Key Points
-
Genome typing is the simultaneous genotyping of tens to hundreds of marker loci from across the genome in a single or few experiments (for example, by PCR amplification).
-
The population-genomics approach of genome typing followed by testing for outlier loci can identify candidate-selected loci and improve inferences about population demographic and evolutionary history.
-
Outlier loci (for example, loci with excessively high Fst, Fis or homozygosity excess) can severely bias estimates of population parameters (for example, Fst, migration rates (Nm), population size and phylogeny) if they are not identified and removed before parameter estimation.
-
Genome typing is becoming increasingly feasible, even in non-model taxa, thanks to new molecular techniques such as DArT (microarrays), gene-targeted AFLP and expressed sequence tag (EST) databases.
-
Improved statistical methodologies such as 'summary statistics' will facilitate analyses of large population-genomic data sets.
-
Statistical tests and software programs for detecting outlier loci and analysing population-genomic data are becoming increasingly available; nonetheless, the development and validation of tests and software is the greatest impediment to the advancement of population-genomic approaches.
-
The population-genomics paradigm can facilitate biodiversity conservation through rapid biodiversity screening, identifying appropriate populations for translocations (to rescue declining populations) and focusing conservation efforts on preserving processes of evolution (adaptive change).
-
This review focuses largely on non-model organisms, natural populations and biodiversity conservation, and therefore complements recent reviews of population-genomic approaches in medical genomics and pharmacogenomics in humans and model organisms.
Abstract
Population genomics has the potential to improve studies of evolutionary genetics, molecular ecology and conservation biology, by facilitating the identification of adaptive molecular variation and by improving the estimation of important parameters such as population size, migration rates and phylogenetic relationships. There has been much excitement in the recent literature about the identification of adaptive molecular variation using the population-genomic approach. However, the most useful contribution of the genomics model to population genetics will be improving inferences about population demography and evolutionary history.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Black, W. C., Baer, C. F., Antolin, M. F. & DuTeau, N. M. Population genomics: genome-wide sampling of insect populations. Annu. Rev. Entomol. 46, 441–469 (2001). This article defines and lays the foundation for population genomics in terms of separating locus-specific effects versus genome-wide effects. It illustrates population-genomic concepts and principles through hypothetical examples and illustrations.
Gulcher, J. & Stefansson, K. Population genomics: laying the groundwork for genetic disease modelling and targeting. Clin. Chem. Lab. Med. 36, 523–527 (1998).
Goldstein, D. B. & Weale, M. E. Population genomics: linkage disequilibrium holds the key. Curr. Biol. 11, 576–579 (2001).
Jorde, L. B., Watkins, W. S. & Bamshad, M. J. Population genomics: a bridge from evolutionary history to genetic medicine. Hum. Mol. Genet. 10, 2199–2207 (2001).
Gibson, G. & Mackay, T. F. C. Enabling population and quantitative genomics. Genet. Res. 80, 1–6 (2002).
Wilding, C. S., Butlin, R. K. & Grahame, J. Differential gene exchange between parapatric morphs of Littorina saxatilis detected using AFLP markers. J. Evol. Biol. 14, 611–619 (2001). This article indicates that the F st -outlier-detection approach can work surprisingly well if applied to populations that span known selection gradients. It was the first to use AFLP markers, which is encouraging as these are the most readily available markers for genome-wide studies in non-model organisms. One particular strength of this study is the genotyping of replicate sets of populations that span the same kind of selection gradient in different distant geographic locations.
Albertson, R. C., Markert, J. A., Danley, P. D. & Kocher, T. D. Phylogeny of a rapidly evolving clade: the cichlid fishes of Lake Malawi, East Africa. Proc. Natl Acad. Sci. USA 96, 5107–5110 (1999).
Hoh, J. & Ott, J. Mathematical multi-locus approaches to localizing complex human trait genes. Nature Rev. Genet. 4, 701–709 (2003).
Wall, J. D. & Pritchard, J. K. Haplotype blocks and linkage disequilibrium in the human genome. Nature Rev. Genet. 4, 587–597 (2003).
Cardon, L. R. & Bell, J. I. Association study designs for complex diseases. Nature Rev. Genet. 2, 91–99 (2001).
Bamshad, M. & Wooding, S. P. Signatures of natural selection in the human genome. Nature Rev. Genet. 4, 99–111 (2003).
Nielsen, R. Statistical tests of selective neutrality in the age of genomics. Heredity 86, 641–647 (2001).
Schlötterer, C. A microsatellite-based multilocus screen for the identification of local selective sweeps. Genetics 160, 753–763 (2002).
Schlötterer, C. Hitchhiking mapping — functional genomics from the population genetics perspective. Trends Genet. 19, 32–38 (2003).
Long, A. D. & Langley, C. H. The power of association studies to detect the contribution of candidate genetic loci to variation in complex traits. Genome Res. 9, 720–731 (1999).
Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
Hardy, O. J. & Vekemans, X. SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol. Ecol. Notes 2, 618–620 (2002).
Manel, S., Schwartz, M., Luikart, G. & Taberlet, P. Landscape genetics: combining landscape ecology and population genetics. Trends Ecol. Evol. 18, 189–197 (2003). This article summarizes the statistical approaches that are available for relating spatial variation in population-genetic patterns to spatial variation in environmental patterns, This article and the population-genomic concepts discussed here show the feasibility of a 'landscape genomic' approach using association studies between the genome and environments.
Waples, R. S. Genetic methods for estimating the effective size of cetacean populations. Report of the International Whaling Commission (Special Issue) 13, 279–300 (1991).
Yang, Z. Likelihood and Bayes estimation of ancestral population size in hominoids using data from multiple loci. Genetics 162, 1811–1823 (2002).
Wiltshire, T. et al. Genome-wide single-nucleotide polymorphism analysis defining haplotype patterns in mouse. Proc. Natl Acad. Sci. USA 100, 3380–3385 (2003).
Endler, J. A. Natural Selection in the Wild (Princeton Univ. Press, Princeton, New Jersey, 1986).
Conner, J. K. How strong in natural selection? Trends Ecol. Evol. 5, 215–217 (2001).
Ungerer, M. C., Linder, C. R. & Rieseberg, L. H. Effects of genetic background on response to selection in experimental populations of Arabidopsis thaliana. Genetics 163, 277–286 (2003).
Olson, S. Seeking the signs of selection. Science 298, 1324–1325 (2002).
Storz, J. F. & Nachman, M. W. Natural selection on protein polymorphism in the rodent genus Peromyscus: evidence from interlocus contrasts. Evolution (in the press). This paper quantifies the potential effects of outlier loci on parameter estimation. The authors suggest that outlier loci are rare within data sets but are fairly common across data sets. They also show that the same loci are often outliers across independent data sets (support for selection as the cause of outlier behaviour).
Fay, J. C., Wyckoff, G. J. & Wu, C -I. Testing the neutral theory of molecular evolution with genomic data from Drosophila. Nature 415, 1024–1026 (2002).
Taberlet, P., Waits, L. P. & Luikart, G. Noninvasive genetic sampling: look before you leap. Trends Ecol. Evol. 14, 321–325 (1999).
Flint, J. et al. Minisatellite mutational processes reduce F-st estimates. Hum. Genet. 105, 567–576 (1999).
Sunnucks, P. Efficient genetic markers for population biology. Trends Ecol. Evol. 15, 199–203 (2000).
Ewens, W. J. The sampling theory of selectively neutral alleles. Theoret. Popul. Genet. 3, 87–112 (1972).
Watterson, G. A. The homozygosity test of neutrality. Genetics 88, 405–417 (1978).
Hedrick, P. W. in Genetics, Demography, and Viability of Fragmented Populations (eds Young, A. & Clarke, G.) 113–125 (Cambridge Univ. Press, Cambridge, UK, 2000).
Beaumont, M. A. & Nichols, R. A. Evaluating loci for use in the genetic analysis of population structure. Proc. R. Soc. Lond. B 263, 1619–1626 (1996). This paper improves and largely revives the Lewontin and Krakauer F st -outlier approach (reference 38) as a viable method for detecting loci that are candidate selected/adaptive. Real and simulated data (from non-equilibrium populations and various migration patterns) indicate that outliers can be reliably detected. A software program is made freely available to conduct the F st -outlier tests.
Akey, J. M., Zhang, G., Zhang, K., Jin, L. & Shriver, M. D. Interrogating a high-density SNP map for signatures of natural selection. Genome Res. 12, 1805–1814 (2002). This study describes the most extensive genome-wide sampling that has been done so far, which provides empirical distributions of F st for different genome regions (X chromosome, exons, introns and non-coding regions).
Payseur, B. A., Cutter, A. D. & Nachman, M. W. Searching for evidence of positive selection in the human genome using patterns of microsatellite variability. Mol. Biol. Evol. 7, 1143–1153 (2002).
Storz, J. F. & Beaumont, M. A. Testing for genetic evidence of population expansion and contraction: an empirical analysis of microsatellite DNA variation using a hierarchical Bayesian model. Evolution 56, 154–166 (2002). The first extension of the single-locus homozygosity-excess test (by Ewens–Watterson, references 31 and 32) for use in a genome-wide approach.
Lewontin, R. C. & Krakauer, J. K. Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms. Genetics 74, 175–195 (1973).
Vitalis, R., Dawson, K. & Boursot, P. Interpretation of variation across marker loci as evidence of selection. Genetics 158, 1811–1823 (2001).
Baer, C. F. Among-locus variation in Fst: fish, allozymes and the Lewontin–Krakauer test revisited. Genetics 152, 653–659 (1999).
Arnaud-Haond, S., Bonhomme, F. & Blanc, F. Large discrepancies in differentiation of allozymes, nuclear and mitochondrial DNA loci in recently founded Pacific populations of the pearl oyster Pinctada margeritifera. J. Evol. Biol. 16, 388–398 (2003).
Beaumont, M. A., Zhang, W. & Balding, D. J. Approximate Bayesian computation in population genetics. Genetics 162, 2025–2035 (2002).
Landry, P. A., Koskinen, M. T. & Primmer, C. R. Deriving evolutionary relationships among populations using microsatellites and (δ-μ)2: all loci are equal, but some are more equal than others. Genetics 161, 1339–1347 (2002).
Allendorf, F. W. & Seeb, L. W. Concordance of genetic divergence among sockeye salmon populations at allozyme, nuclear DNA, and mitochondrial DNA markers. Evolution 54, 640–651 (2000). This article indicates that outlier loci, although rare within data sets, might be common across large data sets, and that outliers occur with any type of molecular marker. It emphasizes that it is more important to genotype many markers (and test for outliers) than to use a certain marker type when computing population-genetic parameters.
Pogson, G. H., Mesa, K. A. & Boutilier, R. G. Genetic population structure and gene flow in the Atlantic cod: a comparison of allozyme and nuclear RFLP loci. Genetics 139, 375–385 (1995).
Reich, D. E. et al. Linkage disequilibrium in the human genome. Nature 411, 199–204 (2001).
Carlson, C. S. et al. Additional SNPs and linkage-disequilibrium analysis in whole-genome association studies in humans. Nature Genet 33, 518–521 (2003).
Whitlock, M. C. & McCauley, D. E. Indirect measures of gene flow and migration: FST ≠ (4Nm + 1). Heredity 82, 117–125 (1999).
Nachman, M. W. Single nucleotide polymorphism and recombination rate in humans. Trends Genet. 17, 481–485 (2001).
Hughes, A. L. Adaptive Evolution of Genes and Genomes (Oxford Univ. Press, New York and Oxford, 1999).
Wu, C -I. The genic view of the process of speciation. J. Evol. Biol. 14, 851–865 (2001).
Moritz, C. Strategies to protect biological diversity and the evolutionary processes that sustain it. Syst. Biol. 51, 238–254 (2002).
Crandall, K. A., Bininda-Emonds, O. R. P., Mace, G. M. & Wayne, R. K. Considering evolutionary processes in conservation biology. Trends Ecol. Evol. 15, 290–295 (2000).
Vrijenhoek, R. C. & Leberg, L. P. Let's not throw the baby out with the bathwater: a comment on management for MHC diversity in captive populations. Cons. Biol. 5, 252–253 (1991).
Lacy, R. C. Should we select genetic alleles in our conservation breeding programs? Zoo Biol. 19, 279–282 (2000).
Wilson, E. O. The encyclopaedia of life. Trends Ecol. Evol. 18, 77–80 (2003).
Ronquist, F. & Gardenfors, U. Taxonomy and biodiversity inventories: time to deliver. Trends Ecol. Evol. 18, 269–270 (2003).
Baker, S. C., Dalebout, M. L., Lavery, S. & Ross, H. A. DNA-surveillance: applied molecular taxonomy for species conservation and discovery. Trends Ecol. Evol. 18, 271–272 (2003).
Blaxter, M. & Floyd, R. Molecular taxonomics for biodiversity surveys: already a reality. Trends Ecol. Evol. 18, 268–269 (2003).
DeLong, E. F. Microbial population genomics and ecology. Curr. Opin. Microbiol. 5, 520–524 (2002).
Kohn, M. H. et al. Locus-specific genetic differentiation among warfarin resistant rat populations. Genetics 164, 1055–1070 (2003).
Kohn, M. H., Pelz, H -J. & Wayne, R. K. Natural selection mapping of the warfarin-resistance gene. Proc. Natl Acad. Sci. USA 97, 7911–7915 (2000).
Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure II. Linked loci and correlated allele frequencies. Genetics 164, 1567–1587 (2003).
Vos, P. et al. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23, 4407–4414 (1995).
Jaccoud, D., Peng, K., Feinstein, D. & Kilian, A. Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res. 29, 25 (2001). This paper described the DArT approach, which promises to increase the number of RFLP-like markers that can be genotyped in a single PCR by an order of magnitude. The technique uses microarray hybridization, which increases speed and reduces cost.
Young, W. P., Schupp, J. M. & Keim, P. DNA methylation and AFLP marker distribution in soybean. Theor. Appl. Genet. 99, 785–792 (1999).
Lindner, K. R. et al. Gene-centromere mapping of 312 loci in pink salmon by half-tetrad analysis. Genome 43, 538–549 (2000).
Skot, L., Sackville, H., Mizen, S., Chorlton, K. H. & Thomas, I. D. Molecular genecology of temperature response in Lolium perenne. 2. association of AFLP markers with ecogeography. Mol. Ecol. 11, 1865–1875 (2002).
Wang, Z., Baker, A. J., Hill, G. & Edwards, S. V. Reconciling actual and inferred population histories in the house finch (Carpodacus mexicanus) by AFLP analysis. Evolution (in the press).
van der Wurff, A., Chan, Y., van Straalen, N. & Schouten, J. TE–AFLP: combining rapidity and robustness in DNA fingerprinting. Nucleic Acids Res. 28, 105 (2000).
van Tienderen, P., de Haan, A., van der Linden, C . & Vosman, B. Biodiversity assessment using markers for ecologically important traits. Trends Ecol. Evol. 17, 577–582 (2002). Gene-targeted AFLP and other methods for identifying adaptive genes (mainly in agricultural species) are described in this paper.
Waugh, R. et al. Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol. Gen. Genet. 253, 687–694 (1997).
Ramensky, V., Bork, P. & Sunyaev, S. Human non-synonymous SNPs: server and survey. Nucleic Acids Res. 30, 3894–3900 (2002).
Batley, J., Barker, G., O'Sullivan, H., Edwards, K. J. & Edwards, D. Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tags. Plant Physiol. 132, 84–91 (2003).
Davey, G. C., Caplice, N. C., Martin, S. A. & Powell, R. A survey of genes expressed in the Atlantic salmon as identified by expressed sequence tags. Gene 363, 121–130 (2001).
Everitt, R. et al. RED: the analysis, management of and dissemination of expressed sequence tags. Bioinformatics 18, 1692–1693 (2002).
Chen, J. W. et al. A microsphere-based assay for multiplexed single nucleotide polymorphism analysis using single base chain extension. Genome Res. 10, 549–557 (2000).
Kennedy, G. et al. Large-scale genotyping of complex DNA. Nature Biotechnol. 2, 1233–1237 (2003).
Kuhner, M. K., Beerli, P., Yamato, J. & Felsenstein, J. Usefulness of single nucleotide polymorphism data for estimating population parameters. Genetics 156, 439–447 (2000).
Wakeley, J., Nielsen, R., Liu-Cordero, S. N. & Ardlie, K. The discovery of single-nucleotide polymorphisms — and inferences about human demographic history. J. Hum. Genet. 69, 1332–1347 (2001).
Brumfield, R. T., Beerli, P., Nickerson, D. A. & Edwards, S. V. The utility of single nucleotide polymorphisms in inferences of population history. Trends Ecol. Evol. 18, 249–256 (2003).
Akey, et al. The effect of single nucleotide polymorphism identification strategies on estimates of linkage disequilibrium. Mol. Biol. Evol. 20, 232–242 (2003).
Nielsen, R. & Signorovitch, J. Correcting for ascertainment biases when analyzing SNP data: applications to the estimation of linkage disequilibrium. Theor. Popul. Biol. 63, 245–255 (2003).
Clark, A. et al. Linkage disequilibrium and inference of ancestral recombination in 538 single-nucleotide polymorphism clusters across the human genome. Am. J. Hum. Genet. 73, 285–300 (2003).
Schmid, K. et al. Large-scale identification and analysis of genome-wide single-nucleotide polymorphisms for mapping in Arabidopsis thaliana. Genome Res. 13,1250–1257 (2003).
Paetkau, D., Slade, R., Burden, M. & Estoup, A. Direct, real-time estimation of migration rates using assignment methods: a simulation-based exploration of accuracy and power. Mol. Ecol. (in the press).
Banks, M. A., Eichert, W. & Olsen, J. B. Which genetic loci have greater population assignment power? Bioinformatics 19, 1436–1438 (2003).
Cornuet, J. M., Piry, S., Luikart, G., Estoup, A. & Solignac, M. New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics 153, 1989–2000 (1999).
Manel, S., Berthier, P. & Luikart, G. Detecting wildlife poaching: identifying the origin of individuals using Bayesian assignment tests and multi-locus genotypes. Cons. Biol. 16, 650–657 (2002).
Maudet, C. & Taberlet, P. Holstein's milk detection in cheeses inferred from melanocortin receptor 1 (MC1R) gene polymorphism. J. Dairy Sci. 85, 707–715 (2002).
Pletcher, S. D. & Stumpf P. H. Population genomics: ageing by association. Curr. Biol. 12, 328–330 (2002). This study is an example of how genes cause similar fitness effects in different taxa (humans and mice). This indicates that genes with known adaptive/fitness effects from one species can be used in another species as 'strong candidate genes' in population-genomics association studies.
Yeh, F. C., Yang, R -C., Boyle, T. B. J., Ye, Z -H. & Mao, J. X. POPGENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Canada. [online], (cited 20 October 2003), <http://www.ualberta.ca/~fyeh/faq.htm> (1997).
Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes. Genetics 131, 479–491 (1992).
Lancaster, A., Nelson, M. P., Single, R. M., Meyer, D. & Thomson, G. in Pac. Symp. Biocomput. 2003 (eds Altman, R. B. et al.) 514–525 (World Scientific, Singapore, 2002).
Cooper, G. et al. An empirical estimate of the δ-μ genetic distance for 213 human microsatellite markers. Am. J. Hum. Genet. 6, 1125–1133 (1999).
Acknowledgements
We thank F. Allendorf, M. Beaumont, T. Mitchell-Olds, K. Schmidt, P. Sunnucks and three anonymous reviewers for providing references, discussions and helpful comments. W. Amos and J. W. Grahame provided unpublished data and correspondence. S.J. and D.T. were funded by the United States National Science Foundation. G.L, P.R.E and P.T. were supported in part by the European Union ('Econogene' project).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing financial interests.
Related links
Related links
Databases
LocusLink
Further information
DetSel software (Renaud Vitalis's web site)
Glossary
- RANDOM GENETIC DRIFT
-
Random fluctuations in allele frequencies between generations owing to sampling effects. It increases as the effective population size decreases.
- GENE FLOW
-
The movement of genes among populations. Often expressed as the proportion of gene copies (or breeding individuals) that are immigrants from a different population.
- BOTTLENECK
-
A marked reduction in population size that often results in the loss of genetic variation and more frequent matings among closely related individuals.
- MICROEVOLUTION
-
Evolutionary processes or changes over relatively short time periods — such as change in allele frequencies, genotypic composition or gene expression — within or between populations.
- F ST
-
The most widely used index of genetic divergence between populations. A standardized measure of the distribution of genetic variation between populations on a scale between 0 (identical allele frequencies in populations) and 1 (populations fixed for different alleles).
- NEUTRAL LOCI
-
Loci that are not evolving directly in response to selection, the dynamics of which are controlled mainly by genetic drift and migration. These loci can, however, be influenced by selection on nearby (linked) loci.
- OUTLIER LOCI
-
Genome locations (or markers or base pairs) that show behaviour or patterns of variation that are extremely divergent from the rest of the genome (locus-specific effects), as revealed by simulations or statistical tests.
- SELECTION SIGNATURE
-
The molecular footprint of a selection event from the recent past (for example, an excess of rare alleles at a locus relative to the abundance of rare alleles at loci across the rest of the genome).
- POPULATION PARAMETERS
-
Parameters that characterize populations such as gene flow, migration rates, effective size, change in size, relatedness and phylogeny.
- SELECTIVE SWEEP
-
The increase in frequency of an allele (and closely linked chromosomal segments) that is caused by selection for the allele. Sweeps initially reduce variation and subsequently lead to a local excess of rare alleles (homozygosity excess) as new unique mutations accumulate.
- AMPLIFIED FRAGMENT LENGTH POLYMORPHISM
-
(AFLP). A DNA fragment-length polymorphism that is revealed by a PCR-based DNA fingerprinting technique that generates dozens of polymorphic marker bands (presence or absence of a restriction enzyme site) in a single gel lane. The marker bands are usually dominant in that we generally cannot see the difference between a heterozygote and homozygote.
- EFFECTIVE POPULATION SIZE
-
(Ne). Roughly the number of breeding individuals that produce offspring that live to reproductive age. It influences the rate of loss of genetic variation, the efficiency of natural selection, and the accumulation of beneficial and deleterious mutations. It is frequently much smaller than the number of individuals in a population.
- GENOME TYPING
-
The simultaneous genotyping of hundreds of loci from across the genome, which ideally includes mapped loci and different classes of loci such as allozymes, microsatellites and AFLPs, or synonymous (non-coding) and non-synonymous nucleotide polymorphisms.
- SEMI-MODEL SPECIES
-
Species that are not as extensively studied as classical model systems such as mice, Arabidopsis and Drosophila, but for which large data sets and effective genomic tools are beginning to be developed.
- EXPRESSED SEQUENCE TAGS
-
(ESTs). Short DNA sequences (several hundred base pairs) that are produced by reverse transcription of mRNA into DNA. ESTs are cDNAs that consist of exons and the sequences that flank exons. The sequencing of ESTs allows rapid identification ('tagging') of genes and can expedite DNA marker (SNP) development in coding genes.
- COMPARATIVE ANCHOR-TAG SEQUENCES
-
(CATS). Exon sequences that are conserved across taxa allowing the design of primers that amplify in divergent species (for example, across mammal orders). CATS-like primers speed the discovery of SNPs (in exons or introns) and comparative genome mapping across taxa.
- EXON-PRIMED INTRON-CROSSING PCR
-
(EPIC-PCR). EPIC primers are designed in conserved exons and amplify intron sequences that are generally more polymorphic than exons, which are therefore useful for the development of SNP or RFLP markers.
- HAPLOTYPE BLOCKS
-
Long stretches (tens of megabases) along a chromosome that have low recombination rates (and relatively few haplotypes). Adjacent blocks are separated by recombination hot spots (short regions with high recombination rates).
- HARDY–WEINBERG
-
A law or model in which allele and genotype frequencies will reach equilibrium in one generation and remain constant from generation to generation in large random-mating populations with no mutation, migration or selection.
- HOMOZYGOSITY EXCESS
-
A higher Hardy–Weinberg equilibrium homozygosity than that which is expected in a population at mutation–drift equilibrium with the same observed number of alleles. This is not an excess of homozygotes (deviation from Hardy–Weinberg proportions).
- SELECTION COEFFICIENTS
-
The average proportional reduction in fitness of one genotype relative to another owing to selection (designated by 's').
- ADMIXED
-
(Hybridized). An admixed population contains hybrids or offspring of individuals originating from genetically divergent parental populations.
- CLINE
-
A gradient of variation across space. It usually refers to increased differences among populations in the frequency of an allele or trait with increased geographic distance.
- EMPIRICAL DISTRIBUTION
-
The distribution of a test statistic (for example, Fst or Fis) that is computed from observed data obtained from hundreds of loci sampled genome-wide.
- NULL DISTRIBUTION
-
(Neutral distribution). The distribution (or range) of values across which we expect to observe the value of the test statistic if the null hypothesis is true (for example, neutrality). When conducting a standard t-test, t is the test statistic and the null distribution is the normal (Gaussian) distribution with t degrees of freedom.
- SUMMARY STATISTIC
-
A parameter estimate (such as Fst or Fis) that quantifies attributes of the data sampled from a population of interest.
- BAYESIAN
-
A framework of statistical inference in which previous beliefs (or data) and likelihoods are combined to estimate a parameter of interest given the observed data.
- LIKELIHOOD-BASED TEST
-
Statistical tests that consider how likely the data are given an assumed model.
- MARKOV CHAIN MONTE CARLO
-
(MCMC). A simulation-based computational technique for the numerical calculation of likelihoods.
- MOLECULAR ADAPTATION
-
Genetic change (for example, allele frequency shift or amino-acid substitution) in response to natural selection.
- PHYLOGEOGRAPHY
-
The study of the geographic distribution of phylogenetic lineages, usually within species and to reconstruct the origins and diffusion of lineages.
- MORPHOTYPES
-
Distinctive phenotypes. Organisms that are classified together on the basis of similar physical features without knowledge of their genetic relationships.
- COALESCENT
-
Relating to the mathematical and statistical properties of genealogies. A modelling framework in which two DNA sequence lineages converge in a common ancestral sequence, going backwards in time.
- BOOTSTRAP
-
A statistical approach that is often used to generate confidence intervals (measures of variation) around parameter estimates in which the data are re-sampled repeatedly (with replacement) using computer Monte Carlo simulations.
- TEST STATISTIC
-
The summary value (often a summary statistic) of a data set that is compared with a statistical distribution to determine whether the data set differs from that expected under a null hypothesis.
Rights and permissions
About this article
Cite this article
Luikart, G., England, P., Tallmon, D. et al. The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet 4, 981–994 (2003). https://doi.org/10.1038/nrg1226
Issue Date:
DOI: https://doi.org/10.1038/nrg1226
This article is cited by
-
Fasta2Structure: a user-friendly tool for converting multiple aligned FASTA files to STRUCTURE format
BMC Bioinformatics (2024)
-
Deciphering climate resilience in Indian cattle breeds by selection signature analyses
Tropical Animal Health and Production (2024)
-
Key triggers of adaptive genetic variability of sessile oak [Q. petraea (Matt.) Liebl.] from the Balkan refugia: outlier detection and association of SNP loci from ddRAD-seq data
Heredity (2023)
-
Environmental selection, rather than neutral processes, best explain regional patterns of diversity in a tropical rainforest fish
Heredity (2023)
-
Population genetics informs new insights into the phytogeographic history of Juglans regia L.
Genetic Resources and Crop Evolution (2023)