p and the quest for a conserved mechanism of sex determination. Mol. Genet. Metab. 71, 397–404 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. Raymond, C. et al. Evidence for evolutionary conservation of sex-determining genes. Nature 391, 691–695 (1998).

    Article  CAS  PubMed  Google Scholar 

  129. Raymond, C. S., Murphy, M. W., O'Sullivan, M. G., Bardwell, V. J. & Zarkower, D. Dmrt1, a gene related to worm and fly sexual regulators, is required for mammalian testis differentiation. Genes Dev. 14, 2587–2595 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Koopman, P., Bullejos, M., Loffler, K. & Bowles, J. Expression-based strategies for discovery of genes involved in testis and ovary development. Novartis Found. Symp. 244, 240–249; discussion 249–257 (2002).

    CAS  PubMed  Google Scholar 

  131. Tohonen, V., Osterlund, C. & Nordqvist . Testatin: a cystatin-related gene expressed during early testis development. Proc. Natl Acad. Sci. USA 95, 14208–14213 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wertz, K. & Herrmann, B. G. Large-scale screen for genes involved in gonad development. Mech. Dev. 98, 51–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  133. McClive, P. J., Hurley, T. M., Sarraj, M. A., van den Bergen, J. A. & Sinclair, A. H. Subtractive hybridisation screen identifies sexually dimorphic gene expression in the embryonic mouse gonad. Genesis 37, 84–90 (2003).

    Article  CAS  PubMed  Google Scholar 

  134. Grimmond, S. et al. Sexually dimorphic expression of protease nexin-1 and vanin-1 in the developing mouse gonad prior to overt differentiation suggests a role in mammalian sexual development. Hum. Mol. Genet. 9, 1553–1560 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank past and present members of the laboratory for images that appear in figure 4. We also thank members of this laboratory and other colleagues for their thoughtful contributions to this Review and for data in advance of publication. This work is supported by grants from the National Institutes of Health and the National Science Foundation to B.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blanche Capel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

Amh

Arx

ATRX

Bmp2

Dax1

Dhh

Dmrt1

Emx2

Fgf9

FGFR2

Fog2

Foxl2

Fst

Gata4

Gcl

Gcna1

Igf1r

Ir

Irr

Kit

Lhx9

Mis

M33

Mvh

Ods

Pdgfrα

Pisrt1

Ptch1

Sf1

Sox3

Sox8

Sox9

Stra8

Sry

Tnap

TrkA

TrkC

Wnt4

Wt1

FURTHER INFORMATION

Blanche Capel's laboratory

Glossary

PRIMORDIA

The initial founder group of cells that give rise to a tissue.

COELOMIC EPITHELIUM

An epithelial layer that lines the coelom, the body cavity, and covers the abdominal organs that arise beneath it.

MESONEPHROS

The mid-region of the embryonic kidney that arises within the intermediate mesoderm between the pronephros and the metanephros (the definitive kidney). The gonad develops on the medial surface of this transient tissue, which also houses the primordia for the male (mesonephric) and female (Müllerian) ducts.

PERITUBULAR MYOID CELLS

A muscle-lineage cell type that surrounds the Sertoli-cell cords and is believed to be responsible for peristaltic action that is involved in the expulsion of sperm from the seminiferous tubules.

LEYDIG CELLS

Interstitial cells in the testis that are responsible for the production of male steroid hormones, such as testosterone, and are important in male sexual differentiation.

DYSGENIC

Showing failed or disrupted morphology.

PARACRINE

A form of cell–cell communication that depends on a secreted substance that acts over a short distance and does not enter the circulation.

CANALIZE

Guided down a narrowly constrained pathway.

GUT MESENTERY

The tissue that is connected to the dorsal wall that supports the gut in the body cavity.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brennan, J., Capel, B. One tissue, two fates: molecular genetic events that underlie testis versus ovary development. Nat Rev Genet 5, 509–521 (2004). https://doi.org/10.1038/nrg1381

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1381

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing