Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The genetic and molecular basis of congenital eye defects

Key Points

  • Mutations that lead to clinically relevant eye phenotypes (such as anophthalmia, microphthalmia, aniridia, coloboma and cataract) highlight important steps in the development of this organ.

  • This information allows us to establish a genetic hierarchy in which genes such as PAX6, SIX3 and SOX2 lie at the top, other genes (such as FOXC1, FOXE3, PITX3 and MAF) function downstream and tissue-specific genes such as the crystallin-encoding genes are the final targets.

  • The ongoing and rapidly increasing characterization of mutations in humans and mice indicates that the frequency of mutations that lead to eye defects is not randomly distributed among the genes that are involved in eye development: some genes (including PAX6, PAX2 and CRYG) are frequently affected by mutations, whereas others are not targeted either by spontaneous or experimentally induced mutations in the mouse.

  • Allelic series of mutations show that similar clinical phenotypes might be caused by mutations in different genes; by contrast, mutations in the same gene do not necessarily lead to the same phenotype, which indicates the importance of as yet unknown modulators of gene expression or function.

  • The detailed molecular analysis of allelic series of mutations will also allow detailed genotype–phenotype correlations to be made, which should uncover the function of particular domains of the mutated proteins.

Abstract

The mature eye is a complex organ that develops through a highly organized process during embryogenesis. Alterations in its genetic programming can lead to severe disorders that become apparent at birth or shortly afterwards; for example, one-half of the cases of blindness in children have a genetic cause. This review outlines the genetic basis of eye development, as determined by mutation analysis in patients and in model organisms. A better understanding of how this intricate organ develops at the genetic and cellular level is central to our understanding of the pathologies that afflict it.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic section through an adult human eye.
Figure 2: Schematic view of a developing vertebrate eye.
Figure 3: Histological sections through a developing mouse eye.
Figure 4: The CRYG gene cluster.

Similar content being viewed by others

References

  1. Johnson, G. J., Minassian, D. C., Weale, R. A. & West, S. K. (eds) The Epidemiology of Eye Disease (Oxford Univ. Press, New York, 2003).

    Google Scholar 

  2. Spemann, H. Über Organisatoren in der tierischen Entwickung. Naturwissenschaften 48, 1092–1094 (1924).

    Google Scholar 

  3. Panda, S. et al. Melanopsin is required for non-image-forming photic responses in blind mice. Science 301, 525–527 (2003).

    CAS  PubMed  Google Scholar 

  4. Wang, Z., Wang, D. Z., Pipes, G. C. & Olson, E. N. Myocardin is a master regulator of smooth muscle gene expression. Proc. Natl Acad. Sci. USA 100, 7129–7134 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wehrli, B. M., Huang, W., de Crombrugghe, B., Ayala, A. G. & Czerniak, B. Sox9, a master regulator of chondrogenesis, distinguishes mesenchymal chondrosarcoma from other small blue round cell tumors. Hum. Pathol. 34, 263–269 (2003).

    CAS  PubMed  Google Scholar 

  6. Graham, P., Penn, J. K. & Schedl, P. Master change, slaves remain. BioEssays 25, 1–4 (2002).

    CAS  Google Scholar 

  7. Cao, A. & Moi, P. Regulation of the globin genes. Pediatr. Res. 51, 415–421 (2002).

    CAS  PubMed  Google Scholar 

  8. Gehring, W. J. The genetic control of eye development and its implications for the evolution of the various eye-types. Int. J. Dev. Biol. 46, 65–73 (2002). This article describes Pax6 as the master control gene of eye development in a broad range of species.

    PubMed  Google Scholar 

  9. Halder, G., Callaerts, P. & Gehring, W. J. Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267, 1788–1792 (1995). This paper introduces the concept of a common genetic pathway for eye development in flies and mammals.

    CAS  PubMed  Google Scholar 

  10. Chow, R. L., Altmann, C. R., Lang, R. A. & Hemmati-Brivanlou, A. Pax6 induces ectopic eyes in a vertebrate. Development 126, 4213–4222 (1999).

    CAS  PubMed  Google Scholar 

  11. Oliver, G., Loosli, F., Köster, R., Wittbrodt, J. & Gruss, P. Ectopic lens induction in fish in response to the murine homeobox gene Six3. Mech. Dev. 60, 233–239 (1996).

    CAS  PubMed  Google Scholar 

  12. Loosli, F., Winkler, S. & Wittbrodt, J. Six3 overexpression initiates the formation of ectopic retina. Genes Dev. 13, 649–654 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hill, R. E. et al. Mouse Small eye results from mutations in a paired-like homeobox-containing gene. Nature 354, 522–525 (1991). This was the first paper to describe a Pax6 mutation in the mouse.

    CAS  PubMed  Google Scholar 

  14. Favor, J. et al. Molecular characterization of Pax62Neu through Pax610Neu. Genetics 159, 1689–1700 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Thaung, C. et al. Novel ENU-induced eye mutations in the mouse: models for human eye disease. Hum. Mol. Genet. 11, 755–767 (2002).

    CAS  PubMed  Google Scholar 

  16. Grindley, J. C., Davidson, D. R. & Hill, R. E. The role of Pax-6 in eye and nasal development. Development 121, 1433–1442 (1995).

    CAS  PubMed  Google Scholar 

  17. Glaser, T. et al. PAX6 gene dosage effect in a family with congenital cataracts, aniridia, anophthalmia and central nervous system defects. Nature Genet. 7, 463–471 (1994).

    CAS  PubMed  Google Scholar 

  18. Hanson, I. et al. Missense mutations in the most ancient residues of the PAX6 paired domain underlie a spectrum of human congenital eye malformations. Hum. Mol. Genet. 8, 165–172 (1999).

    CAS  PubMed  Google Scholar 

  19. van Heyningen, V. & Williamson, K. A. PAX6 in sensory development. Hum. Mol. Genet. 11, 1161–1167 (2002). An excellent review that summarizes PAX6 mutations and also presents data on the position of PAX6 in a signalling cascade.

    CAS  PubMed  Google Scholar 

  20. Morrison, D. et al. National study of microphthalmia, anophthalmia, and coloboma (MAC) in Scotland: investigation of genetic etiology. J. Med. Genet. 39, 16–22 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wallis, D. E. et al. Mutations in the homeodomain of the human SIX3 gene cause holoprosencephaly. Nature Genet. 22, 196–198 (1999).

    CAS  PubMed  Google Scholar 

  22. Zhu, C. C. et al. Six3-mediated auto repression and eye development requires its interaction with members of the Groucho-related family of co-repressors. Development 129, 2835–2849 (2002).

    CAS  PubMed  Google Scholar 

  23. Lengler, J. et al. Antagonistic action of Six3 and Prox1 at the γ-crystallin promoter. Nucl. Acids Res. 29, 515–526 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lengler, J. & Graw, J. Regulation of the human SIX3 promoter. Biochem. Biophys. Res. Commun. 287, 372–376 (2001).

    CAS  PubMed  Google Scholar 

  25. Goudreau, G. et al. Mutually regulated expression of Pax6 and Six3 and its implications for the Pax6 haploinsufficient lens phenotype. Proc. Natl Acad. Sci. USA 99, 8719–8724 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Fantes, J. et al. Mutations in SOX2 cause anophthalmia. Nature Genet. 33, 461–463 (2003).

    CAS  PubMed  Google Scholar 

  27. Mathers, P. H., Grinberg, A., Mahon, K. A. & Jamrich, M. The Rx homeobox gene is essential for vertebrate eye development. Nature 387, 603–607 (1997). This fundamental paper characterizes the Rx/Rax gene, which probably acts upstream of Pax6.

    CAS  PubMed  Google Scholar 

  28. Bernier, G. et al. Expanded retina territory by midbrain transformation upon overexpression of Six6 (Optx2) in Xenopus embryos. Mech. Dev. 93, 59–69 (2000).

    CAS  PubMed  Google Scholar 

  29. Zhang, L., Mathers, P. H. & Jamrich, M. Function of Rx, but not Pax6 is essential for the formation of retinal progenitor cells in mice. Genesis 28, 135–142 (2000).

    CAS  PubMed  Google Scholar 

  30. Chase, H. B. Studies on an anophthalmic strain of mice. IV. A second major gene for anophthalmia. Genetics 29, 264–269 (1944).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Tucker, P. et al. The eyeless mouse mutation (ey1) removes an alternative start codon from the Rx/Rax homeobox gene. Genesis 31, 43–53 (2001). This paper not only identifies the mutation in one of the oldest mouse mutants, ey1 , but also highlights the importance of classical genetics in understanding genetic interactions.

    CAS  PubMed  Google Scholar 

  32. Ashery-Padan, R. & Gruss, P. Pax6 lights-up the way for eye development. Curr. Opin. Cell Biol. 13, 706–714 (2001). An outstanding review on early vertebrate eye development, which is based mainly on model organisms, such as the frog and the mouse.

    CAS  PubMed  Google Scholar 

  33. Chiang, C. et al. Cyclopia and defective axial patterning in mice lacking sonic hedgehog gene function. Nature 383, 407–413 (1996). This important paper describes in detail the mouse Shh -knockout phenotype, with excellent pictures.

    CAS  PubMed  Google Scholar 

  34. Schimmenti, L. A. et al. Novel mutation in sonic hedgehog in non-syndromic colobomatous microphthalmia. Am. J. Med. Genet. 116A, 215–221 (2003).

    PubMed  Google Scholar 

  35. Weigel, D., Jürgens, G., Kuttner, F., Seifert, E. & Jäckle, H. The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo. Cell 57, 645–658 (1989).

    CAS  PubMed  Google Scholar 

  36. Mears, A. J. et al. Mutations in the forkhead/winged-helix gene, FKHL7, in patients with Axenfeld–Rieger anomaly. Am. J. Hum. Genet. 63, 1316–1328 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Nishimura, D. Y. et al. The forkhead transcription factor gene FKHL7 is responsible for glaucoma phenotype which maps to 6p25. Nature Genet. 19, 140–147 (1998).

    CAS  PubMed  Google Scholar 

  38. Nishimura, D. Y. et al. A spectrum of FOXC1 mutations suggests gene dosage as a mechanism for developmental defects of the anterior chamber of the eye. Am. J. Hum. Genet. 68, 364–372 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Saleem, R. A., Banerjee-Basu, S., Berry, F. B., Baxevanis, A. D. & Walter, M. A. Analyses of the effects that disease-causing missense mutations have on the structure and function of a winged-helix protein FOXC1. Am. J. Hum. Genet. 68, 627–641 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Panicker, S. G. et al. Novel mutation in FOXC1 wing region causing Axenfeld–Rieger anomaly. Invest. Ophthalmol. Vis. Sci. 43, 3613–3616 (2002).

    PubMed  Google Scholar 

  41. Komatireddy, S. et al. Mutation spectrum of FOCX1 and clinical genetic heterogeneity of Axenfeld–Rieger anomaly of India. Mol. Vis. 9, 43–48 (2003).

    CAS  PubMed  Google Scholar 

  42. Hong, H. K., Lass, J. H. & Chakravarti, A. Pleiotropic skeletal and ocular phenotypes of the mouse mutation congenital hydrocephalus (ch/Mf1) arise from a winged helix/forkhead transcription factor gene. Hum. Mol. Genet. 8, 625–637 (1999).

    CAS  PubMed  Google Scholar 

  43. Smith, R. S. et al. Haploinsufficiency of the transcription factors FOXC1 and FOXC2 results in aberrant ocular development. Hum. Mol. Genet. 9, 1021–1032 (2000).

    CAS  PubMed  Google Scholar 

  44. Vincent, A. et al. Phenotypic heterogeneity of CYP1B1: mutations in a patient with Peters' anomaly. J. Med. Genet. 38, 324–326 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Blixt, A. et al. A forkhead gene, FoxE3, is essential for lens epithelial proliferation and closure of the lens vesicle. Genes Dev. 14, 245–254 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Semina, E. V., Brownell, I., Mintz-Hittner, H. A., Murray, J. C. & Jamrich, M. Mutations in the human forkhead transcription factor FOXE3 associated with anterior segment ocular dysgenesis and cataracts. Hum. Mol. Genet. 10, 231–236 (2001).

    CAS  PubMed  Google Scholar 

  47. Ormestad, M. et al. Foxe3 haploinsufficiency in mice: a model for Peter's anomaly. Invest. Ophthalmol. Vis. Sci. 43, 1350–1357 (2002).

    PubMed  Google Scholar 

  48. Gage, P. J., Suh, H. & Camper, S. A. The bicoid-related Pitx gene family in development. Mamm. Genome 10, 197–200 (1999).

    CAS  PubMed  Google Scholar 

  49. Semina, E. V. et al. Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome. Nature Genet. 14, 392–399 (1996).

    CAS  PubMed  Google Scholar 

  50. Kulak, S. C., Kozlowski, K., Semina, E. V., Pearce, W. G. & Walter, M. A. Mutation in the RIEG1 gene in patients with iridogoniodysgenesis syndrome. Hum. Mol. Genet. 7, 1113–1117 (1998).

    CAS  PubMed  Google Scholar 

  51. Doward, W. et al. A mutation in the RIEG1 gene associated with Peter's anomaly. J. Med. Genet. 36, 152–155 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Priston, M. et al. Functional analyses of two newly identified PITX2 mutants revealed a novel molecular mechanism for Axenfeld–Rieger syndrome. Hum. Mol. Genet. 10, 1631–1638 (2001).

    CAS  PubMed  Google Scholar 

  53. Semina, E. V. et al. A novel homeobox gene PITX3 is mutated in families with autosomal-dominant cataracts and ASMD. Nature Genet. 19, 167–170 (1998). This was the first paper to describe human PITX3 mutations.

    CAS  PubMed  Google Scholar 

  54. Semina, E., Murray, J. C., Reiter, R., Hrstka, R. F. & Graw, J. Deletion in the promoter region and altered expression of Pitx3 homeobox gene in aphakia mice. Hum. Mol. Genet. 9, 1575–1585 (2000).

    CAS  PubMed  Google Scholar 

  55. Rieger, D. K., Reichenberger, E., McLean, W., Sidow, A. & Olsen, B. R. A double-deletion mutation in the Pitx3 gene causes arrested lens development in aphakia mice. Genomics 72, 61–72 (2001).

    CAS  PubMed  Google Scholar 

  56. Nishizawa, M., Kataoka, K., Goto, N., Fujiwara, K. T. & Kawai, S. v-maf, a viral oncogene that encodes a “leucine zipper” motif. Proc. Natl Acad. Sci. USA 86, 7711–7715 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ogino, H. & Yasuda, K. Induction of lens differentiation by activation of a bZIP transcription factor, L-Maf. Science 280, 115–118 (1998).

    CAS  PubMed  Google Scholar 

  58. Ring, B. Z., Cordes, S. P., Overbeek, P. A. & Barsh, G. S. Regulation of mouse lens fiber cell development and differentiation by the Maf gene. Development 127, 307–317 (2000).

    CAS  PubMed  Google Scholar 

  59. Jamieson, R. V. et al. Domain disruption and mutation of the bZIP transcription factor, MAF, associated with cataract, ocular anterior segment dysgenesis and coloboma. Hum. Mol. Genet. 11, 33–42 (2002).

    CAS  PubMed  Google Scholar 

  60. Lyon, M. F. et al. A dominant mutation within the DNA-binding domain of the bZIP transcription factor Maf causes murine cataract and results in selective alteration in DNA binding. Hum. Mol. Genet. 12, 585–594 (2003).

    CAS  PubMed  Google Scholar 

  61. Steele, E. C. et al. Identification of a mutation in the MP19 gene, Lim2, in the cataractous mouse mutant To3. Mol. Vis. 7, 3–5 (1997).

    Google Scholar 

  62. Pras, E. et al. A missense mutation in the LIM2 gene is associated with autosomal recessive presenile cataract in an inbred Iraqi Jewish family. Am. J. Human. Genet. 70, 1363–1367 (2002).

    CAS  Google Scholar 

  63. Froger, A., Tallur, B., Thomas, D. & Delamarche, C. Prediction of functional residues in water channels and related protein. Protein Sci. 7, 1458–1468 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Nemeth-Cahalan, K. L. & Hall, J. E. pH and calcium regulate the water permeability of aquaporin 0. J. Biol. Chem. 275, 6777–6782 (2000).

    CAS  PubMed  Google Scholar 

  65. Berry, V., Francis, P., Kaushal, S., Moore, A. & Bhattacharya, S. Missense mutations in MIP underlie autosomal dominant “polymorphic” and lamellar cataracts linked to 12q. Nature Genet. 25, 15–17 (2000).

    CAS  PubMed  Google Scholar 

  66. Shiels, A. & Bassnett, S. Mutations in the founder of the MIP gene family underlie cataract development in the mouse. Nature Genet. 12, 212–215 (1996).

    CAS  PubMed  Google Scholar 

  67. Sidjanin, D. J. et al. A 76-bp deletion in the Mip gene causes autosomal dominant cataract in Hfi mice. Genomics 74, 313–319 (2001).

    CAS  PubMed  Google Scholar 

  68. Gong, X. et al. Disruption of α3 connexin gene leads to proteolysis and cataractogenesis in mice. Cell 91, 833–843 (1997).

    CAS  PubMed  Google Scholar 

  69. Gong, X., Agopian, K., Kumar, N. M. & Gilula, N. B. Genetic factors influence cataract formation in α3 connexin knockout mice. Dev. Genet. 24, 27–32 (1999).

    CAS  PubMed  Google Scholar 

  70. Baruch, A. et al. Defining a link between gap junction communication, proteolysis, and cataract formation. J. Biol. Chem. 276, 28999–29006 (2001).

    CAS  PubMed  Google Scholar 

  71. Shiels, A. et al. A missense mutation in the human connexin50 gene (GJA8) underlies autosomal dominant “zonular pulverulent” cataract, on chromosome 1q. Am. J. Hum. Genet. 62, 526–532 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Berry, V. et al. Connexin 50 mutation in a family with congenital “zonular nuclear” pulverulent cataract of Pakistani origin. Hum. Genet. 105, 168–170 (1999).

    CAS  PubMed  Google Scholar 

  73. Steele, E. C. et al. A mutation in the connexin 50 (Cx50) gene is a candidate for the No2 mouse cataract. Curr. Eye Res. 17, 883–889 (1998).

    PubMed  Google Scholar 

  74. Graw, J. et al. Characterization of a mutation in the lens-specific MP70 encoding gene of the mouse leading to a dominant cataract. Exp. Eye Res. 73, 867–876 (2001).

    CAS  PubMed  Google Scholar 

  75. Mörner, C. T. Untersuchungen der Proteinsubstanzen in den lichtbrechenden Medien des Auges. Z. Physiol. Chem. 18, 61–106 (1893).

    Google Scholar 

  76. Graw, J. The crystallins. Biol. Chem. 378, 1331–1348 (1997).

    CAS  PubMed  Google Scholar 

  77. Pras, E. et al. A nonsense mutation (W9X) in CRYAA causes autosomal recessive cataract in an inbred Jewish Persian family. Invest. Ophthalmol. Vis. Sci. 41, 3511–3515 (2000).

    CAS  PubMed  Google Scholar 

  78. Chang, B. et al. Identification of a missense mutation in the αA–crystallin gene of the lop18 mouse. Mol. Vis. 5, 21 (1999).

    CAS  PubMed  Google Scholar 

  79. Litt, M. et al. Autosomal dominant congenital cataract associated with a missense mutation in the human α-crystallin gene CRYAA. Hum. Mol. Genet. 7, 471–474 (1998).

    CAS  PubMed  Google Scholar 

  80. Graw, J. et al. Characterization of a new, dominant V124E mutation in the mouse αA-crystallin-encoding gene. Invest. Ophthalmol. Vis. Sci. 42, 2909–2913 (2001).

    CAS  PubMed  Google Scholar 

  81. Brady, J. P. et al. Targeted disruption of the mouse αA-crystallin gene induces cataract and cytoplasmic inclusion bodies containing the small heart shock protein αB-crystallin. Proc. Natl Acad. Sci. USA 94, 884–889 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Brady, J. P. et al. αB-crystallin in lens development and muscle integrity: a gene knockout approach. Invest. Ophthalmol. Vis. Sci. 42, 2924–2934 (2001).

    CAS  PubMed  Google Scholar 

  83. Berry, V. et al. α-B-crystallin gene (CRYAB) mutation causes dominant congenital posterior polar cataract in humans. Am. J. Hum. Genet. 69, 1141–1145 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Kannabiran, C. et al. Autosomal dominant zonular cataract with sutural opacities is associated with a splice mutation in the βA3/A1-crystallin gene. Mol. Vis. 4, 21 (1998).

    CAS  PubMed  Google Scholar 

  85. Graw, J. et al. Mutation in the βA3/A1-crystallin encoding gene Cryba1 causes a dominant cataract in the mouse. Genomics 62, 67–73 (1999).

    CAS  PubMed  Google Scholar 

  86. Vanita, S. V. et al. A unique form of autosomal dominant cataract explained by gene conversion between β-crystallin B2 and its pseudogene. J. Med. Genet. 38, 392–396 (2001). This paper describes the independent origin of the same mutation in a crystallin gene by gene conversion.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Litt, M. et al. Autosomal dominant cerulean cataract is associated with a chain termination mutation in the human β-crystallin gene CRYBB2. Hum. Mol. Genet. 6, 665–668 (1997).

    CAS  PubMed  Google Scholar 

  88. Gill, D. et al. Genetic heterogeneity of the Coppock-like cataract: a mutation in CRYBB2 on chromosome 22q11.2. Invest. Ophthalmol. Vis. Sci. 41, 159–165 (2000).

    CAS  PubMed  Google Scholar 

  89. Chambers, C. & Russell, P. Deletion mutation in an eye lens α-crystallin: an animal model for inherited cataracts. J. Biol. Chem . 266, 6742–6746 (1991). This study was the first molecular characterization of a cataract mutation.

    PubMed  Google Scholar 

  90. Graw, J. et al. Aey2, a new mutation in the βB2-crystallin-encoding gene in the mouse. Invest. Ophthalmol. Vis. Sci. 42, 1574–1580 (2001).

    CAS  PubMed  Google Scholar 

  91. Sinha, D. et al. A temperature-sensitive mutation of Crygs in the Opj cataract. J. Biol. Chem. 276, 9308–9315 (2001).

    CAS  PubMed  Google Scholar 

  92. Bu, L. et al. The γS-crystallin gene is mutated in autosomal recessive cataract in mouse. Genomics 80, 38–44 (2002).

    CAS  PubMed  Google Scholar 

  93. Jones, S. E., Jomary, C., Grist, J., Makwana, J. & Neal, M. J. Retinal expression of γ-crystallins in the mouse. Invest. Ophthalmol. Vis. Sci. 40, 3017–3020 (1999).

    CAS  PubMed  Google Scholar 

  94. Brakenhoff, R. H., Aarts, H. J., Reek, F. H., Lubsen, N. H. & Schoenmakers, J. G. G. Human γ-crystallin genes: a gene family on its way to extinction. J. Mol. Biol. 216, 519–532 (1990).

    CAS  PubMed  Google Scholar 

  95. Héon, E. et al. The γ-crystallins and human cataracts: a puzzle made clearer. Am. J. Hum. Genet. 65, 1261–1267 (1999). This paper corrected a previously reported re-activation of a pseudogene by mutation of its promoter. The promoter mutation is simply a polymorphism and does not influence the expression of the gene. The causative mutation is also reported here.

    PubMed  PubMed Central  Google Scholar 

  96. Stephan, D. A. et al. Progressive juvenile-onset punctate cataracts caused by mutation in the γD-crystallin gene. Proc. Natl Acad. Sci. USA 96, 1008–1012 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Kmoch, S. et al. Link between a novel human γD-crystallin allele and a unique cataract phenotype explained by protein crystallography. Hum. Mol. Genet. 9, 1779–1786 (2000).

    CAS  PubMed  Google Scholar 

  98. Ren, Z. et al. A 5-base insertion in the γC-crystallin gene is associated with autosomal dominant variable zonular pulverulent cataract. Hum. Genet. 106, 531–537 (2000).

    CAS  PubMed  Google Scholar 

  99. Santhiya, S. T. et al. Molecular characterization of new alleles in the γ-crystallin genes demonstrating the genetic heterogeneity of autosomal dominant congenital cataracts. J. Med. Genet. 39, 352–358 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Nandrot, E. et al. γ-D crystallin gene (CRYGD) mutation causes autosomal dominant congenital cerulean cataracts. J. Med. Genet. 40, 262–267 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Smith, R. S. et al. Lop12, a mutation in mouse Crygd causing lens opacity similar to human Coppock cataract. Genomics 63, 314–320 (2000).

    CAS  PubMed  Google Scholar 

  102. Cartier, M., Breitman, M. L. & Tsui, L. C. A frameshift mutation in the γE-crystallin gene of the Elo mouse. Nature Genet. 2, 42–45 (1992).

    CAS  PubMed  Google Scholar 

  103. Klopp, N. et al. Three murine cataract mutants (Cat2) are defective in different γ-crystallin genes. Genomics 52, 152–158 (1998).

    CAS  PubMed  Google Scholar 

  104. Klopp, N., Löster, J. & Graw, J. Characterization of a 1-bp deletion in the γE-crystallin gene leading to a nuclear and zonular cataract in the mouse. Invest. Ophthalmol. Vis. Sci. 42, 183–187 (2001).

    CAS  PubMed  Google Scholar 

  105. Graw, J. et al. Ethylnitrosourea-induced mutation in mice leads to the expression of a novel protein in the eye and to dominant cataracts. Genetics 157, 1313–1320 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Graw, J., Klopp, N., Neuhäuser-Klaus, A., Favor, J. & Löster, J. CrygfRop: the first mutation in the Crygf gene causing a unique radial lens opacity. Invest. Ophthalmol. Vis. Sci. 43, 2998–3002 (2002).

    PubMed  Google Scholar 

  107. Graw, J., Neuhäuser-Klaus, A., Löster, J., Klopp, N. & Favor, J. Ethylnitrosourea-induced base pair substitution affects splicing of the mouse γE-crystallin encoding gene leading to the expression of a hybrid protein and to a cataract. Genetics 161, 1633–1640 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Graw, J., Neuhäuser-Klaus, A., Löster, J. & Favor, J. A 6-bp deletion in the Crygc gene leading to a nuclear and radial cataract in the mouse. Invest. Ophthalmol. Vis. Sci. 43, 236–240 (2002).

    PubMed  Google Scholar 

  109. Sandilands, A. et al. Altered aggregation properties of mutant γ-crystallins cause inherited cataract. EMBO J. 21, 6005–6014 (2002). This paper describes for the first time a common biochemical mechanism in cataract formation: the altered aggregation properties of mutated γ-crystallins, which lead to amyloid fibrils similar to those that are seen in neurodegenerative disorders.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Steingrimsson, E. et al. Molecular basis of mouse microphthalmia (mi) mutations helps explain their developmental and phenotypic consequences. Nature Genet. 8, 256–263 (1994). This is an excellent overview of an allelic series of mutations that affect Mitf, ranging from severe dominant phenotypes to mild recessive ones.

    CAS  PubMed  Google Scholar 

  111. Hallsson, J. H. et al. Genomic, transcriptional and mutational analysis of the mouse microphthalmia locus. Genetics 155, 291–300 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Opdecamp, K. et al. The rat microphthalmia-associated transcription factor gene (Mitf) maps at 4q34–q41 and is mutated in the mib rats. Mamm. Genome 9, 617–621 (1998).

    CAS  PubMed  Google Scholar 

  113. Hodgkinson, C. A. et al. Mutation at the anophthalmic white locus in Syrian hamsters: haploinsufficiency in the Mitf gene mimics human Waardenburg syndrome type 2. Hum. Mol. Genet. 7, 703–708 (1998).

    CAS  PubMed  Google Scholar 

  114. Graw, J., Pretsch, W. & Löster, J. Mutation in intron 6 of the hamster Mitf gene leads to skipping of the subsequent exon and creates a novel model for the human Waardenburg syndrome type II. Genetics 164, 1035–1041 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Lister, J. A., Robertson, C. P., Lepage, T., Johnson, S. L. & Raible, D. W. nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate. Development 126, 3757–3767 (1999).

    CAS  PubMed  Google Scholar 

  116. Burmeister, M. et al. Ocular retardation mouse caused by Chx10 homeobox null allele: impaired retinal progenitor proliferation and bipolar cell differentiation. Nature Genet. 12, 376–384 (1996). This paper presents an elegant characterization of the ocular retardation phenotype in mice.

    CAS  PubMed  Google Scholar 

  117. Percin, E. F. et al. Human microphthalmia associated with mutations in the retinal homeobox gene CHX10. Nature Genet. 25, 397–401 (2000).

    CAS  Google Scholar 

  118. Fazzi, E., Signorini, S. G., Scelsa, B., Bova, S. M. & Lanzi, G. Leber's congenital amaurosis: an update. Eur. J. Paediatr. Neurol. 7, 13–22 (2003). This is an impressive summary of one of the most important congenital retinal disorders — Leber congenital amaurosis. This report links the clinical observations to the underlying mutations.

    PubMed  Google Scholar 

  119. Morimura, H. et al. Mutations in the RPE65 gene in patients with autosomal recessive retinitis pigmentosa or Leber congenital amaurosis. Proc. Natl Acad. Sci. USA 95, 3088–3093 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Sohocki, M. M. et al. A range of clinical phenotypes associated with mutations in CRX, a photoreceptor transcription-factor gene. Am. J. Hum. Genet. 63, 1307–1315 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Favor, J. et al. The mouse Pax21Neu mutation is identical to a human PAX2 mutation in a family with renal-coloboma syndrome and results in developmental defects of the brain, ear, eye, and kidney. Proc. Natl Acad. Sci. USA 93, 13870–13875 (1996). This was the first molecular characterization of a Pax2 mutation in the mouse; it also provides extensive information about the different developmental defects of Pax2 mutants.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Torres, M., Gómez-Pardo, E. & Gruss, P. Pax2 contributes to inner ear patterning and optic nerve trajectory. Development 122, 3381–3391 (1996).

    CAS  PubMed  Google Scholar 

  123. Sanyanusin, P., McNoe, L. A., Sullivan, M. J., Weaver, R. G. & Eccles, M. R. Mutation of PAX2 in two siblings with renal-coloboma syndrome. Hum. Mol. Genet. 4, 2183–2184 (1995).

    CAS  PubMed  Google Scholar 

  124. Schimmenti, L. A. et al. Further delineation of renal-coloboma syndrome in patients with extreme variability of phenotype and identical PAX2 mutations. Am. J. Hum. Genet. 60, 869–878 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Amiel, J. et al. PAX2 mutations in renal-coloboma syndrome: mutational hotspot and germline mosaicism. Eur. J. Genet. 8, 820–826 (2000).

    CAS  Google Scholar 

  126. Graw, J. & Löster, J. Developmental genetics in ophthalmology. Ophthalmic Genet. 24, 1–33 (2003).

    PubMed  Google Scholar 

  127. Singh, S. et al. Iris hypoplasia in mice that lack the alternatively spliced Pax6(5a) isoform. Proc. Natl Acad. Sci. USA 99, 6812–6815 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Azuma, N. et al. Mutations of the PAX6 gene detected in patients with a variety of optic-nerve malformations. Am. J. Hum. Genet. 72, 1565–1570 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Lin, C. R. et al. Pitx2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morphogenesis. Nature 401, 279–282 (1999).

    CAS  PubMed  Google Scholar 

  130. Lu, M. F., Pressman, C., Dyer, R., Johnson, R. L. & Martin, J. F. Function of Rieger syndrome gene in left–right asymmetry and craniofacial development. Nature 401, 276–278 (1999).

    CAS  PubMed  Google Scholar 

  131. Kume, T. et al. The forkhead/winged helix gene Mf1 is disrupted in the pleiotropic mouse mutation congenital hydrocephalus. Cell 93, 985–996 (1998).

    CAS  PubMed  Google Scholar 

  132. Honkanen, R. A. et al. A family with Axenfeld–Rieger syndrome and Peter's anomaly caused by a point mutation (Phe112Ser) in the FOXC1 gene. Am. J. Ophthalmol. 135, 368–375 (2003).

    CAS  PubMed  Google Scholar 

  133. Lehmann, O. J. et al. Novel anterior segment phenotypes resulting from forkhead gene alterations: evidence for cross-species conservation of function. Invest. Ophthalmol. Vis. Sci. 44, 2627–2633 (2003).

    PubMed  Google Scholar 

  134. Azuma, N., Hirakiyama, A., Inoue, T., Asaka A. & Yamada, M. Mutations of a human homologue of the Drosophila eyes absent gene (EYA1) detected in patients with congenital cataracts and ocular anterior segment anomalies. Hum. Mol. Genet. 9, 363–366 (2000).

    CAS  PubMed  Google Scholar 

  135. Abdelhak, S. et al. A human homologue of the Drosophila eyes absent gene underlies branchio-oto-renal (BOR) syndrome and identifies a novel gene family. Nature Genet. 15, 157–164 (1997).

    CAS  PubMed  Google Scholar 

  136. Tassabehji, M. et al. The mutational spectrum in Waardenburg syndrome. Hum. Mol. Genet. 11, 2131–2137 (1995).

    Google Scholar 

  137. Lalwani, A. K. et al. Point mutation in the MITF gene causing Waardenburg syndrome type II in a three-generation Indian family. Am. J. Med. Genet. 80, 406–409 (1998).

    CAS  PubMed  Google Scholar 

  138. Nishimoto, K. et al. PAX2 gene mutation in a family with isolated renal hypoplasia. J. Am. Soc. Nephrol. 12, 1769–1772 (2001).

    CAS  PubMed  Google Scholar 

  139. Ford, B. et al. Renal-coloboma syndrome: prenatal detection and clinical spectrum in a large family. Am. J. Med. Genet. 99, 137–141 (2001).

    CAS  PubMed  Google Scholar 

  140. Schimmenti, L. A. et al. Autosomal dominant optic nerve colobomas, vesicoureteral reflux, and renal anomalies. Am. J. Med. Genet. 59, 204–208 (1995).

    CAS  PubMed  Google Scholar 

  141. Schimmenti, L. A. et al. Homonucleotide expansion and contraction mutations in PAX2 and inclusion of Chiari 1 malformation as part of the renal-coloboma syndrome. Hum. Mutat. 14, 369–376 (1999).

    CAS  PubMed  Google Scholar 

  142. Wu, L. Y. et al. Microphthalmia resulting from MSX2-induced apoptosis in the optic vesicle. Invest. Ophthalmol. Vis. Sci. 44, 2404–2412 (2003).

    PubMed  Google Scholar 

  143. Wilkie, A. O. M. et al. Functional haploinsufficiency of the human homeobox gene MSX2 causes defects in skull ossification. Nature Genet. 24, 387–390 (2000).

    CAS  PubMed  Google Scholar 

  144. Wuyts, W. et al. Identification of mutations in the MSX2 homeobox gene in families affected with foramina parietalia permagna. Hum. Mol. Genet. 9, 1251–1255 (2000).

    CAS  PubMed  Google Scholar 

  145. Acampora, D, Avantaggiato V., Tuorto, F. & Simeone A. Genetic control of brain morphogenesis through Otx gene dosage requirement. Development 124, 3639–3650 (1996).

    Google Scholar 

  146. Héon, E. et al. VSX1: a gene for posterior polymorphous dystrophy and keratoconus. Hum. Mol. Genet. 11, 1029–1036 (2002).

    PubMed  Google Scholar 

  147. Furuta, Y. & Hogan, B. L. BMP4 is essential for lens induction in the mouse embryo. Genes Dev. 12, 3764–3775 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Hung, F. C., Zhao, S., Chen, Q. & Overbeek, P. A. Retinal ablation and altered lens differentiation induced by ocular overexpression of BMP7. Vision Res. 42, 427–438 (2002).

    CAS  PubMed  Google Scholar 

  149. Francis, P. et al. Functional impairment of lens aquaporin in two families with dominantly inherited cataracts. Hum. Mol. Genet. 9, 2329–2334 (2000).

    CAS  PubMed  Google Scholar 

  150. Shiels, A. et al. Optical dysfunction of the crystalline lens in aquaporin-0-deficient mice. Physiol. Genomics 7, 179–186 (2001).

    CAS  PubMed  Google Scholar 

  151. Paznekas, W. A. et al. Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. Am. J. Hum. Genet. 72, 408–418 (2003).

    CAS  PubMed  Google Scholar 

  152. Rees, M. I. et al. Further evidence of autosomal dominant congenital zonular pulverulent cataracts linked to 13q11 (CZP3) and a novel mutation in connexin 46 (GJA3). Hum. Genet. 106, 206–209 (2000).

    CAS  PubMed  Google Scholar 

  153. Mackay, D. et al. Connexin46 mutations in autosomal dominant congenital cataract. Am. J. Hum. Genet. 64, 1357–1364 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Gong, X., Baldo, G. J., Kumar, N. M., Gilula, N. B. & Mathias, R. T. Gap junction coupling in lenses lacking α3 connexin. Proc. Natl Acad. Sci. USA 95, 15303–15308 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Chang, B. et al. A Gja8 (Cx50) point mutation causes an alteration of α3 connexin (Cx46) in semi-dominant cataracts of Lop10 mice. Hum. Mol. Genet. 11, 507–513 (2002).

    CAS  PubMed  Google Scholar 

  156. Cobb, B. A. & Petrash, M. Structural and functional changes in the αA-crystallin R116C mutant in hereditary cataracts. Biochemistry 39, 15791–15798 (2000).

    CAS  PubMed  Google Scholar 

  157. Vicart, P. et al. A missense mutation in the αB-crystallin chaperone gene causes a desmin-related myopathy. Nature Genet. 20, 92–95 (1998).

    CAS  PubMed  Google Scholar 

  158. Mackay, D. S., Boskovska, O. B., Knopf, H. L., Lampi, K. J. & Shiels, A. A nonsense mutation in CRYBB1 associated with autosomal dominant cataract linked to human chromosome 22q. Am. J. Hum. Genet. 71, 1216–1221 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Freund, C. L. et al. De novo mutations in the CRX homeobox gene associated with Leber congenital amaurosis. Nature Genet. 18, 311–312 (1998).

    CAS  PubMed  Google Scholar 

  160. Furukawa, T., Morrow, E. M., Li, T., Davis, F. C. & Cepko, C. L. Retinopathy and attenuated circadian entrainment in Crx-deficient mice. Nature Genet. 23, 466–470 (1999).

    CAS  PubMed  Google Scholar 

  161. Chen, S. et al. Functional analysis of cone-rod homeobox (CRX) mutations associated with retinal dystrophy. Hum. Mol. Genet. 11, 873–884 (2002).

    CAS  PubMed  Google Scholar 

  162. Marlhens, F. et al. Mutations in RPE65 cause Leber's congenital amaurosis. Nature Genet. 17, 139–141 (1997).

    CAS  PubMed  Google Scholar 

  163. Seeliger, M. W. et al. New views on RPE65 deficiency: the rod system is the source of vision in a mouse model of Leber congenital amaurosis. Nature Genet. 29, 70–74 (2001).

    CAS  PubMed  Google Scholar 

  164. den Hollander, A. I. et al. Leber congenital amaurosis and retinitis pigmentosa with Coats-like exudative vasculopathy are associated with mutations in the crumbs homologue 1 (CRB1) gene. Am. J. Hum. Genet. 69, 198–203 (2001).

    CAS  PubMed  Google Scholar 

  165. Lotery, A. J. et al. Mutations in the CRB1 gene cause Leber congenital amaurosios. Arch. Ophthalmol. 119, 415–420 (2001).

    CAS  PubMed  Google Scholar 

  166. Dryja, T. P. et al. Null RPGRIP1 alleles in patients with Leber congenital amaurosis. Am. J. Hum. Genet. 68, 1295–1298 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Zhao, Y. et al. The retinitis pigmentosa GTPase regulator (RPGR) interacting protein: subserving RPGR function and participating in disk morphogenesis. Proc. Natl Acad. Sci. USA 100, 3954–3970 (2003).

    Google Scholar 

  168. Perrault, I. et al. Retinal-specific guanylate cyclase gene mutations in Leber's congenital amaurosis. Nature Genet. 14, 461–464 (1996).

    CAS  PubMed  Google Scholar 

  169. Kelsell, R. E. et al. Mutations in the retinal guanylate cyclase (RETGC-1) gene in dominant cone-rode dystrophy. Hum. Mol. Genet. 7, 1179–1184. (1998).

    CAS  PubMed  Google Scholar 

  170. Ikeda, S. et al. Retinal degeneration but not obesity is observed in null mutants of the tubby-like protein 1 gene. Hum. Mol. Genet. 9, 155–163 (2000).

    CAS  PubMed  Google Scholar 

  171. Weleber, R. G. Infantile and childhood retinal blindness: a molecular perspective. Ophthalmic Genet. 23, 71–97 (2002).

    PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank the many friends and colleagues who have supported my work in the past years. In particular, I am grateful to V. van Heyningen (Edinburgh), who contributed many ideas and detailed comments to this review in its initial phase. Unfortunately, owing to space limitations, I could not refer to all papers on the molecular aspects of eye development, and I apologize to colleagues whose work has not been cited.

Author information

Authors and Affiliations

Authors

Related links

Related links

Databases

FlyBase

ey

fkh

so

Sxl

LocusLink

Chx10

CRX

CRYAA

CRYAB

CRYBA1

CRYBB1

CRYBB2

Cryge

CYP1B1

FOXC1

FOXE3

GATA1

GATA2

GJA1

GJA3

GJA8

Lim2

MIP

Mitf

MYCD

PAX6

PITX1

PITX2

PITX3

RAX

RPE65

SHH

Six3

SOX2

SOX9

OMIM

aniridia

anterior segment ocular dysgeneses

Axenfeld–Rieger anomaly

cone–rod dystrophy

congenital/infantile glaucoma

holoprosencephaly

iris coloboma

Leber congenital amaurosis

microphthalmia

papillorenal syndrome

Peters anomaly

retinitis pigmentosa

FURTHER INFORMATION

GSF

Human Genomic Sequence Database

Jochen Graw's laboratory

Kyle M. Keenan's eye site

Mouse Genomic Sequence Database

Mouse Genome Informatics, Jackson Laboratory, Maine, USA

National Center of Biological Information (NCBI) map viewer

PAX6 mutation database

Rat Genomic Sequence Database

Glossary

CATARACT

Opacity of the entire lens or its parts.

COLOBOMA

Incomplete closure of the fissure of the embryonic optic cup, which mainly affects the iris.

EYE FIELD

A central region in the anterior neural plate that gives rise to the eyes by bilateral expansion.

CORNEA

The transparent convex portion of the anterior eye

LENS

The transparent biconvex part of the eye between the iris and the vitreous humour, which focuses light rays on the retina. The shape of the lens is in part determined by the pull or lack of pull of the ciliary body.

IRIS

The disc-shaped pigmented contractile membrane of the eye that is attached at its margin to the ciliary body and is perforated centrally by the pupil.

CILIARY BODY

The part of the eye between the choroid and the iris to which the ciliary muscle is attached.

VITREOUS HUMOUR

A jelly-like substance that fills the eyeball behind the lens and is a support for the structure of the eye. It also maintains the transparency of the eye, as it is impervious to debris.

RETINA

The light-sensitive membrane of the posterior eye onto which the light is focused by the lens and which contains the sensory cells (rods and cones) that allow vision.

CHOROIDEA

The choroid (choroidea) lies between the retina and the sclera. It is composed of layers of blood vessels that nourish the back of the eye.

GLIAL CELL

These cells outnumber neurons by about five to one in the nervous system, they have processes but do not form or conduct action potentials; they retain the capacity to divide throughout life and several subtypes are known.

GANGLION

A general term that is used to refer to a nerve or neuronal cell.

ENDOTHELIUM

The layer of cells that lines the heart, blood vessels and other body cavities.

KERATINOCYTE

A particular cell type in the cornea that is defined by the expression of keratins.

MESENCHYME

Embryonic connective tissue that is composed of star-shaped cells in an extracellular matrix.

PHOTOTRAINMENT

The process whereby light exposure synchronizes the endogenous circadian pacemaker, which causes the molecular cycles of clock protein transcription, dimerization and translocation to begin again before completing an entire cycle.

OPTIC CUP

A cup-like depression in the optic vesicle, which develops into the sensory (neural) and pigmented layers of the retina.

OPTIC VESICLE

Paired protrusions of the embryonic forebrain from which the pigmented and sensory layers of the retina derive.

PLACODE

A thickening of the surface ectoderm in the head region of the early vertebrate embryo that gives rise to the future sensory organs (eye, nose and ear). The lens placode develops into the prospective lens.

LENS FIBRES

Inner cells of the lens, which are organized as long connected fibres that span from the posterior to the anterior pole; this arrangement allows accommodation and transparency, together with high mechanic stability.

LENS SUTURES

The connection of the secondary lens fibre cells at the anterior or posterior pole of the lens.

ECTODERM

The outer most of the three primary germ layers of the embryo, from which the skin, nerve tissue and sensory organs develop.

NEURAL CREST CELLS

A band of neuroectodermal cells located dorsal and lateral to the neural plate in the embryo. These cells migrate to their final destinations and develop into the corresponding derivatives. In the cornea, these cells form the stroma.

STROMA

The connective tissue or supporting framework of an organ (in this case, the cornea).

ACCOMMODATION

A function of the lens in which it adjusts to keep near and distant objects in focus on the retina.

OPTIC STALK

This begins as a narrow channel that connects the optic cup and the brain, but as development progresses it is invaded by neuronal processes that emanate from the ganglion cells of the retina.

OMMATIDAL EYES

The complex eyes of insects that are composed of many single eye units or ommatidia (for example, there are 750–800 in each Drosophila eye).

ANIRIDIA

Partial or complete loss of the iris.

MACULAR HYPOPLASIA

In this condition, the fovea, which is a tiny area in the centre of the macula region of the retina that is the most sensitive area of vision, fails to fully develop.

KERATITIS

An inflammation or irritation of the cornea, which is often characterized by cloudiness or loss of lustre. There are many types, causes and degrees of severity. Generally, the infection occurs after the cornea has been injured or penetrated, allowing bacteria or fungi to enter.

PETERS ANOMALY

Central cornea opacity, which is frequently associated with adhesion between the cornea and the lens.

HOLOPROSENCEPHALY

A set of developmental anomalies that are associated with impaired midline cleavage of the embryonic forebrain, the absence of the olfactory bulbs and tracts, and midline dysplasia of the face, which is frequently associated with cleft lip and palate.

HAPLOINSUFFICIENCY

A gene dosage effect that occurs when a diploid requires both functional copies of a gene for a wild-type phenotype. An organism that is heterozygous for a haploinsufficient locus does not have a wild-type phenotype.

ANLAGE

(Plural anlagen). A simple preliminary organ structure in the embryo.

PENETRANCE

The proportion of individuals with a specific genotype that manifest this genotype at the phenotype level.

CYCLOPIA

The presence of a single central eye field, which results in a slit for an eye (although no actual eye is present); the name is based on Homer's description of the mythical 'cyclops'.

RIEGER ANOMALY

Axenfeld syndrome (a white ring at the back of the cornea associated with iris processes and glaucoma) that is associated with contact between the iris and the cornea; Rieger syndrome is also associated with anomalies of the skeleton and teeth.

IRIDOGONIODYSGENESIS

A syndrome that includes glaucoma and dysgenesis of the iris and the gonads.

GLAUCOMA

Degeneration of the optic nerve; the principal symptom is increased ocular pressure.

PULVERULENT CATARACT

Powder-like cataract (lens opacity).

GAP JUNCTION

A type of junction between two cells through which ions and small molecules can pass.

GENE CONVERSION

A meiotic process of directed change in which one allele directs the conversion of a partner allele to its own form.

SLIPPAGE

A mutagenic process during DNA replication: the presence of several identical base pairs in a series might cause the DNA polymerase to add or omit one by sliding over the template.

WAARDENBURG SYNDROME TYPE 2

A syndrome that consists mainly of deafness, partial albinism and anomalies in fundus pigmentation and iris colour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graw, J. The genetic and molecular basis of congenital eye defects. Nat Rev Genet 4, 876–888 (2003). https://doi.org/10.1038/nrg1202

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1202

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing