Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Navigating complexity to breed disease-resistant crops

Key Points

  • Resistance breeding is an important strategy for reducing crop losses caused by disease.

  • The innate immune system allows plants to recognize their pathogens, often providing strong levels of resistance. Such qualitative resistance is, however, often rapidly overcome as pathogens evolve to evade recognition.

  • In addition to innate immunity, plants also have diverse defences that are more subtle in their effects and are only beginning to be understood. Quantitative resistance is considered to be more durable than qualitative resistance.

  • Breeding for long-lasting resistance is critical in many plant–pathogen systems and typically involves combining multiple and diverse resistance genes.

  • Sustainable approaches to disease management involve breeding for genotypes with diverse resistance loci but can also entail the use of diversity among plants at different spatial and temporal scales.

  • New breeding methods can increase crop improvement. However, which resistance genes are used, their performance over time (durability) and their influences on other traits (trade-offs) must be considered and assessed as part of the breeding process.

Abstract

Plant diseases are responsible for substantial crop losses each year and pose a threat to global food security and agricultural sustainability. Improving crop resistance to pathogens through breeding is an environmentally sound method for managing disease and minimizing these losses. However, it is challenging to breed varieties with resistance that is effective, stable and broad-spectrum. Recent advances in genetic and genomic technologies have contributed to a better understanding of the complexity of host–pathogen interactions and have identified some of the genes and mechanisms that underlie resistance. This new knowledge is benefiting crop improvement through better-informed breeding strategies that utilize diverse forms of resistance at different scales, from the genome of a single plant to the plant varieties deployed across a region.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: A comparison of quantitative and qualitative resistance.
Figure 2: Resistance mechanisms at the tissue and cellular levels.
Figure 3: Challenges for designing sustainable disease resistance at different scales.

References

  1. 1

    Oerke, E. C. Crop losses to pests. J. Agr. Sci. 144, 31–43 (2006).

    Article  Google Scholar 

  2. 2

    Oerke, E. C. & Dehne, H. W. Safeguarding production-losses in major crops and the role of crop protection. Crop Prot. 23, 275–285 (2004).

    Article  Google Scholar 

  3. 3

    Mundt, C. C. Durable resistance: a key to sustainable management of pathogens and pests. Infect. Genet. Evol. 27, 446–455 (2015). This is an insightful review of issues related to the durability of resistance.

    Article  Google Scholar 

  4. 4

    Mundt, C. C., Cowger, C. C. & Garrett, K. A. Relevance of integreated disease management to resistance durability. Euphytica 124, 245–252 (2002).

    Article  CAS  Google Scholar 

  5. 5

    Niks, R. E., Qi, X. & Marcel, T. C. Quantitative resistance to biotrophic filamentous plant pathogens: concepts, misconceptions, and mechanisms. Annu. Rev. Phytopathol. 53, 445–470 (2015). This is a review on QDR that greatly clarifies the terminology of 'quantitative' and 'qualitative'.

    Article  CAS  PubMed  Google Scholar 

  6. 6

    Jones, J. D. G. & Dangl, J. L. The plant immune system. Nature 444, 323–329 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. 7

    Santa-Cruz, J. H. et al. Yield effects of two southern leaf blight resistance loci in maize hybrids. Crop Sci. 54, 882–894 (2014).

    Article  Google Scholar 

  8. 8

    Denby, K. J., Kumar, P. & Kliebenstein, D. J. Identification of Botrytis cinerea susceptibility loci in Arabidopsis thaliana. Plant J. 38, 473–486 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. 9

    Jamann, T. M., Poland, J. A., Kolkman, J. M., Smith, L. G. & Nelson, R. J. Unraveling genomic complexity at a quantitative disease resistance locus in maize. Genetics 198, 333–344 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10

    St. Clair, D. A. Quantitative disease resistance and quantitative resistance loci in breeding. Annu. Rev. Phytopathol. 48, 247–268 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. 11

    Poland, J. A., Balint-Kurti, P. J., Wisser, R. J., Pratt, R. C. & Nelson, R. J. Shades of gray: the world of quantitative disease resistance. Trends Plant Sci. 14, 21–29 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. 12

    Couto, D. & Zipfel, C. Regulation of pattern recognition receptor signalling in plants. Nat. Rev. Immunol. 16, 537–552 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. 13

    Monaghan, J. & Zipfel, C. Plant pattern recognition receptor complexes at the plasma membrane. Curr. Opin. Plant Biol. 15, 349–357 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. 14

    Hurni, S. et al. The maize disease resistance gene Htn1 against northern corn leaf blight encodes a wall-associated receptor-like kinase. Proc. Natl Acad. Sci. USA 112, 8780–8785 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. 15

    Boller, T. & Felix, G. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60, 379–406 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. 16

    Schulze-Lefert, P. & Panstruga, R. A molecular evolutionary concept connecting nonhost resistance, pathogen host range, and pathogen speciation. Trends Plant Sci. 16, 117–125 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. 17

    French, E., Kim, B.-S. & Iyer-Pascuzzi, A. S. Mechanisms of quantitative disease resistance in plants. Sem. Cell Dev. Biol. 56, 201–208 (2016).

    Article  CAS  Google Scholar 

  18. 18

    Thomma, B. P. H. J., Nurrnberger, T. & Joosten, M. H. A. J. Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23, 4–15 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Maekawa, T., Kufer, T. A. & Schulze-Lefert, P. NLR functions in plant and animal immune systems: so far and yet so close. Nat. Immunol. 12, 817–826 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. 20

    Johal, G. S. & Briggs, S. P. Reductase activity encoded by the HM1 disease resistance gene in maize. Science 258, 985–987 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. 21

    Dixon, M. S. et al. The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell 84, 451–459 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. 22

    Jones, D. A., Thomas, C. M., Hammond-Kosack, K. E., Balint-Kurti, P. J. & Jones, J. D. Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266, 789–793 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. 23

    Liu, Y. et al. Autophagy regulates programmed cell death during the plant innate immune response. Cell 121, 567–577 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. 24

    Collins, N. et al. Molecular characterization of the maize Rp1-D rust resistance haplotype and its mutants. Plant Cell 11, 1365–1376 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Dangl, J. L., Horvath, D. M. & Staskawicz, B. J. Pivoting the plant immune system from dissection to deployment. Science 341, 746–751 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. 26

    Alfano, J. R. Roadmap for future research on plant pathogen effectors. Mol. Plant Pathol. 10, 805–813 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Sperschneider, J. et al. Advances and challenges in computational prediction of effectors from plant pathogenic fungi. PLoS Pathog. 11, e1004806 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Wroblewski, T. et al. Comparative large-scale analysis of interactions between several crop species and the effector repertoires from multiple pathovars of Pseudomonas and Ralstonia. Plant Physiol. 150, 1733–1749 (2009). This is a large-scale study of the interactions among bacterial effectors and host resistance genes across host and pathogen species boundaries that reveals interesting patterns of co-evolution.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Giesbers, A. K. J. et al. Effector-mediated discovery of a novel resistance gene against Bremia lactucae in a nonhost lettuce species. New Phytol. http://dx.doi.org/10.1111/nph.14741 (2017).

  30. 30

    Raman, K. V., Grunwald, N. J. & Fry, W. E. Promoting international collaboration for potato late blight disease management. Pest. Outlook 11, 181–185 (2000).

    Article  Google Scholar 

  31. 31

    Singh, R. et al. Current status, likely migration and strategies to mitigate the threat to wheat production from race Ug99 (TTKS) of stem rust pathogen. CAB Rev. Persp. Agr. Vet. Sci. Nutr. Nat. Res. 1, 054 (2006).

    Google Scholar 

  32. 32

    Yu, J., Holland, J. B., McMullen, M. D. & Buckler, E. S. Genetic design and statistical power of nested association mapping in maize. Genetics 178, 539–551 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33

    Yang, Q. et al. A gene encoding maize caffeoyl-CoA O-methyltransferase confers quantitative resistance to multiple pathogens. Nat. Genet. 49, 1364–1372 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. 34

    Wisser, R. J., Sun, Q., Hulbert, S. H., Kresovich, S. & Nelson, R. J. Identification and characterization of regions of the rice genome associated with broad-spectrum, quantitative disease resistance. Genetics 169, 2277–2293 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Wisser, R. J., Balint-Kurti, P. J. & Nelson, R. J. The genetic architecture of disease resistance in maize: a synthesis of published studies. Phytopathology 96, 120–129 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. 36

    Benson, J., Poland, J., Benson, B., Stromberg, E. L. & Nelson, R. Resistance to gray leaf spot of maize: genetic architecture and mechanisms elucidated through nested association mapping and near-isogenic line analysis. PLoS Genet. 11, e1005045 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Kump, K. L. et al. Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat. Genet. 43, 163–168 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. 38

    Poland, J. A., Bradbury, P. J., Buckler, E. S. & Nelson, R. J. Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc. Natl Acad. Sci. USA 108, 6893–6898 (2011).

    Article  PubMed  Google Scholar 

  39. 39

    Schweizer, P. & Stein, N. Large-scale data integration reveals colocalization of gene functional groups with meta-QTL for multiple disease resistance in barley. Mol. Plant Microbe Int. 24, 1492–1501 (2011).

    Article  CAS  Google Scholar 

  40. 40

    Valdes-Lopez, O. et al. Identification of quantitative trait loci controlling gene expression during the innate immunity response of soybean. Plant Physiol. 157, 1975–1986 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Vetter, M. M. et al. Flagellin perception varies quantitatively in Arabidopsis thaliana and its relatives. Mol. Biol. Evol. 29, 1655–1667 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. 42

    Hulbert, S., Webb, C. A., Smith, S. M. & Sun, Q. Resistance gene complexes: evolution and utilization. Annu. Rev. Phytopathol. 39, 285–312 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. 43

    Shao, Z. Q. et al. Long-term evolution of nucleotide-binding site-leucine-rich repeat genes: understanding gained from and beyond the legume family. Plant Physiol. 166, 217–234 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Hulbert, S. H. Structure and evolution of the rp1 complex conferring rust resistance in maize. Annu. Rev. Phytopathol. 35, 293–310 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. 45

    Meyers, B. C. et al. The major resistance gene cluster in lettuce is highly duplicated and spans several megabases. Plant Cell 10, 1817–1832 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Qi, X. et al. Isolate-specific QTLs for partial resistance to Puccinia hordei in barley. Theor. Appl. Genet. 99, 877–884 (1999).

    Article  CAS  Google Scholar 

  47. 47

    Singh, R. P. et al. Race non-specific resistance to rust diseases in CIMMYT spring wheats. Euphytica 179, 175–186 (2010).

    Article  Google Scholar 

  48. 48

    Wiesner-Hanks, T. & Nelson, R. Multiple disease resistance in plants. Annu. Rev. Phytopathol. 54, 229–252 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. 49

    Taverniers, I., Papazova, N., Bertheau, Y., De Loose, M. & Holst-Jensen, A. Gene stacking in transgenic plants: towards compliance between definitions, terminology, and detection within the EU regulatory framework. Environ. Biosafety Res. 7, 197–218 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. 50

    Yoshimura, S. et al. Tagging and combining bacterial blight resistance genes in rice using RAPD and RFLP markers. Mol. Breed. 1, 375–387 (1995).

    Article  CAS  Google Scholar 

  51. 51

    Zhang, J., Li, X., Jiang, G., Xu, Y. & He, Y. Pyramiding of Xa7 and Xa21 for the improvement of disease resistance to bacterial blight in hybrid rice. Plant Breed. 125, 600–605 (2006).

    Article  CAS  Google Scholar 

  52. 52

    den Boer, E. et al. Effects of stacked quantitative resistances to downy mildew in lettuce do not simply add up. Theor. Appl. Genet. 127, 1805–1816 (2014).

    Article  PubMed  Google Scholar 

  53. 53

    Zeigler, R. S. et al. The relationship between lineage and virulence in Pyricularia grisea in the Philippines. Phytopathol 85, 443–451 (1995).

    Article  Google Scholar 

  54. 54

    Zeigler, R. S., Tohme, J., Nelson, R. J., Levy, M. & Correa-Victoria, F. J. in Rice blast disease (eds Zeigler, R. S., Leong, S. A. & Teng, P.) 267–292 (CAB International, 1994).

    Google Scholar 

  55. 55

    Kou, Y. & Wang, S. Broad-spectrum and durability: understanding of quantitative disease resistance. Curr. Opin. Plant Biol. 13, 181–185 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. 56

    Brown, J. K. M. Durable resistance of crops to disease: a Darwinian perspective. Annu. Rev. Phytopathol. 53, 513–539 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. 57

    Bonman, J. M. Durable resistance to rice blast disease- environmental influences. Euphytica 63, 115–123 (1992).

    Article  Google Scholar 

  58. 58

    Johnson, R. Durable resistance: definition of, genetic control, and attainment in plant breeding. Phytopathology 71, 567–568 (1981).

    Article  Google Scholar 

  59. 59

    McDonald, B. A. & Linde, C. Pathogen population genetics, evolutionary potential, and durable resistance. Annu. Rev. Phytopathol. 40, 349–379 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. 60

    Parlevliet, J. Durability of resistance against fungal, bacterial and viral pathogens; present situation. Euphytica 124, 147–156 (2002).

    Article  CAS  Google Scholar 

  61. 61

    Huang, Y. J. et al. Fitness cost associated with loss of the AVrLM4 avirulence function in Leptosphaeria maculans (phoma stem canker of oilseed rape). Eur. J. Plant Pathol. 114, 77–89 (2006).

    Article  Google Scholar 

  62. 62

    Brueggeman, R. et al. The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc. Natl Acad. Sci. USA 99, 9328–9333 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. 63

    Kleinhofs, A. et al. Barley stem rust resistance genes: structure and function. Plant Genome 2, 109–120 (2009).

    Article  CAS  Google Scholar 

  64. 64

    Krattinger, S. G. et al. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323, 1360–1363 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Leach, J. E., Vera Cruz, C. M., Bai, J. & Leung, H. Pathogen fitness penalty as a predictor of durability of disease resistance genes. Annu. Rev. Phytopathol. 39, 187–224 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. 66

    Pietravalle, S., Lemarié, S. & Van Den Bosch, F. Durability of resistance and cost of virulence. Eur. J. Plant Pathol. 114, 107–116 (2006).

    Article  Google Scholar 

  67. 67

    Boyd, L. A., Ridout, C., O'Sullivan, D. M., Leach, J. E. & Leung, H. Plant-pathogen interactions: disease resistance in modern agriculture. Trends Genet. 29, 233–240 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. 68

    Bart, R. et al. High-throughput genomic sequencing of cassava bacterial blight strains identifies conserved effectors to target for durable resistance. Proc. Natl Acad. Sci. USA 109, E1972–E1979 (2012).

    Article  PubMed  Google Scholar 

  69. 69

    Mukhtar, M. S. et al. Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science 333, 596–601 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Vleeshouwers, V. G. & Oliver, R. P. Effectors as tools in disease resistance breeding against biotrophic, hemibiotrophic, and necrotrophic plant pathogens. Mol. Plant Microbe Int. 27, 196–206 (2014).

    Article  CAS  Google Scholar 

  71. 71

    Parlevliet, J. E. in Plant Disease Epidemiology Vol. 2 (eds Leonard, K. J. & Fry, W. E.) 215–248 (McGraw-Hill, 1989).

    Google Scholar 

  72. 72

    Wang, G. L. et al. RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics 136, 1421–1434 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Palloix, A., Ayme, V. & Moury, B. Durability of plant major resistance genes to pathogens depends on the genetic background, experimental evidence and consequences for breeding strategies. New Phytol. 183, 190–199 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. 74

    Brun, H. et al. Quantitative resistance increases the durability of qualitative resistance to Leptosphaeria maculans in Brassica napus. New Phytol. 185, 285–299 (2010). This study provides experimental evidence that the durability of major genes depends on the QDR background of the genotype.

    Article  PubMed  Google Scholar 

  75. 75

    Fabre, F., Bruchou, C., Palloix, A. & Moury, B. Key determinants of resistance durability to plant viruses: insights from a model linking within- and between-host dynamics. Virus Res. 141, 140–149 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. 76

    Brown, J. K. M. & Rant, J. C. Fitness costs and trade-offs of disease resistance and their consequences for breeding arable crops. Plant Pathol. 62, 83–95 (2013).

    Article  Google Scholar 

  77. 77

    Vanderplank, J. E. Disease resistance in plants 2 nd edn (Academic Press, 1984).

    Google Scholar 

  78. 78

    Wastie, R. L. in Phytophthora infestans, the cause of late blight of potato (eds Ingram, D. S. & Williams, P. H.) 193–224 (Academic Press, 1991).

    Google Scholar 

  79. 79

    Landeo, J. A., Gastelo, M., Pinedo, H. & Flores, F. in Phytophthora infestans 150 (eds Dowley, L. J., Bannon, E., Cooke, L. R. & O'Sullivan, E.) 268–274 (Boole Press, 1995).

    Google Scholar 

  80. 80

    Mundt, C. C. Probability of mutation to multiple virulence and durability of resistance gene pyramids. Phytopathology 80, 221–223 (1991).

    Article  Google Scholar 

  81. 81

    Perez, W. G. et al. Genetic structure of Peruvian populations of Phytophthora infestans. Phytopathology 91, 956–965 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. 82

    Singh, R. P. et al. Will stem rust destroy the world's wheat crop? Adv. Agron. 98, 271–309 (2008).

    Article  CAS  Google Scholar 

  83. 83

    Kolmer, J. A. & Leonard, K. J. Genetic selection and adaptation of Cochliobolus heterostrophus to corn hosts with partial resistance. Phytopathology 76, 774–777 (1986).

    Article  Google Scholar 

  84. 84

    Cowger, C. & Mundt, C. C. Aggressiveness of Mycosphaerella graminicola isolates from susceptible and partially resistant wheat cultivars. Phytopathology 92, 624–630 (2002).

    Article  PubMed  Google Scholar 

  85. 85

    Pariaud, B. et al. Aggressiveness and its role in the adaptation of plant pathogens. Plant Pathol. 58, 409–424 (2009).

    Article  Google Scholar 

  86. 86

    Caffier, V. et al. Erosion of quantitative host resistance in the apple × Venturia inaequalis pathosystem. Infect. Genet. Evol. 27, 481–489 (2014).

    Article  PubMed  Google Scholar 

  87. 87

    Delmas, C. E. et al. Adaptation of a plant pathogen to partial host resistance: selection for greater aggressiveness in grapevine downy mildew. Evol. Appl. 9, 709–725 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Villaréal, L. M. & Lannou, C. Selection for increased spore efficacy by host genetic background in a wheat powdery mildew population. Phytopathology 90, 1300–1306 (2000).

    Article  PubMed  Google Scholar 

  89. 89

    Bergelson, J. & Purrington, C. B. Surveying patterns in the cost of resistance in plants. Am. Nat. 148, 536–558 (1996).

    Article  Google Scholar 

  90. 90

    Tian, D., Traw, M., Chen, J., Kreitman, M. & Bergelson, J. Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature 423, 74–77 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. 91

    MacQueen, A., Sun, X. & Bergelson, J. Genetic architecture and pleiotropy shape costs of Rps2-mediated resistance in Arabidopsis thaliana. Nat. Plants 2, 16110 (2016). This study provides experimental evidence for, and discussion of, a link between trade-offs and the genetic architecture of resistance.

    Article  PubMed  PubMed Central  Google Scholar 

  92. 92

    Deng, Y. et al. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science 355, 962–965 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. 93

    Wenkai, X. et al. Genome-wide isolation of resistance gene analogs in maize (Zea mays L.). Theor. Appl. Genet. 113, 63–72 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. 94

    Mitchell-Olds, T. & Bradley, D. Genetics of Brassica rapa. 3. Costs of disease resistance to three fungal pathogens. Evolution 50, 1859–1865 (1996).

    Article  PubMed  Google Scholar 

  95. 95

    Todesco, M. et al. Natural allelic variation underlying a major fitness trade-off in Arabidopsis thaliana. Nature 465, 632–636 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Kjær, B., Jensen, H. P., Jensen, J. & Jørgensen, J. H. Associations between three mlo powdery mildew resistance genes and agronomic traits in barley. Euphytica 46, 185–193 (1990).

    Article  Google Scholar 

  97. 97

    McGrann, G. R. D. et al. A trade off between mlo resistance to powdery mildew and increased susceptibility of barley to a newly important disease, Ramularia leaf spot. J. Exp. Bot. 65, 1025–1037 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. 98

    Olukolu, B. et al. The genetics of leaf flecking in maize and its relationship to plant defense and disease resistance. Plant Physiol. 172, 1787–1803 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Hu, K. et al. Improvement of multiple agronomic traits by a disease resistance gene via cell wall reinforcement. Nat. Plants 3, 17009 (2017). This paper describes the characterization of a durable R-gene that also improves other agronomic traits.

    Article  CAS  PubMed  Google Scholar 

  100. 100

    Ballini, E. et al. A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Mol. Plant Microbe Int. 21, 859–868 (2008).

    Article  CAS  Google Scholar 

  101. 101

    Vanderplank, J. E. Plant diseases: epidemics and control (Academic Press, 1963).

    Google Scholar 

  102. 102

    Harlan, H. V. & Martini, M. L. Problems and results in barley breeding. USDA Yearbook of Agriculture 1936, 303–346 (1936).

    Google Scholar 

  103. 103

    Summers, R. W. & Brown, J. K. M. Constraints on breeding for disease resistance in commercially competitive wheat cultivars. Plant Pathol. 62, 115–121 (2013).

    Article  Google Scholar 

  104. 104

    Ceballos, H., Deutsch, J. A. & Gutierrez, H. Recurrent selection for resistance to Exserohilum turcicum in eight subtropical maize populations. Crop Sci. 31, 964–971 (1991).

    Article  Google Scholar 

  105. 105

    Rattunde, H. F. W. & Witcombe, J. R. Recurrent selection for increased grain yield and resistance to downy mildew in pearl millet. Plant Breed. 110, 63–72 (1993).

    Article  Google Scholar 

  106. 106

    Poland, J. & Rutkoski, J. Advances and challenges in genomic selection for disease resistance. Annu. Rev. Phytopathol. 54, 79–98 (2016). This is an excellent and accessible review of genomic selection and its use for improving QDR.

    Article  CAS  PubMed  Google Scholar 

  107. 107

    Yu, X. et al. Genomic prediction contributing to a promising global strategy to turbocharge gene banks. Nat. Plants 2, 16150 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. 108

    Heffner, E. L., Lorenz, A. J., Jannink, J. -L. & Sorrells, M. E. Plant breeding with genomic selection: gain per unit time and cost. Crop Sci. 50, 1681–1690 (2010).

    Article  Google Scholar 

  109. 109

    Sankaran, S. et al. Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: a review. Eur. J. Agron. 70, 112–123 (2015).

    Article  Google Scholar 

  110. 110

    Brunner, S. et al. Transgenic Pm3 multilines of wheat show increased powdery mildew resistance in the field. Plant Biotechnol. J. 10, 398–409 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. 111

    Scott, P. et al. Genetic modification for disease resistance: a position paper. Food Sec. 8, 865–870 (2016).

    Article  Google Scholar 

  112. 112

    Bortesi, L. & Fischer, R. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol. Adv. 33, 41–52 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. 113

    Ainley, W. M. et al. Trait stacking via targeted genome editing. Plant Biotechnol. J. 11, 1126–1134 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. 114

    Wang, Y. et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 32, 947–951 (2014). This is a report detailing a modern molecular approach to altering susceptibility loci.

    Article  CAS  PubMed  Google Scholar 

  115. 115

    Chandrasekaran, J. et al. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol. Plant Pathol. 17, 1140–1153 (2016). In this study, genome editing technology is used to provide a crop with non-transgenic resistance to multiple viruses with much less time and effort than would be required by conventional backcrossing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. 116

    Pyott, D. E., Sheehan, E. & Molnar, A. Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants. Mol. Plant Pathol. 17, 1276–1288 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. 117

    Li, T., Liu, B., Spalding, M. H., Weeks, D. P. & Yang, B. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat. Biotechnol. 30, 390–392 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. 118

    Wang, F. et al. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS ONE 11, e0154027 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. 119

    Ali, Z. et al. CRISPR/Cas9-mediated viral interference in plants. Genome Biol. 16, 238 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. 120

    Baltes, N. J. et al. Conferring resistance to geminiviruses with the CRISPR-Cas prokaryotic immune system. Nat. Plants 1, 15145 (2015).

    Article  CAS  Google Scholar 

  121. 121

    Ji, X., Zhang, H., Zhang, Y., Wang, Y. & Gao, C. Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants. Nat. Plants 1, 15144 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. 122

    Newton, A. C., Begg, G. S. & Swanston, J. S. Deployment of diversity for enhanced crop function. Ann. Appl. Biol. 154, 309–322 (2009).

    Article  Google Scholar 

  123. 123

    Mundt, C. C. Use of multiline cultivars and cultivar mixtures for disease management. Annu. Rev. Phytopathol. 40, 381–410 (2002).

    Article  CAS  PubMed  Google Scholar 

  124. 124

    Papaix, J., Goyeau, H., Du Cheyron, P., Monod, H. & Lannou, C. Influence of cultivated landscape composition on variety resistance: an assessment based on wheat leaf rust epidemics. New Phytol. 191, 1095–1107 (2011).

    Article  PubMed  Google Scholar 

  125. 125

    Lin, B. B. Resilience in agriculture through crop diversification: adaptive management for environmental change. BioScience 61, 183–193 (2011).

    Article  Google Scholar 

  126. 126

    Brummer, E. C. Diversity, stability, and sustainable American agriculture. Agron. J. 90, 1–2 (1998).

    Article  Google Scholar 

  127. 127

    Sapoukhina, N., Durel, C. E. & Le Cam, B. Spatial deployment of gene-for-gene resistance governs evolution and spread of pathogen populations. Theor. Ecol. 2, 229–238 (2009).

    Article  Google Scholar 

  128. 128

    Fabre, F., Rousseau, E., Mailleret, L. & Moury, B. Durable strategies to deploy plant resistance in agricultural landscapes. New Phytol. 192, 1064–1075 (2012).

    Article  Google Scholar 

  129. 129

    Sapoukhina, N. Paillard, S., Dedryver, F. & Vallavieille-Pope, D. Quantitative plant resistance in cultivar mixtures: wheat yellow rust as a modeling case study. New Phytol. 200, 888–897 (2013).

    Article  PubMed  Google Scholar 

  130. 130

    Tooker, J. F., Frank, S. D. & Steffan-Dewenter, I. Genotypically diverse cultivar mixtures for insect pest management and increased crop yields. J. Appl. Ecol. 49, 974–985 (2012).

    Article  Google Scholar 

  131. 131

    Trenbath, B. R. Intercropping for the management of pests and diseases. Field Crop Res. 34, 381–405 (1993).

    Article  Google Scholar 

  132. 132

    Chin, K. M. & Wolfe, M. S. The spread of Erysiphe graminis f. sp. hordei in mixtures of barley varieties. Plant Pathol. 33, 89–100 (1984).

    Article  Google Scholar 

  133. 133

    Davis, J. H. C. & Woolley, J. N. Genotypic requirement for intercropping. Field Crop Res. 34, 407–430 (1993).

    Article  Google Scholar 

  134. 134

    Finckh, M. R. Integration of breeding and technology into diversification strategies for disease control in modern agriculture. Eur. J. Plant Pathol. 121, 399–409 (2008).

    Article  Google Scholar 

  135. 135

    Robinson, R. A. Return to resistance: breeding crops to reduce pesticide dependence (IDRC, 1995).

    Google Scholar 

  136. 136

    Torriani, S. F., Brunner, P. C., McDonald, B. A. & Sierotzki, H. QoI resistance emerged independently at least 4 times in European populations of Mycosphaerella graminicola. Pest. Manag. Sci. 65, 155–162 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. 137

    Kliebenstein, D. J. Plant defense compounds: systems approaches to metabolic analysis. Annu. Rev. Phytopathol. 50, 155–173 (2012).

    Article  CAS  PubMed  Google Scholar 

  138. 138

    Wink, M. Plant breeding: importance of plant secondary metabolites for protection against pathogen and herbivores. Theor. Appl. Genet. 75, 225–233 (1988).

    Article  CAS  Google Scholar 

  139. 139

    Pieterse, C. M., de Jonge, R. & Berendsen, R. L. The soil-borne supremacy. Trends Plant Sci. 21, 171–173 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. 140

    Haney, C. H., Samuel, B. S., Bush, J. & Ausubel, F. M. Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nat. Plants 1, 15051 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. 141

    Esquinas-Alcázar, J. Protecting crop genetic diversity for food security: political, ethical and technical challenges. Nat. Rev. Genet. 6, 946–953 (2005).

    Article  PubMed  Google Scholar 

  142. 142

    Singh, A. et al. Stripe rust and leaf rust resistance QTL mapping, epistatic interactions, and co-localization with stem rust resistance loci in spring wheat evaluated over three continents. Theor. Appl. Genet. 127, 2465–2477 (2014).

    Article  CAS  PubMed  Google Scholar 

  143. 143

    Frankel, O. H. in Genetic manipulation: impact on man and society (eds Arber, W., Illemensee, K., Peacock, W. J. & Starlinger, P.) 161–170 (Cambridge Univ. Press, 1984).

    Google Scholar 

  144. 144

    Tanskley, S. D. & McCouch, S. R. Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277, 1063–1066 (1997).

    Article  Google Scholar 

  145. 145

    Pringle, R. B. & Scheffer, R. P. Host-specific plant toxins. Annu. Rev. Phytopathol. 2, 133–156 (1964).

    Article  CAS  Google Scholar 

  146. 146

    Büschges, R. et al. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88, 695–705 (1997).

    Article  PubMed  Google Scholar 

  147. 147

    Vogel, J. P., Raab, T. K., Schiff, C. & Somerville, S. C. PMR6, a pectate lyase-like gene required for powdery mildew susceptibility in Arabidopsis. Plant Cell 14, 2095–2106 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. 148

    Chen, L. Q. et al. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468, 527–532 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. 149

    Faris, J. D. et al. A unique wheat disease resistance-like gene govers effector triggered susceptibility to necrotrophic pathogens. Proc. Natl Acad. Sci. USA 107, 13544–13549 (2010).

    Article  PubMed  Google Scholar 

  150. 150

    Lorang, J. M., Sweat, T. A. & Wolpert, T. J. Plant disease susceptibility conferred by a “resistance” gene. Proc. Natl Acad. Sci. USA 104, 14861–14866 (2007).

    Article  CAS  PubMed  Google Scholar 

  151. 151

    Shi, G. et al. The hijacking of a receptor kinase-driven pathway by a wheat fungal pathogen leads to disease. Sci. Adv. 2, e1600822 (2014).

    Article  CAS  Google Scholar 

  152. 152

    Raffaele, S. et al. Remorin, a Solanaceae protein resident in membrane rafts and plasmodesmata, impairs potato virus X movement. Plant Cell 21, 1541–1555 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. 153

    Jamann, T. M. et al. A remorin gene is implicated in quantitative disease resistance in maize. Theor. Appl. Genet. 129, 591–602 (2016).

    Article  CAS  PubMed  Google Scholar 

  154. 154

    Bozkurt, T. O. et al. The plant membrane-associated REMORIN1.3 accumulates in discrete perihaustorial domains and enhances susceptibility to Phytophthora infestans. Plant Physiol. 165, 1005–1018 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. 155

    Belcher, A. R. et al. Analysis of quantitative disease resistance to southern leaf blight and of multiple disease resistance in maize, using near-isogenic lines. Theor. Appl. Genet. 124, 433–445 (2012).

    Article  PubMed  Google Scholar 

  156. 156

    Liu, Z. et al. Expanding maize genetic resources with predomestication alleles: maize-teosinte introgression populations. Plant Genome http://dx.doi.org/10.3835/plantgenome2015.07.0053 (2016).

  157. 157

    Tuinstra, M. R., Ejeta, G. & Goldsbrough, P. B. Heterogeneous inbred family (HIF) analysis: a method for developing near-isogenic lines that differ at quantitative trait loci. Theor. Appl. Genet. 95, 1005–1011 (1997).

    Article  CAS  Google Scholar 

  158. 158

    Inukai, T. et al. in Rice Genetics III. Proceedings of the Third International Rice Genetics Symposium (ed. Khush, G. S.) (International Rice Research Institute, Manila, 1996).

    Google Scholar 

  159. 159

    Chung, C. L. et al. Targeted discovery of quantitative trait loci for resistance to northern leaf blight and other diseases of maize. Theor. Appl. Genet. 123, 307–326 (2011).

    Article  PubMed  Google Scholar 

  160. 160

    Navara, S. & Smith, K. P. Using near-isogenic barley lines to validate deoxynivalenol (DON) QTL previously identified through association analysis. Theor. Appl. Genet. 127, 633–645 (2014).

    Article  CAS  PubMed  Google Scholar 

  161. 161

    Richardson, K. L., Vales, M. I., Kling, J. G., Mundt, C. C. & Hayes, P. M. Pyramiding and dissecting disease resistance QTL to barley stripe rust. Theor. Appl. Genet. 113, 485–495 (2006).

    Article  CAS  PubMed  Google Scholar 

  162. 162

    Chung, C. L. et al. Resistance loci affecting distinct stages of fungal pathogenesis: use of introgression lines for QTL mapping and characterization in the maize-Setosphaeria turcica pathosystem. BMC Plant Biol. 10, 103 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. 163

    Fukuoka, S. et al. Multiple functional polymorphisms in a single disease resistance gene in rice enhance durable resistance to blast. Sci. Rep. 4, 4550 (2014).

    Article  CAS  Google Scholar 

  164. 164

    Fukuoka, S. et al. A multiple gene complex on rice chromosome 4 is involved in durable resistance to rice blast. Theor. Appl. Genet. 125, 551–559 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. 165

    Debieu, M., Huard-Chauveau, C., Genissel, A., Roux, F. & Roby, D. Quantitative disease resistance to the bacterial pathogen Xanthomonas campestris involves an Arabidopsis immune receptor pair and a gene of unknown function. Mol. Plant Pathol. 17, 510–520 (2016).

    Article  CAS  PubMed  Google Scholar 

  166. 166

    Broglie, K. et al. Polynucleotides and methods for making plants resistant to fungal pathogens. US Patent WO2006107931A2 (2006).

  167. 167

    Hayashi, N. et al. Durable panicle blast-resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication. Plant J. 64, 498–510 (2010).

    Article  CAS  PubMed  Google Scholar 

  168. 168

    Delteil, A. et al. Several wall-associated kinases participate positively and negatively in basal defense against rice blast fungus. BMC Plant Biol. 16, 17 (2016). This study explores the roles of WAKs in basal resistance (PTI) to rice blast.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. 169

    Zuo, W. et al. A maize wall-associated kinase confers quantitative resistance to head smut. Nat. Genet. 47, 151–157 (2015).

    Article  CAS  PubMed  Google Scholar 

  170. 170

    Diener, A. C. & Ausubel, F. M. RESISTANCE TO FUSARIUM OXYSPORUM 1, a dominant Arabidopsis disease-resistance gene, is not race specific. Genetics 171, 305–321 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. 171

    Fu, D. et al. A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323, 1357–1360 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. 172

    Hu, K. -M., Qiu, D. -Y., Shen, X. -L., Li, X. -H. & Wang, S. -P. Isolation and manipulation of quantitative trait loci for disease resistance in rice using a candidate gene approach. Mol. Plant 1, 786–793 (2008).

    Article  CAS  PubMed  Google Scholar 

  173. 173

    Roux, F. et al. Resistance to phytopathogens e tutti quanti: placing plant quantitative disease resistance on the map. Mol. Plant Pathol. 15, 427–432 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  174. 174

    Deng, H., Liu, H., Li, X., Xiao, J. & Wang, S. A. CCCH-type zinc finger nucleic acid-binding protein quantitatively confers resistance against rice bacterial blight disease. Plant Physiol. 158, 876–889 (2012).

    Article  CAS  PubMed  Google Scholar 

  175. 175

    Moore, J. W. et al. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat. Genet. 47, 1494–1498 (2015).

    Article  CAS  PubMed  Google Scholar 

  176. 176

    Fukuoka, S. et al. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325, 998–1001 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the United States National Science Foundation grant IOS-1127076.

Author information

Affiliations

Authors

Contributions

All authors contributed to all aspects of this manuscript.

Corresponding author

Correspondence to Rebecca Nelson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

DATABASES

Genesys

PowerPoint slides

Supplementary information

Supplementary Information

Supplementary Table S1 (PDF 459 kb)

Glossary

Landraces

Traditional plant varieties that have been developed through informal (farmer-based) breeding.

Germplasm

Living material, such as seeds or tissues, from which new plants can be grown that is maintained for the purpose of preservation, breeding and other uses.

Durability

A property that enables resistance to remain effective when deployed over a large area under substantial disease pressure over a long time.

R-genes

Resistance genes of large effect that are inherited in a Mendelian fashion and typically, but not always, encode nucleotide-binding leucine-rich repeat proteins.

Genetic architecture

The number, locations and effects of genomic variants that give rise to phenotypic variation.

Pathosystems

Ecological subsystems defined by a specific disease. A plant pathosystem includes one or more host plant species along with the pathogen(s) that cause(s) the disease.

Effector protein

A protein that is secreted into host cells by a pathogen to suppress defence responses and alter other host biological processes.

Nucleotide-binding domain leucine-rich repeat containing (NLR) genes

A family of plant genes involved in pathogen recognition. Many resistance genes of large effect are NLR genes.

Biotrophic pathogens

Pathogens that obtain nutrients from living plant tissue.

Necrotrophic pathogens

Pathogens that obtain nutrients from dead plant tissue.

Quantitative resistance locus

(QRL). A genetic region that has been statistically associated with quantitatively inherited resistance to a disease and that is presumed to contain alleles or genes that affect resistance.

Races

Variants within a pathogen species that elicit differential responses from resistance genes.

Genetic linkage

The co-inheritance of loci that are close together on a given chromosome.

Pleiotropy

A phenomenon in which one gene influences multiple traits.

Monogenic resistance

Resistance that relies on a single resistance gene.

Monocultures

Agricultural systems involving a single crop. The concept is used in contrast to systems that involve crop diversity in time and/or space, such as intercropping and rotation systems.

Elite lines

Crop genotypes that have been selected for high performance in a breeding programme, often re-used as parents for further breeding cycles.

Cultivars

Cultivated varieties (genetic strains) of a domesticated crop plant.

Transgressive segregation

A phenomenon in which the progeny derived from a cross have more extreme phenotypes than either parent.

Multilines

Mixtures of plant cultivars that are genetically very similar but differ in their resistance genes that are grown together in a single plot.

Homeoalleles

Alleles of a gene or locus present in the homeologous chromosomes of a polyploid species.

Intercrops

Agricultural systems involving multiple crops in a single plot.

Cultivar mixtures

A mixture of multiple plant cultivars of the same species that are not necessarily closely related and are grown together in a single plot.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nelson, R., Wiesner-Hanks, T., Wisser, R. et al. Navigating complexity to breed disease-resistant crops. Nat Rev Genet 19, 21–33 (2018). https://doi.org/10.1038/nrg.2017.82

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing