Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microbial genetics

Genetic strategies for antibacterial drug discovery

Key Points

  • The emergence of antibiotic resistance among important bacterial pathogens has generated the need to develop new and more effective therapies.

  • All classes of antibiotics in use at present were identified using simple screens that identified compounds by their ability to inhibit bacterial growth. However, the usefulness of this strategy has been limited, more recently, by the difficulty of identifying cellular targets of compounds that act by new mechanisms.

  • Genomic strategies are now being used to discover new antibacterials. Proteins are being validated as targets on the basis of their sequence conservation among pathogens and their genetic requirement for bacterial life.

  • Genetic approaches that modify the classical whole-cell screening strategy are being used to identify new compounds that act by inhibiting selected target enzymes or biochemical pathways.

  • Genetic approaches include: the use of conditional lethal mutants to identify compounds with synergistic effects; the use of resistance mutations to identify the cellular targets of antimicrobial compounds; and gene-expression assays, such as DNA microarrays, that identify compounds that elicit specific stress responses.

  • These approaches have made an outstanding impact on antibacterial drug discovery. It is anticipated that the appropriate combination of these strategies, and the insights and research directions they inspire, will give rise to the discovery of new antibacterial agents.

Abstract

The availability of genome sequences is revolutionizing the field of microbiology. Genetic methods are being modified to facilitate rapid analysis at a genome-wide level and are blossoming for human pathogens that were previously considered intractable. This revolution coincided with a growing concern about the emergence of microbial drug resistance, compelling the pharmaceutical industry to search for new antimicrobial agents. The availability of the new technologies, combined with many genetic strategies, has changed the way that researchers approach antibacterial drug discovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An approach for developing new antibacterial compounds.
Figure 2: Transposon footprinting in Escherichia coli.

Similar content being viewed by others

References

  1. Fleischmann, R. D. et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Hiramatsu, K. et al. Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J. Antimicrob. Chemother. 40, 135–136 (1997).

    CAS  PubMed  Google Scholar 

  3. Blattner, F. R. et al. The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1474 (1997).

    CAS  PubMed  Google Scholar 

  4. Kunst, F. et al. The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390, 249–256 (1997).

    CAS  PubMed  Google Scholar 

  5. Goffeau, A. et al. Life with 6000 genes. Science 274, 546, 563–567 (1996).

    CAS  PubMed  Google Scholar 

  6. Breithaupt, H. The new antibiotics. Nature Biotechnol. 17, 1165–1169 (1999).

    CAS  Google Scholar 

  7. Lederberg, J. Infectious history. Science 288, 287–293 (2000).

    CAS  PubMed  Google Scholar 

  8. Davies, J. Inactivation of antibiotics and the dissemination of resistance genes. Science 264, 375–382 (1994).

    CAS  PubMed  Google Scholar 

  9. Walsh, C. Molecular mechanisms that confer antibacterial drug resistance. Nature 406, 775–781 (2000).

    CAS  PubMed  Google Scholar 

  10. Imada, A. & Hotta, K. in Emerging Targets in Antibacterial and Antifungal Chemotherapy (eds Sutcliffe, J. A. & Georgopapadakou, N. H.) 1–23 (Champman and Hall, New York, 1992).

    Google Scholar 

  11. Gootz, T. D. Discovery and development of new antimicrobial agents. Clin. Microbiol. Rev. 3, 13–31 (1990). References 10 and 11 review the approaches for finding antimicrobials before the insurgence of genomics-based strategies. The challenges to the identification of antimicrobial compounds from microbial fermentation broths are discussed.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. McDevitt, D. & Rosenberg, M. Exploiting genomics to discover new antibiotics. Trends Microbiol. 9, 611–617 (2001).

    CAS  PubMed  Google Scholar 

  13. Hackbarth, C. J. et al. N-alkyl urea hydroxamic acids as a new class of peptide deformylase inhibitors with antibacterial activity. Antimicrob. Agents Chemother. 46, 2752–2764 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Payne, D. J. et al. Discovery of a novel and potent class of FabI-directed antibacterial agents. Antimicrob. Agents Chemother. 46, 3118–3124 (2002). References 13 and 14 describe the development of antibacterial compounds from enzyme inhibitors that had little initial antibacterial activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Parra, G., Blanco, E. & Guigo, R. GeneID in Drosophila. Genome Res. 10, 511–515 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Borodovsky, M. & McIninch, J. Recognition of genes in DNA sequence with ambiguities. Biosystems 30, 161–171 (1993).

    CAS  PubMed  Google Scholar 

  17. Burge, C. & Karlin, S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78–94 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Xu, Y. & Uberbacher, E. C. Automated gene identification in large-scale genomic sequences. J. Comput. Biol. 4, 325–338 (1997).

    CAS  PubMed  Google Scholar 

  19. Delcher, A. L., Harmon, D., Kasif, S., White, O. & Salzberg, S. L. Improved microbial gene identification with GLIMMER. Nucleic Acids Res. 27, 4636–4641 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wheeler, D. L. et al. Database resources of the National Center for Biotechnology. Nucl. Acids Res. 31, 28–33 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Rudd, K. E. EcoGene: a genome sequence database for Escherichia coli K-12. Nucleic Acids Res. 28, 60–64 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Moszer, I., Jones, L. M., Moreira, S., Fabry, C. & Danchin, A. SubtiList: the reference database for the Bacillus subtilis genome. Nucleic Acids Res 30, 62–65 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Cole, S. T. Learning from the genome sequence of Mycobacterium tuberculosis H37Rv. FEBS Lett. 452, 7–10 (1999).

    CAS  PubMed  Google Scholar 

  24. Altschul, S. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res. 25, 3389–3402 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Tatusov, R. L. et al. The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucl. Acids Res. 29, 22–28 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Schmid, M. B. Structural proteomics: the potential of high-throughput structure determination. Trends Microbiol. 10, 27–31 (2002).

    Google Scholar 

  27. Marti-Renom, M. A. et al. Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct. 29, 291–325 (2000).

    CAS  PubMed  Google Scholar 

  28. Rupp, B. High-throughput crystallography at an affordable cost: the TB structural genomics consortium crystallization facility. Acc. Chem. Res. 36, 173–181 (2003).

    CAS  PubMed  Google Scholar 

  29. Mushegian, A. R. & Koonin, E. V. A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc. Natl Acad. Sci. USA 93, 10268–10273 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Koonin, E. V. How many genes can make a cell: the minimal-gene-set concept. Annu. Rev. Genom. Hum. Genet. 1, 99–116 (2000).

    CAS  Google Scholar 

  31. Hutchison, C. A. et al. Global transposon mutagenesis and a minimal Mycoplasma genome. Science 286, 2165–2169 (1999).

    CAS  PubMed  Google Scholar 

  32. Arigoni, F. et al. A genome-based approach for the identification of essential bacterial genes. Nature Biotechnol. 16, 851–856 (1998). This manuscript heralded the fact that conserved genes are not necessarily essential. Furthermore, some genes that are essential for one organism can be dispensable for another (see also references 33–36).

    CAS  Google Scholar 

  33. Gerdes, S. Y. et al. From genetic footprinting to antimicrobial drug targets: examples in cofactor biosynthetic pathways. J. Bacteriol. 184, 4555–4572 (2002). This article shows an example of the identification of conserved biochemical pathways using bioinformatics and genetic footprinting to distinguish essential enzymes of the pathways.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Washburn, R. S., Marra, A., Bryant, A. P., Rosenberg, M. & Gentry, D. R. rho is not essential for viability or virulence in Staphylococcus aureus. Antimicrob. Agents Chemother. 45, 1099–1103 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Minkovsky, N. et al. Bex, the Bacillus subtilis homolog of the essential Escherichia coli GTPase Era, is required for normal cell division and spore formation. J. Bacteriol. 184, 6389–6394 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Heath, R. J. & Rock, C. O. A triclosan-resistant bacterial enzyme. Nature 406, 145–146 (2000).

    CAS  PubMed  Google Scholar 

  37. Chalker, A. F. & Lunsford, R. D. Rational identification of new antibacterial drug targets that are essential for viability using a genomics-based approach. Pharmacol. Ther. 95, 1–20 (2002). This review provides comprehensive descriptions of the many methods for the identification of essential genes in bacteria.

    CAS  PubMed  Google Scholar 

  38. Hare, R. S. et al. Genetic footprinting in bacteria. J. Bacteriol. 183, 1694–1706 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Akerley, B. J. et al. Systematic identification of essential genes by in vitro mariner mutagenesis. Proc. Natl Acad. Sci. USA 95, 8927–8932 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Badarinarayana, V. et al. Selection analyses of insertional mutants using subgenic-resolution arrays. Nature Biotechnol. 19, 1060–1065 (2001).

    CAS  Google Scholar 

  41. Sassetti, C. M., Boyd, D. H. & Rubin, E. J. Comprehensive identification of conditionally essential genes in mycobacteria. Proc. Natl Acad. Sci. USA 98, 12712–12717 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Akerley, B. J. et al. A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae. Proc. Natl Acad. Sci. USA 99, 966–971 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wong, S. M. & Mekalanos, J. J. Genetic footprinting with mariner-based transposition in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 97, 10191–10196 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee, M. S., Dougherty, B. A., Madeo, A. C. & Morrison, D. A. Construction and analysis of a library for random insertional mutagenesis in Streptococcus pneumoniae: use for recovery of mutants defective in genetic transformation and for identification of essential genes. Appl. Environ. Microbiol. 65, 1883–1890 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Vagner, V., Dervyn, E. & Ehrlich, S. A vector for systematic gene inactivation in Bacillus subtilis. Microbiology 144, 3097–3104 (1998).

    CAS  PubMed  Google Scholar 

  46. Kobayashi, K. et al. Essential Bacillus subtilis genes. Proc. Natl Acad. Sci. USA 100, 4678–4683 (2003). This landmark paper describes target-directed disruptions of 3,000 B. subtilis genes. Online tables list the essential genes in Bacillus , and their cellular functions in essential biochemical pathways are depicted in online figures. This complete analysis provides a crucial comparison for all other target validation efforts.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Thanassi, J. A., Hartman-Neumann, S. L., Dougherty, T. J., Dougherty, B. A. & Pucci, M. J. Identification of 113 conserved essential genes using a high-throughput gene disruption system in Streptococcus pneumoniae. Nucleic Acids Res. 30, 3152–3162 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Anderson, P. & Roth, J. Spontaneous tandem genetic duplications in Salmonella typhimurium arise by unequal recombination between rRNA (rrn) cistrons. Proc. Natl Acad. Sci. USA 78, 3113–3117 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Schmid, M. B., Kapur, N., Isaacson, D. R., Lindroos, P. & Sharpe, C. Genetic analysis of temperature-sensitive lethal mutants of Salmonella typhimurium. Genetics 123, 625–633 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sun, D. et al. in 41st Interscience Conference on Antimicrobial Agents and Chemotherapy 77 (American Society for Microbiology, Chicago, 2001).

  51. Pestka, S., Daugherty, B. L., Jung, V., Hotta, K. & Pestka, R. K. Anti-mRNA: specific inhibition of translation of single mRNA molecules. Proc. Natl Acad. Sci. USA 81, 7525–7528 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kernodle, D., Voladri, R., Menzies, B., Hager, C. & Edwards, K. Expression of an antisense hla fragment in Staphylococcus aureus reduces α-toxin production in vitro and attenuates lethal activity in a murine model. Infect. Immun. 65, 179–184 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Parish, T. & Stoker, N. G. Development and use of a conditional antisense mutagenesis system in mycobacteria. FEMS Microbiol. Lett. 154, 151–157 (1997).

    CAS  PubMed  Google Scholar 

  54. Wilson, T., de Lisle, G., Marcinkeviciene, J., Blanchard, J. & Collins, D. Antisense RNA to ahpC, an oxidative stress defence gene involved in isoniazid resistance, indicates that AhpC of Mycobacterium bovis has virulence properties. Microbiology 144, 2687–2695 (1998).

    CAS  PubMed  Google Scholar 

  55. Greendyke, R., Rajagopalan, M., Parish, T. & Madiraju, M. V. V. S. Conditional expression of Mycobacterium smegmatis dnaA, an essential DNA replication gene. Microbiology 148, 3887–3900 (2002). This study used antisense RNA and an inducible promoter to construct conditionally defective strains of Mycobacterium smegmatis . Along with references 77,78 and 82, this provides the tools for characterizing essential genes in mycobacteria.

    CAS  PubMed  Google Scholar 

  56. Ji, Y. et al. Identification of critical staphylococcal genes using conditional phenotypes generated by antisense RNA. Science 293, 2266–2269 (2001).

    CAS  PubMed  Google Scholar 

  57. Forsyth, R. A. et al. A genome-wide strategy for the identification of essential genes in Staphylococcus aureus. Mol. Microbiol. 43, 1387–1400 (2002). This paper describes a comprehensive analysis of the S. aureus genome by the conditional inactivation of genes with antisense RNA. It also describes the use of antisense-bearing strains to identify the cellular targets of antimicrobials.

    CAS  PubMed  Google Scholar 

  58. Jain, C., Deana, A. & Belasco, J. G. Consequences of RNase E scarcity in Escherichia coli. Mol. Microbiol. 43, 1053–1064 (2002).

    CAS  PubMed  Google Scholar 

  59. Guzman, L. M., Belin, D., Carson, M. J. & Beckwith, J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177, 4121–4130 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Haldimann, A., Daniels, L. L. & Wanner, B. L. Use of new methods for construction of tightly regulated arabinose and rhamnose promoter fusions in studies of the Escherichia coli phosphate regulon. J. Bacteriol. 180, 1277–1286 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Chow, W. Y. & Berg, D. E. Tn5tac1, a derivative of transposon Tn5 that generates conditional mutations. Proc. Natl Acad. Sci. USA 85, 6468–6472 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Rappleye, C. A. & Roth, J. R. A Tn10 derivative (T-POP) for isolation of insertions with conditional (tetracycline-dependent) phenotypes. J. Bacteriol. 179, 5827–5834 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. de Lorenzo, V., Eltis, L., Kessler, B. & Timmis, K. N. Analysis of Pseudomonas gene products using lacIq/Ptrp-lac plasmids and transposons that confer conditional phenotypes. Gene 123, 17–24 (1993).

    CAS  PubMed  Google Scholar 

  64. Geissendorfer, M. & Hillen, W. Regulated expression of heterologous genes in Bacillus subtilis using the Tn10 encoded tet regulatory elements. Appl. Microbiol. Biotechnol. 33, 657–663 (1990).

    CAS  PubMed  Google Scholar 

  65. Dervyn, E. et al. Two essential DNA polymerases at the bacterial replication fork. Science 294, 1716–1719 (2001).

    CAS  PubMed  Google Scholar 

  66. Fan, F. et al. Regulated ectopic expression and allelic-replacement mutagenesis as a method for gene essentiality testing in Staphylococcus aureus. Plasmid 46, 71–75 (2001).

    CAS  PubMed  Google Scholar 

  67. Jana, M., Luong, T. T., Komatsuzawa, H., Shigeta, M. & Lee, C. Y. A method for demonstrating gene essentiality in Staphylococcus aureus. Plasmid 44, 100–104 (2000).

    CAS  PubMed  Google Scholar 

  68. Stieger, M., Wohlgensinger, B., Kamber, M., Lutz, R. & Keck, W. Integrational plasmids for the tetracycline-regulated expression of genes in Streptococcus pneumoniae. Gene 226, 243–251 (1999).

    CAS  PubMed  Google Scholar 

  69. Apfel, C. M., Takacs, B., Fountoulakis, M., Stieger, M. & Keck, W. Use of genomics to identify bacterial undecaprenyl pyrophosphate synthetase: cloning, expression, and characterization of the essential uppS gene. J. Bacteriol. 181, 483–492 (1999). This paper describes the use of genomic sequences in combination with proteomics approaches to identify putative targets and initiate functional studies.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Chan, P. F. et al. Characterization of a novel fucose-regulated promoter (PfcsK) suitable for gene essentiality and antibacterial mode-of-action studies in Streptococcus pneumoniae. J. Bacteriol. 185, 2051–2058 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Judson, N. & Mekalanos, J. J. TnAraOut, a transposon-based approach to identify and characterize essential bacterial genes. Nature Biotechnol. 18, 740–745 (2000).

    CAS  Google Scholar 

  72. Hoang, T. T., Karkhoff-Schweizer, R. R., Kutchma, A. J. & Schweizer, H. P. A broad-host-range Flp–FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212, 77–86 (1998).

    CAS  PubMed  Google Scholar 

  73. Link, A., Phillips, D. & Church, G. Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization. J. Bacteriol. 179, 6228–6237 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Fabret, C., Ehrlich, S. D. & Noirot, P. A new mutation delivery system for genome-scale approaches in Bacillus subtilis. Mol. Microbiol. 46, 25–36 (2002).

    CAS  PubMed  Google Scholar 

  75. Lau, P. C. Y., Sung, C. K., Lee, J. H., Morrison, D. A. & Cvitkovitch, D. G. PCR ligation mutagenesis in transformable streptococci: application and efficiency. J. Microbiol. Methods 49, 193–205 (2002).

    CAS  PubMed  Google Scholar 

  76. Xia, M., Lunsford, R. D., McDevitt, D. & Lordanescu, S. Rapid method for the identification of essential genes in Staphylococcus aureus. Plasmid 42, 144–149 (1999).

    CAS  PubMed  Google Scholar 

  77. Bardarov, S. et al. Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis. Microbiology 148, 3007–3017 (2002).

    CAS  PubMed  Google Scholar 

  78. Pavelka, M. S. & Jacobs, W. R. Comparison of the construction of unmarked deletion mutations in Mycobacterium smegmatis, Mycobacterium bovis bacillus Calmette-Guerin, and Mycobacterium tuberculosis H37Rv by allelic exchange. J. Bacteriol. 181, 4780–4789 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Hoang, T. T., Kutchma, A. J., Becher, A. & Schweizer, H. P. Integration-proficient plasmids for Pseudomonas aeruginosa: site-specific integration and use for engineering of reporter and expression strains. Plasmid 43, 59–72 (2000).

    CAS  PubMed  Google Scholar 

  80. Haldimann, A. & Wanner, B. L. Conditional-replication, integration, excision, and retrieval plasmid–host systems for gene structure–function studies of bacteria. J. Bacteriol. 183, 6384–6393 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Guerout-Fleury, A. M., Frandsen, N. & Stragier, P. Plasmids for ectopic integration in Bacillus subtilis. Gene 180, 57–61 (1996).

    CAS  PubMed  Google Scholar 

  82. Braunstein, M., Bardarov, S. S. & Jacobs, W. R. Genetic methods for deciphering virulence determinants of Mycobacterium tuberculosis. Methods Enzymol. 358, 67–99 (2002).

    CAS  PubMed  Google Scholar 

  83. Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Lehman, I. R. DNA ligase: structure, mechanism, and function. Science 186, 790–797 (1974).

    CAS  PubMed  Google Scholar 

  85. Kanehara, K., Akiyama, Y. & Ito, K. Characterization of the yaeL gene product and its S2P-protease motifs in Escherichia coli. Gene 281, 71–79 (2001). The conditional inactivation of yaeL causes a rapid bactericidal effect. Unfortunately, it is not an ideal target, as null mutations in another gene bypass the requirement for this gene (see reference 97).

    CAS  PubMed  Google Scholar 

  86. Campbell, T. L. & Brown, E. D. Characterization of the depletion of 2-C-methyl-D-erythritol-2,4-cyclodiphosphate synthase in Escherichia coli and Bacillus subtilis. J. Bacteriol. 184, 5609–5618 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. McCoy, A. J., Sandlin, R. C. & Maurelli, A. T. In vitro and in vivo functional activity of Chlamydia MurA, a UDP-N-acetylglucosamine enolpyruvyl transferase involved in peptidoglycan synthesis and fosfomycin resistance. J. Bacteriol. 185, 1218–1228 (2003). References 87 and 88 provide superb examples of validating targets with conditional mutants and antimicrobial compounds. Conditional mutants of murA and inhA cause bactericidal effects, such as the antimicrobial compounds that target these functions — fosfomycin (reference 101) and isoniazid (reference 102).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Vilcheze, C. et al. Inactivation of the inhA-encoded fatty acid synthase II (FASII) enoyl-acyl carrier protein reductase induces accumulation of the FASI end products and cell lysis of Mycobacterium smegmatis. J. Bacteriol. 182, 4059–4067 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Kobayashi, G., Moriya, S. & Wada C. Deficiency of essential GTP-binding protein ObgE in Escherichia coli inhibits chromosome partition. Mol. Microbiol. 41, 1037–1051 (2001).

    CAS  PubMed  Google Scholar 

  90. Carson, M. J., Barondess, J. & Beckwith, J. The FtsQ protein of Escherichia coli: membrane topology, abundance, and cell division phenotypes due to overproduction and insertion mutations. J. Bacteriol. 173, 2187–2195 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Turnowsky, F., Fuchs, K., Jeschek, C. & Hogenauer, G. envM genes of Salmonella typhimurium and Escherichia coli. J. Bacteriol. 171, 6555–6565 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. McNicholas, P. M. et al. Evernimicin binds exclusively to the 50S ribosomal subunit and inhibits translation in cell-free systems derived from both Gram-positive and Gram-negative bacteria. Antimicrob. Agents Chemother. 44, 1121–1126 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Egan, A. F. & Russell, R. R. Conditional mutations affecting the cell envelope of Escherichia coli K-12. Genet. Res. 21, 139–152 (1973).

    CAS  PubMed  Google Scholar 

  94. Martin, P. K., Li, T., Sun, D., Biek, D. P. & Schmid, M. B. Role in cell permeability of an essential two-component system in Staphylococcus aureus. J. Bacteriol. 181, 3666–3673 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Bochner, B. R., Gadzinski, P. & Panomitros, E. Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. Genome Res. 11, 1246–1255 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Murphy, C. K., Stewart, E. J. & Beckwith, J. A double counter-selection system for the study of null alleles of essential genes in Escherichia coli. Gene 155, 1–7 (1995).

    CAS  PubMed  Google Scholar 

  97. Alba, B. M., Leeds, J. A., Onufryk, C., Lu, C. Z. & Gross, C. A. DegS and YaeL participate sequentially in the cleavage of RseA to activate the σ-E-dependent extracytoplasmic stress response. Genes Dev. 16, 2156–2168 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Apfel, C. M. et al. Peptide deformylase as an antibacterial drug target: target validation and resistance development. Antimicrob. Agents Chemother. 45, 1058–1064 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Margolis, P. S. et al. Peptide deformylase in Staphylococcus aureus: resistance to inhibition is mediated by mutations in the formyltransferase gene. Antimicrob. Agents Chemother. 44, 1825–1831 (2000). References 98 and 99 describe spontaneous resistance to deformylase inhibitors that occurs by null mutations that bypass the requirement for deformylase. See references 139–140 for a more positive view of the deformylase target.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Schmid, M. B. in Antibiotic Development and Resistance. (eds Hughes, D. & Andersson, D. I.) 197–208 (Taylor and Francis, New York, 2001).

    Google Scholar 

  101. Marquardt, J. L., Siegele, D. A., Kolter, R. & Walsh, C. T. Cloning and sequencing of Escherichia coli murZ and purification of its product, a UDP-N-acetylglucosamine enolpyruvyl transferase. J. Bacteriol. 174, 5748–5722 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Banerjee, A. et al. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263, 227–230 (1994).

    CAS  PubMed  Google Scholar 

  103. Tokunaga, M., Loranger, J. M. & Wu, H. Isolation and characterization of an Escherichia coli clone overproducing prolipoprotein signal peptidase. J. Biol. Chem. 258, 12102–12105 (1983).

    CAS  PubMed  Google Scholar 

  104. Zhang, L. et al. Regulated gene expression in Staphylococcus aureus for identifying conditional lethal phenotypes and antibiotic mode of action. Gene 255, 297–305 (2000).

    CAS  PubMed  Google Scholar 

  105. Chen, D. Z. et al. Actinonin, a naturally occurring antibacterial agent, is a potent deformylase inhibitor. Biochemistry 39, 1256–1262 (2000).

    CAS  PubMed  Google Scholar 

  106. DeVito, J. A. et al. An array of target-specific screening strains for antibacterial discovery. Nature Biotechnol. 20, 478–483 (2002). This paper describes the use of conditionally defective strains to identify new target-directed antimicrobials.

    CAS  Google Scholar 

  107. Heath, R. J. et al. Mechanism of triclosan inhibition of bacterial fatty acid synthesis. J. Biol. Chem. 274, 11110–11114 (1999).

    CAS  PubMed  Google Scholar 

  108. Van der Meide, P. H. et al. Molecular properties of two mutant species of the elongation factor Tu. Eur. J. Biochem. 117, 1–6 (1981).

    CAS  PubMed  Google Scholar 

  109. Haselbeck, R. J. et al. in Comprehensive essential gene identification as a platform for novel anti-infective drug discovery. Curr. Pharm. Des. 8, 1155–1172 (2002).

    CAS  PubMed  Google Scholar 

  110. Neidhardt, F. C. & Savageau, M. A. Regulation Beyond the Operon (eds Neidhardt, F. C. et al.) (ASM, Washington D.C., 1996).

    Google Scholar 

  111. Bechor, O., Smulski, D. R., Van Dyk, T. K., LaRossa, R. A. & Belkin, S. Recombinant microorganisms as environmental biosensors: pollutants detection by Escherichia coli bearing fabA'::lux fusions. J. Biotechnol. 94, 125–132 (2002).

    CAS  PubMed  Google Scholar 

  112. Hughes, K. T., Olivera, B. M. & Roth, J. R. Structural gene for NAD synthetase in Salmonella typhimurium. J. Bacteriol. 170, 2113–2120 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Sun, D., Cohen, S., Mani, N., Murphy, C. & Rothstein, D. M. A pathway-specific cell based screening system to detect bacterial cell wall inhibitors. J. Antibiot. 55, 279–287 (2002). This paper shows how a thorough understanding of a gene-regulation pathway can be used to design a clever assay that provides a robust screen for inhibitors of cell-wall biosynthesis.

    CAS  Google Scholar 

  114. Uehara, T. & Park, J. T. Role of the murein precursor UDP- N-acetylmuramyl-L-Ala-γ-D-Glu-meso-diaminopimelic acid-D-Ala-D-Ala in repression of β-lactamase induction in cell division mutants. J. Bacteriol. 184, 4233–4239 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. DeCenzo, M. et al. Identification of compounds that inhibit late steps of peptidoglycan synthesis in bacteria. J. Antibiot. 55, 288–295 (2002).

    CAS  Google Scholar 

  116. Van Dyk, T. K., Ayers, B. L., Morgan, R. W. & Larossa, R. A. Constricted flux through the branched-chain amino acid biosynthetic enzyme acetolactate synthase triggers elevated expression of genes regulated by rpoS and internal acidification. J. Bacteriol. 180, 785–792 (1998). This manuscript shows how gene fusions can be used to characterize the cellular consequences of inhibiting a particular enzyme. This might provide a powerful screening strategy to identify new antimicrobial compounds.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Cao, M., Wang, T., Ye, R. & Helmann, J. D. Antibiotics that inhibit cell wall biosynthesis induce expression of the Bacillus subtilis σ(W) and σ(M) regulons. Mol. Microbiol. 45, 1267–1276 (2002).

    CAS  PubMed  Google Scholar 

  118. Youngman, P., Tepper, R. & Moore, J. in Current Clinical Topics in Infectious Diseases (eds Remington, J. & Swartz, M.) 366–390 (Blackwell Sciences, Malden, Massachusetts, 1999).

    Google Scholar 

  119. Van Dyk, T. K. et al. A genomic approach to gene fusion technology. Proc. Natl Acad. Sci. USA 98, 2555–2560 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Rhodius, V., Van Dyk, T. K., Gross, C. & LaRossa, R. A. Impact of genomic technologies on studies of bacterial gene expression. Annu. Rev. Microbiol. 56, 599–624 (2002).

    CAS  PubMed  Google Scholar 

  121. Morrow, B. J. & Shaw, K. J. in Pathogen Genomics (ed. Shaw, K. J.) 97–112 (Humana, Totowa, New Jersey, 2002).

    Google Scholar 

  122. Youngman, P. in Bacterial Resistance to Antimicrobials: Mechanisms, Genetics, Medical Practice and Public Health. (eds Lewis, K., Salyers, A., Taber, H. & Wax, R.) (Dekker, New York, 2002).

    Google Scholar 

  123. Rosamond, J. & Allsop, A. Harnessing the power of the genome in the search for new antibiotics. Science 287, 1973–1976 (2000).

    CAS  PubMed  Google Scholar 

  124. Eisen, M. B., Spellman, P. T., Brown, P. O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA 95, 14863–14868 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Marton, M. J. et al. Drug target validation and identification of secondary drug target effects using DNA microarrays. Nature Med. 4, 1293–1301 (1998).

    CAS  PubMed  Google Scholar 

  126. Ng, W. L., Kazmierczak, K. M., Robertson, G. T., Gilmour, R. & Winkler, M. E. Transcriptional regulation and signature patterns revealed by microarray analyses of Streptococcus pneumoniae R6 challenged with sublethal concentrations of translation inhibitors. J. Bacteriol. 185, 359–370 (2003). This investigation used expression arrays to identify changes in gene-expression patterns that are caused by certain antibiotic classes. The findings indicate a possible strategy for identifying new translation inhibitors.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Gmuender, H. et al. Gene expression changes triggered by exposure of Haemophilus influenzae to novobiocin or ciprofloxacin: combined transcription and translation analysis. Genome Res. 11, 28–42 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Wilson, M. et al. Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization. Proc. Natl Acad. Sci. USA 96, 12833–12838 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Belanger, A. E., Lai, A., Brackman, M. A. & LeBlanc, D. J. PCR-based ordered genomic libraries: a new approach to drug target identification for Streptococcus pneumoniae. Antimicrob. Agents Chemother. 46, 2507–2512 (2002). This report describes a rapid method to identify resistance genes and discover the cellular targets of antimicrobial compounds. This provides a means to characterize antimicrobial compounds without bias to preselected targets. This method might also work in naturally competent bacteria other than S. pneumonieae.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Projan, S. J. & Youngman, P. J. Antimicrobials: new solutions badly needed. Curr. Opin. Microbiol. 5, 463–465 (2002). This article describes a disturbing trend: many drug companies are abandoning their commitment to antibacterial drug discovery. Factors contributing to this trend are discussed, and include limitations to the target-directed strategies that have been the basis for most recent discovery efforts.

    PubMed  Google Scholar 

  131. Li, Q., Mitscher, L. A. & Shen, L. L. The 2-pyridone antibacterial agents: bacterial topoisomerase inhibitors. Med. Res. Rev. 20, 231–293 (2000).

    CAS  PubMed  Google Scholar 

  132. Moellering, R. C. Linezolid: the first oxazolidinone antimicrobial. Ann. Intern. Med. 138, 135–142 (2003).

    CAS  PubMed  Google Scholar 

  133. Levy, S. B. Active efflux, a common mechanism for biocide and antibiotic resistance. J. Appl. Microbiol. 92 (Suppl.) 65–71 (2002).

    Google Scholar 

  134. Bearden, D. T. & Danziger, L. H. Mechanism of action of and resistance to quinolones. Pharmacotherapy 21, 224–232 (2001).

    Google Scholar 

  135. Wilson, P. et al. Linezolid resistance in clinical isolates of Staphylococcus aureus. J. Antimicrob. Chemother. 51, 186–188 (2003).

    CAS  PubMed  Google Scholar 

  136. Haney, S. A., Alksne, L. E., Dunman, P. M., Murphy, E. & Projan, S. J. Genomics in anti-infective drug discovery — getting to endgame. Curr. Pharm. Des. 8, 1099–1118 (2002).

    CAS  PubMed  Google Scholar 

  137. Projan, S. J. New (and not so new) antibacterial targets — from where and when will the novel drugs come? Curr. Opin. Pharmacol. 2, 513–522 (2002).

    CAS  PubMed  Google Scholar 

  138. Yuan, Z., Trias, J. & White, R. J. Deformylase as a novel antibacterial target. Drug Discov. Today 6, 954–961 (2001).

    CAS  PubMed  Google Scholar 

  139. Waller, A. S. & Clements, J. M. Novel approaches to antimicrobial therapy: peptide deformylase. Curr. Opin. Drug Discov. Devel. 5, 785–792 (2002). References 138 and 139 review the first genomically-derived target that yielded an antimicrobial drug candidate. The optimism expressed in these papers contrasts with the view expressed in reference 98.

    CAS  PubMed  Google Scholar 

  140. Clements, J. M. et al. Antibiotic activity and characterization of BB-3497, a novel peptide deformylase inhibitor. Antimicrob. Agents Chemother. 45, 563–570 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Margolis, P. et al. Resistance of Streptococcus pneumoniae to deformylase inhibitors is due to mutations in defB. Antimicrob. Agents Chemother. 45, 2432–2435 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Heath, R. J., White, S. W. & Rock, C. O. Inhibitors of fatty acid synthesis as antimicrobial chemotherapeutics. Appl. Microbiol. Biotechnol. 58, 695–703 (2002).

    CAS  PubMed  Google Scholar 

  143. Payne, D. J., Warren, P. V., Holmes, D. J., Ji, Y. & Lonsdale, J. T. Bacterial fatty-acid biosynthesis: a genomics-driven target for antibacterial drug discovery. Drug Discov. Today 6, 537–544 (2001).

    CAS  PubMed  Google Scholar 

  144. Joswick, H. L., Corner, T. R., Silvernale, J. N. & Gerhardt, P. Antimicrobial actions of hexachlorophene: release of cytoplasmic materials. J. Bacteriol. 108, 492–500 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Silvernale, J. N., Joswick, H. L., Corner, T. R. & Gerhardt, P. Antimicrobial actions of hexachlorophene: cytological manifestations. J. Bacteriol. 108, 482–491 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. McMurry, L. M., Oethinger, M. & Levy, S. B. Triclosan targets lipid synthesis. Nature 394, 531–532 (1998).

    CAS  PubMed  Google Scholar 

  147. Heath, R. J., Yu, Y. -T., Shapiro, M. A., Olson, E. & Rock, C. O. Broad spectrum antimicrobial biocides target the FabI component of fatty acid synthesis. J. Biol. Chem. 273, 30316–30320 (1998).

    CAS  PubMed  Google Scholar 

  148. Miller, W. H. et al. Discovery of aminopyridine-based inhibitors of bacterial enoyl-ACP reductase (FabI). J. Med. Chem. 45, 3246–3256 (2002).

    CAS  PubMed  Google Scholar 

  149. Hoang, T. T. & Schweizer, H. P. Characterization of Pseudomonas aeruginosa enoyl-acyl carrier protein reductase (FabI): a target for the antimicrobial triclosan and its role in acylated homoserine lactone synthesis. J. Bacteriol. 181, 5489–5497 (1999). References 149 and 150 predict that the differential essentiality of certain genes among different microbes could hamper the pursuit of certain targets. The fabI -encoded enoyl-ACP reductase is essential in many Gram-negatives and -positives, but is dispensable in B. subtilis and Pseudomonas aeruginosa . These organisms have a second enoyl reductase, FabK, that renders them resistant to FabI-directed compounds such as triclosan. This finding did not stop the development of FabI inhibitors by other investigators (references 14, 143 and 148).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Heath, R. J., Su, N., Murphy, C. K. & Rock, C. O. The enoyl-[acyl-carrier–protein] reductases FabI and FabL from Bacillus subtilis. J. Biol. Chem. 275, 40128–40133 (2000).

    CAS  PubMed  Google Scholar 

  151. Kuroda, M. et al. Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 357, 1225–1240 (2001).

    CAS  PubMed  Google Scholar 

  152. Ferretti, J. J. et al. Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc. Natl Acad. Sci. USA 98, 4658–4663 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Tettelin, H. et al. Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293, 498–506 (2001).

    CAS  PubMed  Google Scholar 

  154. Paulsen, I. T. et al. Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science 299, 2071–2074 (2003).

    CAS  PubMed  Google Scholar 

  155. Himmelreich, R. et al. Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucl. Acids Res. 24, 4420–4449 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Stover, C. K. et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406, 959–964 (2000).

    CAS  PubMed  Google Scholar 

  157. Tomb, J. F. et al. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539–547 (1997).

    CAS  PubMed  Google Scholar 

  158. Parkhill, J. et al. Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413, 848–852 (2001).

    CAS  PubMed  Google Scholar 

  159. McClelland, M. et al. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413, 852–856 (2001).

    CAS  PubMed  Google Scholar 

  160. Cole, S. T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544 (1998).

    CAS  PubMed  Google Scholar 

  161. Vaughan, M. D., Sampson, P. D. & Hanek, J. F. Methionine in and out of proteins: targets for drug design. Curr. Med. Chem. 9, 385–409 (2003).

    Google Scholar 

Download references

Acknowledgements

We thank Y. Xu, P. McNicholas, S. Fenster and two anonymous reviewers for their insightful comments and critical review of this manuscript. We also thank G. Foulkes and T. Kenney for providing unpublished data. L.M. is grateful to D. Biek, J. DeVito, M. Schmid, K. Shaw, P. Youngman and Y. Zhengyu for helpful discussions and for providing references. This work was supported by the Schering–Plough Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynn Miesel.

Related links

Related links

DATABASES

BioCyc

def

EF-Tu

FabA

fabI

FabI

fmt

MurA

NadB

nadD

nadE

smf

tufA

FURTHER INFORMATION

COGs database

Comprehensive annotations of select genomes

E. coli Genome Center

Entrez microbial genomes

GOLD Genomes Online Database

Protein Data Bank

Sanger Institute microbial sequencing effort

TIGR Comprehensive Microbial Resource

Glossary

METHICILLIN AND VANCOMYCIN

Antibiotics that are used against serious Gram-positive pathogens; resistance to these drugs is an important medical concern.

OXAZOLIDINONES

A group of antibiotics that affect protein biosynthesis.

BACTERICIDAL

An antimicrobial agent or condition that kills a bacterial cell.

BACTERIOSTATIC

An antimicrobial agent or condition that halts bacterial growth but does not kill the cell.

DNA GYRASE

A topoisomerase that maintains a state of negative supercoiling in the bacterial chromosome, which is essential for DNA replication and transcription.

TOPOISOMERASE IV

A topoisomerase that is required for the progression of the DNA replication fork and for daughter chromosome segregation.

ORTHOLOGUES

Sequences or genes in different organisms that are direct evolutionary counterparts; that is, they are related by descent from a common ancestor. Orthologous genes normally have the same cellular function.

HOMOLOGY MODELLING

The process in which an algorithm, such as Modeller, constructs a model of the three-dimensional structures of aligned protein sequences, using a related protein with a known structure as a template.

GRAM-POSITIVE BACTERIA

A lineage of bacteria that is differentiated by having a thick peptidoglycan cell wall that contains long-chain polymers called teichoic acids. These organisms are identified by their retention of a crystal violet dye (Gram stain).

GRAM-NEGATIVE BACTERIA

A lineage of bacteria that is distinguished by having a thinner cell wall than Gram-positives and has an outer membrane that consists of lipopolysaccharide. The outermembrane serves as a permeability barrier for small molecules such as antibiotics.

ANALOGOUS ENZYMES

Structurally unrelated enzymes that catalyse the same reaction.

PLASMID SUICIDE VECTOR

A plasmid that cannot replicate in a particular host.

TRANSFORMATION

The process in which bacteria take up DNA from a medium.

NATURALLY COMPETENT

Bacteria that have efficient transformation and recombination systems, and can take up homologous DNA from the environment and integrate it into the chromosome by homologous recombination. Bacillus subtilis, Haemophilus influenzae, Neisseria gonorrhoeae, Streptococcus pneumoniae and Helicobacter pylori are naturally competent.

POLAR EFFECT

Many bacterial genes are located in operons in which they are transcribed in a single polycistronic mRNA. A mutation that prevents the transcription or translation of one gene can prevent the transcription of promoter-distal genes in the same operon.

THERMOLABILE

A protein that is unstable and, therefore, inactive at an elevated temperature.

METABOLIC LABELLING

The process in which bacterial cells are grown in the presence of radiolabelled precursors of macromolecule synthesis (DNA, protein, fatty acids and peptidoglycan). Blocks to radiolabel incorporation can identify a mutant defect or the cellular target of an antimicrobial compound.

K i

The dissociation constant of an enzyme–inhibitor complex. This value represents the affinity of an enzyme–inhibitor interaction — a potent inhibitor has a small Ki value.

HETERO-MULTIMERIC ENZYME

A multi-subunit enzyme that comprises two or more different proteins.

MYCOLIC ACID

Long fatty acids (C50–C80) that are a main component of the mycobacterial cell envelope.

PCR AMPLICONS

DNA that is generated by PCR amplification.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miesel, L., Greene, J. & Black, T. Genetic strategies for antibacterial drug discovery. Nat Rev Genet 4, 442–456 (2003). https://doi.org/10.1038/nrg1086

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1086

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing