Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genes and speciation

Key Points

  • Studies of reproductive isolation have shown that the number of genes that are involved is often large. Between closely related species of Drosophila, the number of such genes might often be in the hundreds.

  • Speciation genes — that is, the genes that underlie reproductive isolation — can contribute to hybrid inviability, sterility or behavioural aberration, as well as ecological maladaptation.

  • In the genic view of speciation, loci that are not closely linked to speciation genes might continue to be shared between nascent species, as in parapatric speciation.

  • At least five cases of speciation genes have been confirmed so far. Most bear a strong signature of positive selection. Three of the five known speciation genes are related to transcriptional regulation, supporting the postulate that species divergence is often regulatory in nature.

  • For a gene to diverge in function, it needs to be released from the old functional niche (genetic 'niche-release'). So, speciation genes are often non-essential, with functions that are only loosely coupled to reproductive isolation. In a few cases, gene knock-out studies — the ultimate way to test the dispensability of a gene — have been able to show the non-essential nature of specific speciation genes.

  • Genomic data might help to resolve the long-running debate on the relative importance of allopatric and parapatric modes of speciation. Models of allopatric speciation make specific testable predictions about the level of divergence across the whole genome.

Abstract

It is only in the past five years that studies of speciation have truly entered the molecular era. Recent molecular analyses of a handful of genes that are involved in maintaining reproductive isolation between species (speciation genes) have provided some striking insights. In particular, it seems that despite being strongly influenced by positive selection, speciation genes are often non-essential, having functions that are only loosely coupled to reproductive isolation. Molecular studies might also resolve the long-running debate on the relative importance of allopatric and parapatric modes of speciation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The genic view of species differentiation.
Figure 2: Positional cloning of hybrid incompatibility genes.
Figure 3: Geographical models of speciation.

References

  1. 1

    Dobzhansky, T. Genetics of the Evolutionary Process (Columbia Univ. Press, New York, 1970).

    Google Scholar 

  2. 2

    Fisher, R. A. The Genetical Theory of Natural Selection (Clarendon, Oxford, 1930).

    Book  Google Scholar 

  3. 3

    Mayr, E. Animal Species and Evolution (The Belknap, Cambridge, Massachusetts, 1963).

    Book  Google Scholar 

  4. 4

    Wilson, A. C., Maxon, L. R. & Sarich, V. M. Two types of molecular evolution. Evidence from studies of interspecific hybridization. Proc. Natl Acad. Sci. USA 71, 2843–2847 (1974).

    CAS  Article  Google Scholar 

  5. 5

    Wu, C. -I. The genic view of the process of speciation. J. Evol. Biol. 14, 851–865 (2001). In this genic view of speciation, RI develops gradually across the genome with some genes being unable to permeate through the nascent species boundary early on, whereas other genes continue to flow between them until complete RI evolves. The view suggests that parapatry is a common mode of speciation.

    Article  Google Scholar 

  6. 6

    Mayr, E. Integration of genotypes: synthesis. Cold Spring Harb. Symp. Quant. Biol. 20, 327–333 (1955).

    CAS  Article  Google Scholar 

  7. 7

    Wu, C. -I. Gene and speciation. J. Evol. Biol. 14, 889–891 (2001).

    Article  Google Scholar 

  8. 8

    Howard, D. J. & Berlocher, S. H. Endless Forms (Oxford Univ. Press, New York, 1998).

    Google Scholar 

  9. 9

    Wu, C. -I. & Hollocher, H. in Endless Forms: Species and Speciation. (ed. Berlocher, S.) 339–351 (Oxford Univ. Press, Oxford, 1998).

    Google Scholar 

  10. 10

    Wu, C. -I. & Palopoli, M. F. Genetics of postmating reproductive isolation in animals. Ann. Rev. Genet. 28, 283–308 (1994).

    CAS  Article  Google Scholar 

  11. 11

    Coyne, J. A. & Orr, H. A. The evolutionary genetics of speciation. Philos. Trans. R. Soc. Lond. B 28, 287–305 (1998).

    Article  Google Scholar 

  12. 12

    Zeng, Z. -B. et al. Genetic architecture of a morphological shape difference between two Drosophila species. Genetics 154, 299–310 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Ting, C. -T., Takahashi, A. & Wu, C. -I. Incipient speciation by sexual isolation in Drosophila: concurrent evolution at multiple loci. Proc. Natl Acad. Sci. USA 98, 6709–6713 (2001).

    CAS  Article  Google Scholar 

  14. 14

    Takahashi, A. & Ting, C. -T. Genetic basis of sexual isolation in Drosophila melanogaster. Genetia (in the press).

  15. 15

    Doi, M., Matsuda, M., Tomaru, M., Matsubayashi, H. & Oguma, Y. A locus for female mate discrimination causing sexual isolation in Drosophila. Proc. Natl Acad. Sci. USA 98, 6714–6719 (2001).

    CAS  Article  Google Scholar 

  16. 16

    Tao, Y., Zeng, Z. -B., Li, J., Hartle, D. L. & Laurie, C. C. Genetic dissection of hybrid incompatabilities between Drosophila simulans and D. mauritiana. II. Mapping hybrid sterility loci on the third chromosome. Genetics 164, 1399–1418 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Wu, C. -I. & Davis, A. W. Evolution of postmating reproductive isolation: the composite nature of Haldane's rule and its genetic bases. Am. Nat. 142, 187–212 (1993).

    CAS  Article  Google Scholar 

  18. 18

    Wu, C. -I., Johnson, N. A. & Palopoli, M. F. Haldane's rule and its legacy: why are there so many sterile males? Trends Ecol. Evol. 11, 281–284 (1996).

    CAS  Article  Google Scholar 

  19. 19

    Presgraves, D. C. A fine-scale genetic analysis of hybrid incompatibilities in Drosophila. Genetics 163, 955–972 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Sawamura, K., Davis, A. W. & Wu, C. -I. Genetic analysis of speciation by means of introgression into Drosophila melanogaster. Proc. Natl Acad. Sci. USA 97, 2652–2655 (2000).

    CAS  Article  Google Scholar 

  21. 21

    Sawamura, K., Roote, J., Wu, C. -I. & Yamamoto, M. Reassessment of the two-locus Dobzhansky-Muller model of reproductive isolation: extreme genetic complexity underlying hybrid male sterility in Drosophila. Genetics (in the press).

  22. 22

    Presgraves, D. C., Balagopalan, L., Abmayr, S. M. & Orr, H. A. Adaptive evolution drives divergence of a hybrid inviability gene between two species of Drosophila. Nature 423, 715–719 (2003). One of the five 'speciation genes' that has been characterized so far is presented in this study. The influence of positive selection on its divergence between species is clearly shown (see main text for detail).

    CAS  Article  Google Scholar 

  23. 23

    Rawson, P. D. & Burton, R. S. Functional coadaptation between cytochrome c and cytochrome c oxidase within allopatric populations of a marine copepod. Proc. Natl Acad. Sci. USA 99, 12955–12858 (2002).

    CAS  Article  Google Scholar 

  24. 24

    Cordon, M. The genetics of a viviparous top-minnow Platpoecilus: the inheritance of two kinds of melanophores. Genetics 12, 253–2283 (1927).

    Google Scholar 

  25. 25

    Kosswig, C. Uber bastarde der teleostier Platypoecilus und Xiphophorus. Zeitschrift fur induktive Abstammungs und Vererbungslehre 44, 253 (1927).

    Google Scholar 

  26. 26

    Anders, F. Contributions of the Gordon-Kosswig melanoma system to the present concept of neoplasia. Pigment Cell Res. 4, 7–29 (1991).

    CAS  Article  Google Scholar 

  27. 27

    Schartl, M. A sex chromosomal restriction-fragment-length marker linked to melanoma-determining Tu loci in Xiphophorus. Genetics 119, 679–685 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Wittbrodt, J. et al. Novel putative receptor tyrosine kinase encoded by the melanoma-inducing Tu locus in Xiphophorus. Nature 341, 415–421 (1989). Tu is perhaps one of the first genes that was identified to be incompatible between closely related species. The mechanism of fitness reduction in the hybrids is shown to be tumorigenesis (see main text for detail).

    CAS  Article  Google Scholar 

  29. 29

    Zechel, C., Schleenbecker, U., Anders, A. & Anders, F. v-erbB related sequences in Xiphophorus that map to melanoma determining Mendelian loci and overexpress in a melanoma cell line. Oncogene 3, 605–617 (1988).

    CAS  PubMed  Google Scholar 

  30. 30

    Wittbrodt, J., Lammers, R., Malitschek, B., Ullrich, A. & Schartl, M. The Xmrk receptor tyrosine kinase is activated in Xiphophorus malignant melanoma. EMBO J. 11, 4239–4246 (1992).

    CAS  Article  Google Scholar 

  31. 31

    Adam, D., Dimitrijevic, N. & Schartl, M. Tumor suppression in Xiphophorus by an accidentally acquired promoter. Science 259, 816–819 (1995).

    Article  Google Scholar 

  32. 32

    Gomez, A., Wellbrock, C., Gutbrod, H., Dimitrijevic, N. & Schartl, M. Ligand-independent dimerization and activation of the oncogenic Xmrk receptor by two mutations in the extracellular domain. J. Biol. Chem. 276, 3333–3340 (2001).

    CAS  Article  Google Scholar 

  33. 33

    Wellbrock, C. et al. Signalling by the oncogenic receptor tyrosine kinase Xmrk leads to activation of STAT5 in Xiphophorus melanoma. Oncogene 16, 3047–3056 (1998).

    CAS  Article  Google Scholar 

  34. 34

    Ting, C. -T., Tsaur, S. C., Wu, M. -L. & Wu, C. -I. A rapidly evolving homeobox at the site of a hybrid sterility gene. Science 282, 1501–1504 (1998). This study reported the cloning of the OdsH gene of hybrid male sterility. OdsH is an example of a homeobox gene, a family of genes that are generally highly conservative and are therefore unlikely candidates for speciation genes.

    CAS  Article  Google Scholar 

  35. 35

    Sun, S. Functional Analysis of the Hybrid Male Sterility Gene Odysseus in Drosophila. (Univ. Chicago Press, Chicago, 2003).

    Google Scholar 

  36. 36

    Ashburner, M. Drosophila: A Laboratory Handbook (Cold Spring Harbor Laboratory Press, New York, 1989).

    Google Scholar 

  37. 37

    Sawamura, K., Yamamoto, M. -T. & Watanabe, T. K. Hybrid lethal systems in the Drosophila melanogaster species complex. II. The zygotic hybrid rescue (zhr) gene of Drosophila simulans. Genetics 133, 307–313 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Hutter, P. Genetics of hybrid inviability in Drosophila. Adv. Genet. 36, 157–185 (1997).

    CAS  Article  Google Scholar 

  39. 39

    Watanabe, T. K. A gene that rescues the lethal hybrids between Drosophila melanogaster and Drosophila simulans. Jpn. J. Genet. 54, 325–331 (1979).

    Article  Google Scholar 

  40. 40

    Hutter, P. & Ashburner, M. Genetic rescue of inviable hybrids between Drosophila melanogaster and its sibling species. Nature 327, 331–333 (1987).

    CAS  Article  Google Scholar 

  41. 41

    Hutter, P., Roote, J. & Ashburner, M. A genetic basis for the inviability of hybrids between sibling species of Drosophila. Genetics 124, 909–920 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Sawamura, K., Watanabe, T. K. & Yamamoto, M. -T. Hybrid lethal systems in the Drosophila melanogaster species complex. Genetica 88, 175–185 (1993). A detailed description of the various mutations in D. melanogaster that suppress hybird inviabilities.

    CAS  Article  Google Scholar 

  43. 43

    Sawamura, K., Taira, T. & Watanabe, T. K. Hybrid lethal systems in the Drosophila melanogaster species complex. I. The maternal hybrid rescue (mhr) gene of Drosophila simulans. Genetics 133, 299–305 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Barbash, D. A., Siino, D. F., Tarone, A. M. & Roote, J. A rapidly evolving MYB-related protein causes species isolation in Drosophila. Proc. Natl Acad. Sci. USA 100, 5302–5307 (2003). Molecular cloning of one of the suppressor mutations of hybrid inviabilities (see main text for detail).

    CAS  Article  Google Scholar 

  45. 45

    Barbash, D. A., Roote, J. & Ashburner, M. The Drosophila melanogaster hybrid male rescue gene causes inviability in male and female species hybrids. Genetics 154, 1747–1771 (2003).

    Google Scholar 

  46. 46

    Belgareh, N. et al. An evolutionarily conserved NPC subcomplex, which redistributes in part to kinetochores in mammalian cells. J. Cell Biol. 154, 1147–1160 (2001).

    CAS  Article  Google Scholar 

  47. 47

    Ferveur, J. F., Cobb, M., Boukella, H. & Jallon, J. -M. World-wide variation in Drosophila melanogaster sex pheromone: behavioural effects, genetic bases and potential evolutionary consequences. Genetica 97, 73–80 (1996).

    CAS  Article  Google Scholar 

  48. 48

    Dallerac, R. et al. A delta 9 desaturase gene with a different substrate specificity is responsible for the cuticular diene hydrocarbon polymorphism in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 97, 9449–9454 (2000).

    CAS  Article  Google Scholar 

  49. 49

    Takahashi, A., Tsaur, S. C., Coyne, J. A. & Wu, C. -I. The nucleotide changes governing cuticular hydrocarbon variation and their evolution in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 98, 3920–3925 (2001).

    CAS  Article  Google Scholar 

  50. 50

    Greenberg, A. J., Moran, J. R., Coyne, J. A. & Wu, C. -I. Ecological adaptation during incipient speciation revealed by precise gene replacement. Science 320, 1754–1757 (2003). The first application of gene replacement between nascent species shows the ecological consequence of desaturase divergence, cold tolerance, starvation intolerance and pheromonal changes. Mate choice might be affected by these pheromones.

    Article  Google Scholar 

  51. 51

    Wu, C. -I. et al. Sexual isolation in Drosophila melanogaster: a possible case of incipient speciation. Proc. Natl Acad. Sci. USA 92, 2519–2523 (1995).

    CAS  Article  Google Scholar 

  52. 52

    Coyne, J. A., Crittenden, A. P. & Mah, K. Genetics of a pheromonal difference contributing to reproductive isolation in Drosophila. Science 265, 1461–1464 (1994).

    CAS  Article  Google Scholar 

  53. 53

    Fang, S., Takahashi, A. & Wu, C. -I. A mutation in the promoter of desaturase 2 is correlated with sexual isolation between Drosophila behavioral races. Genetics 162, 781–784 (2003).

    Google Scholar 

  54. 54

    Wood, D. & Ringo, J. M. Male mating discrimination in Drosophila melanogaster, D. simulans and their hybrids. Evolution 34, 320–329 (1980).

    Article  Google Scholar 

  55. 55

    Watterson, G. A. On the number of segregating sites in genetical models without recombination. Theoret. Pop. Biol. 7, 256–276 (1975).

    CAS  Article  Google Scholar 

  56. 56

    Li, W. H. Distribution of nucleotide differences between two randomly chosen cistrons in a finite population. Genetics 85, 331–337 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Gillespie, J. H. & Langley, C. H. Are evolutionary rates really variable? J. Mol. Evol. 13, 27–34 (1979).

    CAS  Article  Google Scholar 

  58. 58

    Hudson, R. R. Properties of a neutral allele model with intragenic recombination. Theoret. Pop. Biol. 23, 183–201 (1983).

    CAS  Article  Google Scholar 

  59. 59

    Takahata, N. Gene diversity in finite populations. Genet. Res. 46, 107–113 (1985).

    CAS  Article  Google Scholar 

  60. 60

    Wakeley, J. & Hey, J. Estimating ancestral population parameter. Genetics 145, 847–855 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Wang, R. L., Wakeley, J. & Hey, J. Gene flow and natural selection in the origin of Drosophila pseudoobscura and close relatives. Genetics 147, 1091–1106 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Kliman, R. M. et al. The population genetics of the origin and divergence of the Drosophila simulans complex species. Genetics 156, 1913–1931 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Machado, C. A., Kliman, R. M., Markert, J. A. & Hey, J. Inferring the history of speciation from multilocus DNA sequence data: the case of Drosophila pseudoobscura and close relatives. Mol. Biol. Evol. 19, 472–488 (2002).

    CAS  Article  Google Scholar 

  64. 64

    Li, W. H. Distribution of nucleotide differences between two randomly chosen cistrons in a finite population. Genetics 85, 331–337 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Takahata, N., Satta, Y. & Klein, J. Divergence time and population size in the lineage leading to modern humans. Theoret. Pop. Biol. 48, 198–221 (1995).

    CAS  Article  Google Scholar 

  66. 66

    Takahata, N. & Satta, Y. Evolution of the primate lineage leading to modern humans: phylogenetic and demographic inference from DNA sequences. Proc. Natl Acad. Sci. USA 94, 4811–4815 (1997).

    CAS  Article  Google Scholar 

  67. 67

    Wall, J. D. Estimating ancestral population sizes and divergence times. Genetics 163, 395–404 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Navarro, A. & Barton, N. H. Chromosomal speciation and molecular divergence-accelerated evolution in rearranged chromosomes. Science 300, 321–324. (2003).

    CAS  Article  Google Scholar 

  69. 69

    Lu, J., Li, W. H. & Wu, C. -I. Comment on 'chromosomal speciation and molecular divergence-accelerated evolution in rearranged chromosomes'. Science 302, 988 (2003).

    CAS  Article  Google Scholar 

  70. 70

    Navarro, A., Marquès-Bonet, T. & Barton, N. H. Response to comment on 'chromosomal speciation and molecular divergence-accelerated evolution in rearranged chromosomes'. Science 302, 988 (2003).

    CAS  Article  Google Scholar 

  71. 71

    Rieseberg, L. H. et al. Major ecological transitions in wild sunflowers facilitated by hybridization. Science 301, 1211–1216 (2003). This study recreated new species in sunflowers by hybridization between two good species. The synthetic new species mimicked the naturally-occurring ancient hybridizations. Certain combinations of the parental genomes are favoured by natural selection. Hybridization speciation shows the 'modular' nature of the genome (see reference 5).

    CAS  Article  Google Scholar 

  72. 72

    Lynch, M. & Conery, J. S. The evolutionary fate and consequences of duplicate genes. Science 290, 1151–1155 (2000).

    CAS  Article  Google Scholar 

  73. 73

    Mayr, E. Wu's genic view of speciation. J. Evol. Biol. 14, 866–867 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Shi and N. Osada for technical help and two anonymous referees for critical comments. Grants from the National Institutes of Health (USA) to C.-I Wu and from the National Science Council (ROC) to C.-T. Ting are gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chung-I Wu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

FlyBase

desat2

Hmr

Nup96

OdsH

unc-4

Glossary

NEO-DARWINIAN (SYNTHESIS)

The modern theory of evolution that combines both natural selection and population genetics, in which the Darwinian concept of spontaneous variation is explained in terms of mutation and genetic recombination.

CO-ADAPTATION

Selection by which harmoniously interacting genes accumulate in the gene pool of a population.

INTROGRESSION

The integration of a genomic region from one species into the genome of another species. Even a few percent of the introgressed genome can lead to hybrid incompatibility.

POSITIONAL CLONING

The procedure by which we identify and isolate genes on the basis of their location in the genome, involving detailed genetic and physical maps of chromosomes.

DEFICIENCY MAPPING

Uses chromosomes that have different sections deleted to locate the position of a gene of interest. Without the deficiency, the normal functional gene usually masks the effect of (that is, complements) the defective or foreign copy that we wish to identify.

ALLELE COMPLEMENTATION

A test of whether a wild-type phenotype can be restored with two given alleles in a diploid genome.

RECEPTOR TYROSINE KINASE SUPERFAMILY

One of the important cell-surface receptors that interacts with water-soluble ligands.

ONCOGENE

A gene that induces uncontrolled cell proliferation.

MATERNAL EFFECT

The effect of the maternal genotype on the phenotype of the offspring, or the zygotes, usually at the embryonic stage (see also zygotic effects).

ZYGOTIC EFFECT

The effect of the zygotes' own genotype on their own phenotype.

MCDONALD AND KREITMAN TEST

A test that contrasts interspecific divergence against intraspecific polymorphism. It is a powerful test to detect excess of non-synonymous substitutions between species.

CONTACT PHEROMONES

Chemical signals that are transmitted through the direct physical contact of two individuals. Contact pheromones in Drosophila are often sexual signals.

KA/KS RATIOS

Ratios of non-synonymous substitutions to synonymous substitutions per site.

INCIPIENT SPECIATION

The initial stage of species formation during which reproductive isolation is only partial.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wu, CI., Ting, CT. Genes and speciation. Nat Rev Genet 5, 114–122 (2004). https://doi.org/10.1038/nrg1269

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing