Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The evolution of genetic regulatory systems in bacteria

Key Points

  • The genomes of bacterial species show enormous plasticity in the function of individual genes, in genome organization and in regulatory organization.

  • Genes and parts of genes are moved within and between genomes, and contiguous pieces of DNA encoding many genes are moved about by mobile genetic elements. Overlaid on these genomic rearrangement processes is an inescapable rate of random point mutation.

  • By rapidly introducing new genes into existing genomes, horizontal gene transfer (HGT) circumvents the slow step of complete gene creation and accelerates genome innovation. About 18% of the E. coli genome seems to have been acquired by HGT, for example.

  • A 'modular' organization of cellular functions appears in spatial, temporal, chemical and genetic contexts. This modular structure arises spontaneously as a result of the fitness advantages of co-regulation, co-action, and the more efficient HGT of co-located genes that work together.

  • If one species in a stable community achieves a notable improvement in fitness through mutation or HGT, it will cause the wholesale reoptimization of the local biosphere. Such events are random, rare and unpredictable, but of wide significance when they do occur.

  • Useful foreign genes are integrated into a new host's regulatory system by the processes of 'experimental' genome reorganization (that is, by point mutations and shuffling segments of DNA) that occur at a persistent, but random rate. Experiments with cells lacking an essential metabolic pathway, but containing a promoterless rescue operon, have shown that mutations in the upstream operator region can readily generate active promoter sites to create viable mutant strains.

  • Bacterial 'species' are ecotypes, the core identity of which is preserved by selective pressures that maintain each organism's particular complement of enzymes, pathways, morphological structures, sensors, signalling networks and decision logic circuits that together enable and implement its survival strategy in a target niche.

  • By exploiting the natural adaptive processes of evolutionary mutation and selection we might be able to engineer bacteria with novel circuitry that directs new types of responses to external signals.

Abstract

The genomes of bacterial species show enormous plasticity in the function of individual genes, in genome organization and in regulatory organization. Over millions of years, both bacterial genes and their genomes have been extensively reorganized and adapted so that bacteria occupy virtually every environmental niche on the earth. In addition, changes have occurred in the regulatory circuitry that controls cell operations, cell-cycle progression and responses to environmental signals. The mechanisms that underlie the adaptation of the bacterial regulatory circuitry are crucial for understanding the bacterial biosphere and have important roles in the emergence of antibiotic resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Example of a bacterial regulatory circuit.
Figure 2: Flagella organization in Caulobacter, Vibrio and Salmonella.

Similar content being viewed by others

References

  1. Levine, M. & Tjian, R. Transcription regulation and animal diversity. Nature 424, 147–151 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Carroll, S. B. Genetics and the making of Homo sapiens. Nature 422, 849–857 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Ochman, H., Lawrence, J. G. & Groisman, E. A. Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299–304 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Brown, J. R. Ancient horizontal gene transfer. Nature Rev. Genet. 4, 121–132 (2003). A thorough overview of the methods for detecting HGT, its implications for taxonomy, and the controversies that exist in the field.

    Article  CAS  PubMed  Google Scholar 

  5. Omelchenko, M. V., Makarova, K. S., Wolf, Y. I., Rogozin, I. B. & Koonin, E. V. Evolution of mosaic operons by horizontal gene transfer and gene displacement in situ. Genome Biol. 4, R55 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hudson, R. E., Bergthorsson, U. & Ochman, H. Transcription increases multiple spontaneous point mutations in Salmonella enterica. Nucl. Acids Res. 31, 4517–4522 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Kurland, C. G., Canback, B. & Berg, O. G. Horizontal gene transfer: a critical view. Proc. Natl Acad. Sci. USA 100, 9658–9662 (2003). Presents a critique of the 'rampant HGT' hypothesis and stresses the continuing usefulness of tree-like phylogenies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kunin, V. & Ouzounis, C. A. The balance of driving forces during genome evolution in prokaryotes. Genome Res. 13, 1589–1594 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chothia, C., Gough, J., Vogel, C. & Teichmann, S. A. Evolution of the protein repertoire. Science 300, 1701–1703 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Holmes, A. J. et al. The gene cassette metagenome is a basic resource for bacterial genome evolution. Environ. Microbiol. 5, 383–394 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Rice, L. B. Association of different mobile elements to generate novel integrative elements. Cell. Mol. Life Sci. 59, 2023–2032 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Muller, T. A., Werlen, C., Spain, J. & Van Der Meer, J. R. Evolution of a chlorobenzene degradative pathway among bacteria in a contaminated groundwater mediated by a genomic island in Ralstonia. Environ. Microbiol. 5, 163–173 (2003).

    Article  PubMed  Google Scholar 

  13. Top, E. M. & Springael, D. The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Curr. Opin. Biotechnol. 14, 262–269 (2003). An experimental demonstration of how novel catabolic pathways have been created through forward evolution in a high HGT environment.

    Article  CAS  PubMed  Google Scholar 

  14. Xie, G., Keyhani, N. O., Bonner, C. A. & Jensen, R. A. Ancient origin of the tryptophan operon and the dynamics of evolutionary change. Microbiol. Mol. Biol. Rev. 67, 303–342 (2003). Detailed, thorough paper that traces the molecular evolution of the trp operon through several bacterial species.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Garg, P. et al. Molecular epidemiology of O139 Vibrio cholerae: mutation, lateral gene transfer, and founder flush. Emerg. Infect. Dis. 9, 810–814 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lawrence, J. G. & Ochman, H. Molecular archaeology of the Escherichia coli genome. Proc. Natl Acad. Sci. USA 95, 9413–9417 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hacker, J., Hentschel, U. & Dobrindt, U. Prokaryotic chromosomes and disease. Science 301, 790–793 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Jain, R., Rivera, M. C., Moore, J. E. & Lake, J. A. Horizontal gene transfer accelerates genome innovation and evolution. Mol. Biol. Evol. 20, 1598–1602 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Burrus, V., Pavlovic, G., Decaris, B. & Guedon, G. Conjugative transposons: the tip of the iceberg. Mol. Microbiol. 46, 601–610 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Hamoen, L. W., Venema, G. & Kuipers, O. P. Controlling competence in Bacillus subtilis: shared use of regulators. Microbiology 149, 9–17 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. From molecular to modular cell biology. Nature 402, C47–C52 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Wolf, D. M. & Arkin, A. P. Motifs, modules and games in bacteria. Curr. Opin. Microbiol. 6, 125–134 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Laub, M. T., McAdams, H. H., Feldblyum, T., Fraser, C. M. & Shapiro, L. Global analysis of the genetic network controlling a bacterial cell cycle. Science 290, 2144–2148 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Segal, E. et al. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nature Genet. 34, 166–176 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Hansen, T. F. Is modularity necessary for evolvability? Remarks on the relationship between pleiotropy and evolvability. Biosystems 69, 83–94 (2003). Provides quantitative definitions of evolvability and modularity in population genetics terms.

    Article  PubMed  Google Scholar 

  26. Lawrence, J. Selfish operons: the evolutionary impact of gene clustering in prokaryotes and eukaryotes. Curr. Opin. Genet. Dev. 9, 642–648 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Paiardini, A., Contestabile, R., D'Aguanno, S., Pascarella, S. & Bossa, F. Threonine aldolase and alanine racemase: novel examples of convergent evolution in the superfamily of vitamin B6-dependent enzymes. Biochim. Biophys. Acta 1647, 214–219 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Mukhopadhyay, R., Rosen, B. P., Phung le, T. & Silver, S. Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol. Rev. 26, 311–325 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Dabizzi, S., Ammannato, S. & Fani, R. Expression of horizontally transferred gene clusters: activation by promoter-generating mutations. Res. Microbiol. 152, 539–549 (2001). Shows that horizontally transferred elements can be incorporated into an extant cellular circuitry with comparatively few mutations.

    Article  CAS  PubMed  Google Scholar 

  30. Kasak, L., Horak, R. & Kivisaar, M. Promoter-creating mutations in Pseudomonas putida: a model system for the study of mutation in starving bacteria. Proc. Natl Acad. Sci. USA 94, 3134–3139 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Madan Babu, M. & Teichmann, S. A. Evolution of transcription factors and the gene regulatory network in Escherichia coli. Nucl. Acids Res. 31, 1234–1244 (2003). This analysis classifies E. coli transcription factors on the basis of structural homology and identifies global regulators that control cellular circuitry.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Conant, G. C. & Wagner, A. Convergent evolution of gene circuits. Nature Genet. 34, 264–266 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Aldridge, P. & Hughes, K. T. Regulation of flagellar assembly. Curr. Opin. Microbiol. 5, 160–165 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Laub, M. T., Chen, S. L., Shapiro, L. & McAdams, H. H. Genes directly controlled by CtrA, a master regulator of the Caulobacter cell cycle. Proc. Natl Acad. Sci. USA 2, 4632–4637 (2002).

    Article  Google Scholar 

  35. Bellefontaine, A. F. et al. Plasticity of a transcriptional regulation network among alpha-proteobacteria is supported by the identification of CtrA targets in Brucella abortus. Mol. Microbiol. 43, 945–960 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Shi, W., Yang, Z., Sun, H., Lancero, H. & Tong, L. Phenotypic analyses of frz and dif double mutants of Myxococcus xanthus. FEMS Microbiol. Lett. 192, 211–215 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Kirby, J. R. & Zusman, D. R. Chemosensory regulation of developmental gene expression in Myxococcus xanthus. Proc. Natl Acad. Sci. USA 100, 2008–2013 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Galperin, M. Y., Nikolskaya, A. N. & Koonin, E. V. Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol. Lett. 202, 11–21 (2001).

    Article  Google Scholar 

  39. Stephenson, K. & Hoch, J. A. Evolution of signalling in the sporulation phosphorelay. Mol. Microbiol. 46, 297–304 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Tyson, J. J., Chen, K. C. & Novak, B. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol. 15, 221–231 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Shen-Orr, S. S., Milo, R., Mangan, S. & Alon, U. Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genet. 31, 64–68 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Lenski, R. E., Ofria, C., Pennock, R. T. & Adami, C. The evolutionary origin of complex features. Nature 423, 139–144 (2003). Describes simulation experiments that model the evolution of digital 'creatures' and illustrates how an increasingly complex functionality can arise by mutation and selection.

    Article  CAS  PubMed  Google Scholar 

  43. Pennock, R. T. Creationism and intelligent design. Annu. Rev. Genom. Hum. Genet. 4, 143–163 (2003).

    Article  CAS  Google Scholar 

  44. Cohan, F. M. What are bacterial species? Annu. Rev. Microbiol. 56, 457–487 (2002). Reviews the history of bacterial systematics and presents a definition of species that are based on molecular metrics of divergence and cohesion.

    Article  CAS  PubMed  Google Scholar 

  45. Joyce, E. A., Chan, K., Salama, N. R. & Falkow, S. Redefining bacterial populations: a post-genomic reformation. Nature Rev. Genet. 3, 462–473 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Dobrindt, U. et al. Analysis of genome plasticity in pathogenic and commensal Escherichia coli isolates by use of DNA arrays. J. Bacteriol. 185, 1831–1840 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Souza, V., Rocha, M., Valera, A. & Eguiarte, L. E. Genetic structure of natural populations of Escherichia coli in wild hosts on different continents. Appl. Environ. Microbiol. 65, 3373–3385 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Cases, I., de Lorenzo, V. & Ouzounis, C. A. Transcription regulation and environmental adaptation in bacteria. Trends Microbiol. 11, 248–253 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Wilcox, J. L., Dunbar, H. E., Wolfinger, R. D. & Moran, N. A. Consequences of reductive evolution for gene expression in an obligate endosymbiont. Mol. Microbiol. 48, 1491–1500 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. van Ham, R. C. et al. Reductive genome evolution in Buchnera aphidicola. Proc. Natl Acad. Sci. USA 100, 581–586 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hottes, A. K. et al. Transcriptional profiling of Caulobacter crescentus during growth on complex and minimal media. J. Bacteriol. (in the press).

  52. Arkin, A., Ross, J. & McAdams, H. H. Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda infected E. coli cells. Genetics 149, 1633–1648 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Hasty, J., McMillen, D. & Collins, J. J. Engineered gene circuits. Nature 420, 224–230 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. McAdams, H. H. & Arkin, A. Towards a circuit engineering discipline. Curr. Biol. 10, R318–R320 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Yokobayashi, Y., Weiss, R. & Arnold, F. H. Directed evolution of a genetic circuit. Proc. Natl Acad. Sci. USA 99, 16587–16591 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hasty, J. Design then mutate. Proc. Natl Acad. Sci. USA 99, 16516–16518 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. National Center for Biotechnology Information (NCBI). Completed microbial genomes [online], (cited 16 Jan 04), <http://www.ncbi.nlm.nih.gov/genomes/MICROBES/Complete.html>.

  58. Lawrence, J. G. Selfish operons and speciation by gene transfer. Trends Microbiol. 5, 355–359 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Doolittle, W. F. et al. How big is the iceberg of which organellar genes in nuclear genomes are but the tip? Philos. Trans. R. Soc. Lond. B 358, 39–57; discussion 57–58 (2003).

    Article  CAS  Google Scholar 

  60. Elena, S. F. & Lenski, R. E. Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nature Rev. Genet. 4, 457–469 (2003). A clear description of bacterial evolutionary experiments and the insights derived from the field.

    Article  CAS  PubMed  Google Scholar 

  61. Groisman, E. A. The pleiotropic two-component regulatory system PhoP-PhoQ. J. Bacteriol. 183, 1835–1842 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ames, P., Studdert, C. A., Reiser, R. H. & Parkinson, J. S. Collaborative signaling by mixed chemoreceptor teams in Escherichia coli. Proc. Natl Acad. Sci. USA 99, 7060–7065 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

H.H.M. is supported by the Office of Science of the U.S. Department of Energy (DOE), by the Office of Naval Research and by the DARPA Defense Sciences Office. B.S. is supported by a National Defense Science and Engineering fellowship from the Army Research Office. A.P.A. is supported by the Office of Science of the U.S. DOE, the DARPA Information Processing Technology Office and by the Howard Hughes Medical Institute. We thank L. Shapiro and R. Losick for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harley H. McAdams.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Harvard University, Dept of Molecular & Cellular Biology's evolution links

HGT database

Information about bacteria

Islander prokaryotic island database

Microbiology current issues: Antibiotic resistance

Microsatellite analysis server

Public Broadcasting Evolution site

Glossary

REGULATORY CIRCUIT

A reaction network that can involve transcription factors, promoters, enzymes, structural genes, functional RNAs and metabolites. Regulatory networks control activation of genes in development, in the cell cycle and in the activation of metabolic pathways.

FUNCTIONAL GENOMICS

The use of genome-wide or system-wide experimental approaches to assess gene function. It also refers to the analysis of gene function within the context of the overall design and behaviour of the organism.

CIRCUIT MOTIFS

Elements of circuit organization that are found repeatedly in regulatory circuits of different organisms and even in different regulatory subcircuits in the same organism.

TWO-COMPONENT SYSTEMS

Signal-transduction systems that enable bacteria to regulate cellular functions in response to changing environmental conditions. They are composed of a histidine kinase sensor protein and a response regulator that frequently acts as a transcription factor.

KINETIC PARAMETERS

The rate constants of chemical reactions that describe how fast the reaction takes place.

ARCHAEBACTERIA

An ancient kingdom of unicellular microorganisms that are phylogenetically distinct from bacteria and eukaryotes. They are often found in extreme environments, such as near deep-sea vents.

XENOBIOTIC

A compound that is foreign to biological systems, often referring to human-made compounds that are resistant to biodegradation.

TRYPTOPHAN OPERON

The group of genes that control the biosynthesis of tryptophan.

ENDOSYMBIONT

An organism that grows inside another organism. The relationship can be either mutualistic (both species benefit) or commensalistic (one species benefits, whereas the other is not affected).

HORIZONTAL GENE TRANSFER

The transfer of genetic material among cells that belong to different strains, species or genera.

INTEGRON

A genetic unit that, among others, encodes proteins that splice gene cassettes into chromosomes, where the cassettes can become functional.

CONJUGATIVE TRANSPOSONS

Discrete DNA elements that can transfer themselves from donor to recipient while the two are in direct physical contact. Their broad host range makes them important in horizontal transfer and bacterial evolution.

EVOLVABILITY

The ability of random genetic variation to produce phenotypic changes that can increase fitness (intrinsic evolvability) or the ability of a population to respond to selection (extrinsic evolvability).

16S rRNA GENES

Genes that are transcribed into the 16S rRNA molecule, a major component of the bacterial small ribosomal subunit. The strong sequence conservation of this molecule makes it ideal for detecting large evolutionary distances between two organisms.

GENE CASSETTES

Small mobile DNA elements that typically consist of a promoterless open reading frame and a recombination site. Gene cassettes are ubiquitous in environmental DNA samples.

α-PROTEOBACTERIA

A class of primarily oligotrophic bacteria within the proteobacteria that have high morphological and ecological diversity.

METHYLTRANSFERASE

An enzyme that catalyses the addition of a methyl group, often to adenine or cytosine molecules in DNA.

σ54 TRANSCRIPTIONAL ACTIVATOR

Sigma factors are variable protein components of the bacterial RNA polymerase that have great influence on where the polymerase binds to DNA. The ability of σ54, in particular, to initiate transcription by the polymerase might be affected by activators that bind at distant sites on the DNA.

CONVERGENT EVOLUTION

Two items are said to be the result of convergent evolution if their similarities arose by independent processes without common ancestry. This usually reflects evolutionary adaptation to similar environmental conditions.

HEAT-SHOCK RESPONSE

A mechanism that involves activation of many genes that cells use to maintain stability when subjected to thermal stress.

LYSOGENIC STATE

A phage integrated into a bacterial cell's chromosome is, in a latent form, called a 'lysogenic state'. Environmental stress can cause the lysogenic phage to leave the chromosome and produce infectious phage particles followed by bursting of the host cell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McAdams, H., Srinivasan, B. & Arkin, A. The evolution of genetic regulatory systems in bacteria. Nat Rev Genet 5, 169–178 (2004). https://doi.org/10.1038/nrg1292

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1292

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing