Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transplant genetics and genomics

Key Points

  • Allograft transplantation is a genetically complex medical scenario that requires the consideration of the genomes of two individuals: those of the donor and the recipient.

  • Alloimmunity and histocompatibility are dependent on human leukocyte antigen (HLA) variants, but the role of non-HLA factors has been increasingly recognized in recent years.

  • The majority of genetic studies in the transplantation field have focused on variants in candidate genes, while genome-wide association studies (GWAS) and exome sequencing have just begun to be used in this field.

  • Diagnostic technologies in the transplant field have become increasingly sophisticated alongside the advances in genetic technologies, and they are starting to be used by clinicians.

  • Much larger genetic studies than have previously been conducted will be needed to identify associations with the wide variety of post-transplant outcomes in the many types of organ transplants. Initiatives to collect tissue and data from multiple centres, such as iGeneTRAiN, have been started to address the issue of low sample numbers and non-uniform characterization.

  • The integration of multiple omics technologies will be needed to gain a deeper understanding of the mechanisms and pathways underlying transplant outcomes.

Abstract

Ever since the discovery of the major histocompatibility complex, scientific and clinical understanding in the field of transplantation has been advanced through genetic and genomic studies. Candidate-gene approaches and recent genome-wide association studies (GWAS) have enabled a deeper understanding of the complex interplay of the donor–recipient interactions that lead to transplant tolerance or rejection. Genetic analysis in transplantation, when linked to demographic and clinical outcomes, has the potential to drive personalized medicine by enabling individualized risk stratification and immunosuppression through the identification of variants associated with immune-mediated complications, post-transplant disease or alterations in drug-metabolizing genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The omics of transplantation genetics.
Figure 2: Pathways of allorecognition.
Figure 3: The effect of transplant-associated variants on immune-mediated rejection.
Figure 4: Diagnostic approaches in transplantation.
Figure 5: An integrated approach combining clinical phenotype with transplantomics.

Similar content being viewed by others

References

  1. Morris, P. J. Transplantation — a medical miracle of the 20th century. N. Engl. J. Med. 351, 2678–2680 (2004). This is a good perspective article on the medical history of transplantation and the remaining challenges in the field.

    Article  CAS  PubMed  Google Scholar 

  2. Thorsby, E. A short history of HLA. Tissue Antigens 74, 101–116 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. McCaughan, J. A., McKnight, A. J., Courtney, A. E. & Maxwell, A. P. Epigenetics: time to translate into transplantation. Transplantation 94, 1–7 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Durbin, R. M. et al. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Carja, O., Macisaac, J. L., Mah, S. M., Henn, B. & Kobor, M. S. Worldwide patterns of human genetic and epigenetic variation. Preprint at bioRxiv http://dx.doi.org/10.1101/021931 (2015).

    Google Scholar 

  6. Aubert, O. et al. Long term outcomes of transplantation using kidneys from expanded criteria donors: prospective, population based cohort study. BMJ 351, h3557 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Klein, J. & Sato, A. The HLA system (first of two parts). N. Engl. J. Med. 343, 702–709 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Klein, J. & Sato, A. The HLA system (second of two parts). N. Engl. J. Med. 343, 782–786 (2000). References 7 and 8 provide a thorough two-part review of what the HLA system is and how it works.

    Article  CAS  PubMed  Google Scholar 

  9. Phelan, P. J., Conlon, P. J. & Sparks, M. A. Genetic determinants of renal transplant outcome: where do we stand? J. Nephrol. 27, 247–256 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. McVean, G. A. et al. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

  13. Schaub, M. A., Boyle, A. P., Kundaje, A., Batzoglou, S. & Snyder, M. Linking disease associations with regulatory information in the human genome. Genome Res. 22, 1748–1759 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xie, T. et al. Analysis of the gene-dense major histocompatibility complex class III region and its comparison to mouse. Genome Res. 13, 2621–2636 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Flajnik, M. F. & Kasahara, M. Comparative genomics of the MHC: glimpses into the evolution of the adaptive immune system. Immunity 15, 351–362 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Held, P. J. et al. The impact of HLA mismatches on the survival of first cadaveric kidney transplants. N. Engl. J. Med. 331, 765–770 (1994). This is one of the earliest studies showing the importance of matching of specific HLA types for allograft survival.

    Article  CAS  PubMed  Google Scholar 

  17. Wang, C. et al. High-throughput, high-fidelity HLA genotyping with deep sequencing. Proc. Natl Acad. Sci. USA 109, 8676–8681 (2012).

    Article  PubMed  Google Scholar 

  18. Ehrenberg, P. K. et al. High-throughput multiplex HLA genotyping by next-generation sequencing using multi-locus individual tagging. BMC Genomics 15, 864 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Weimer, E. T., Montgomery, M., Petraroia, R., Crawford, J. & Schmitz, J. L. Performance characteristics and validation of next-generation sequencing for human leucocyte antigen typing. J. Mol. Diagn. 18, 668–675 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Profaizer, T. et al. HLA genotyping in the clinical laboratory: comparison of next-generation sequencing methods. HLA 88, 14–24 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Effie Petersdorf, W. et al. High HLA-DP expression and graft-versus-host disease. N. Engl. J. Med. 373, 599–609 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Robinson, J. et al. The IPD and IMGT/HLA database: allele variant databases. Nucleic Acids Res. 43, D423–D431 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Sigdel, T. K. et al. Non-HLA antibodies to immunogenic epitopes predict the evolution of chronic renal allograft injury. J. Am. Soc. Nephrol. 23, 750–763 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Terasaki, P. I. Deduction of the fraction of immunologic and non-immunologic failure in cadaver donor transplants. Clin. Transpl. 2003, 449–452 (2003).

    Google Scholar 

  25. Pratschke, J., Weiss, S., Neuhaus, P. & Pascher, A. Review of nonimmunological causes for deteriorated graft function and graft loss after transplantation. Transpl. Int. 21, 512–522 (2008).

    Article  PubMed  Google Scholar 

  26. Van Bergen, J. et al. KIR-ligand mismatches are associated with reduced long-term graft survival in HLA-compatible kidney transplantation. Am.J. Transplant. 11, 1959–1964 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Tran, T. H. et al. No impact of KIR-ligand mismatch on allograft outcome in HLA-compatible kidney transplantation. Am. J. Transplant. 13, 1063–1068 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Mizutani, K. et al. Association of kidney transplant failure and antibodies against MICA. Hum. Immunol. 67, 683–691 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Zou, Y., Stastny, P., Susal, C., Dohler, B. & Opelz, G. Antibodies against MICA antigens and kidney-transplant rejection. N. Engl. J. Med. 357, 1293–1300 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Gratwohl, A., Döhler, B., Stern, M. & Opelz, G. H-Y as a minor histocompatibility antigen in kidney transplantation: a retrospective cohort study. Lancet 372, 49–53 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Kim, S. J. & Gill, J. S. H-Y incompatibility predicts short-term outcomes for kidney transplant recipients. J. Am. Soc. Nephrol. 20, 2025–2033 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tan, J. C. et al. H-Y antibody development associates with acute rejection in female patients with male kidney transplants. Transplantation 86, 75–81 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang, J. Y. C., Sigdel, T. K. & Sarwal, M. M. Self-antigens and rejection. Curr. Opin. Organ Transplant. 21, 362–367 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Porcheray, F. et al. Polyreactive antibodies developing amidst humoral rejection of human kidney grafts bind apoptotic cells and activate complement. Am.J. Transplant. 13, 2590–2600 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Gao, B. et al. Evidence to support a contribution of polyreactive antibodies to HLA serum reactivity. Transplantation 100, 217–226 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Subramanian, V. & Mohanakumar, T. Chronic rejection: a significant role for Th17-mediated autoimmune responses to self-antigens. Expert Rev. Clin. Immunol. 8, 663–672 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li, L. et al. Identifying compartment-specific non-HLA targets after renal transplantation by integrating transcriptome and 'antibodyome' measures. Proc. Natl Acad. Sci. USA 106, 4148–4153 (2009). This study integrates two different omics technologies to identify organ compartment-specific genes that are targeted by antibodies specific for non-HLA molecules.

    Article  PubMed  Google Scholar 

  38. Zhang, Q. & Reed, E. F. The importance of non-HLA antibodies in transplantation. Nat. Rev. Nephrol. 12, 484–495 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li, L. et al. Compartmental localization and clinical relevance of MICA antibodies after renal transplantation. Transplantation 89, 312–319 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sutherland, S. M. et al. Protein microarrays identify antibodies to protein kinase Cζ that are associated with a greater risk of allograft loss in pediatric renal transplant recipients. Kidney Int. 76, 1277–1283 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Delville, M. et al. A circulating antibody panel for pretransplant prediction of FSGS recurrence after kidney transplantation. Sci. Transl Med. 6, 256ra136 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jackson, A. M. et al. Endothelial cell antibodies associated with novel targets and increased rejection. J. Am. Soc. Nephrol. 26, 1161–1171 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Georgiou, G. et al. The promise and challenge of high-throughput sequencing of the antibody repertoire. Nat. Biotechnol. 32, 158–168 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sirota, M., Sigdel, T., Boyd, S., Fire, A. & Sarwal, M. VDJ immune repertoire sequencing predicts patients at risk of alloimmune injury. Am. J. Transplant. 16 (Suppl. 3), abstr. 136 (2016).

    Google Scholar 

  45. Goldfarb-Rumyantzev, A. S. & Naiman, N. Genetic predictors of acute renal transplant rejection. Nephrol. Dial. Transplant. 25, 1039–1047 (2010).

    Article  PubMed  Google Scholar 

  46. Sankaran, D. et al. Cytokine gene polymorphisms predict acute graft rejection following renal transplantation. Kidney Int. 56, 281–288 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Singh, R., Srivastava, P., Srivastava, A. & Mittal, R. D. Matrix metalloproteinase (MMP-9 and MMP-2) gene polymorphisms influence allograft survival in renal transplant recipients. Nephrol. Dial. Transplant. 25, 3393–3401 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Lemos, F. B. et al. The beneficial effects of recipient-derived vascular endothelial growth factor on graft survival after kidney transplantation. Transplantation 79, 1221–1225 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Ghisdal, L. et al. Genome-wide association study of acute renal graft rejection. Am. J. Transplant. 17, 201–209 (2017). This GWAS is the first conducted in solid-organ transplantation to identify genetic associations with acute rejection.

    Article  CAS  PubMed  Google Scholar 

  50. Sham, P., Bader, J. S., Craig, I., O'Donovan, M. & Owen, M. DNA pooling: a tool for large-scale association studies. Nat. Rev. Genet. 3, 862–871 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Sanders, M. L. et al. Clinical and genetic factors associated with cutaneous squamous cell carcinoma in kidney and heart transplant recipients. Transplant. Direct 1, e13 (2015).

    Article  CAS  PubMed Central  Google Scholar 

  52. McCaughan, J. A., McKnight, A. J. & Maxwell, A. P. Genetics of new-onset diabetes after transplantation. J. Am. Soc. Nephrol. 25, 1037–1049 (2014).

    Article  PubMed  Google Scholar 

  53. Oetting, W. S. et al. Genomewide association study of tacrolimus concentrations in African American kidney transplant recipients identifies multiple CYP3A5 alleles. Am. J. Transplant. 16, 574–582 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. O'Brien, R. P. et al. A genome-wide association study of recipient genotype and medium-term kidney allograft function. Clin. Transplant. 27, 379–387 (2013).

    Article  PubMed  Google Scholar 

  55. Pihlstrøm, H. K. et al. Single nucleotide polymorphisms and long term clinical outcome in renal transplant patients. A validation study. Am. J. Transplant. 17, 528–533 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Zhong, H. & Prentice, R. L. Correcting “winner's curse” in odds ratios from genome-wide association findings for major complex human diseases. Genet. Epidemiol. 34, 78–91 (2011).

    Google Scholar 

  57. Sindhi, R. et al. Genetic variants in major histocompatibility complex-linked genes associate with pediatric liver transplant rejection. Gastroenterology 135, 830–839 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kawase, T., Nannya, Y., Torikai, H., Yamamoto, G. & Onizuka, M. Identification of human minor histocompatibility antigens based on genetic association with highly parallel genotyping of pooled DNA. Blood 111, 3286–3294 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Kamei, M. et al. HapMap scanning of novel human minor histocompatibility antigens. Blood 113, 5041–5048 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chien, J. W. et al. Improving hematopoietic cell transplant outcomes in a new era of genomic research. Biol. Blood Marrow Transplant. 15, 42–45 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hansen, J. A., Chien, J. W., Warren, E. H., Zhao, L. P. & Martin, P. J. Defining genetic risk for graft-versus-host disease and mortality following allogeneic hematopoietic stem cell transplantation. Curr. Opin. Hematol. 17, 483–492 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Jason Chien, W. et al. Evaluation of published single nucleotide polymorphisms associated with acute GVHD. Blood 119, 5311–5319 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. McCarroll, S. A. et al. Integrated detection and population-genetic analysis of SNPs and copy number variation. Nat. Genet. 40, 1166–1174 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. McCarroll, S. A. et al. Donor–recipient mismatch for common gene deletion polymorphisms in graft-versus-host disease. Nat. Genet. 41, 1341–1344 (2009). This study uses a novel genome-wide array to detect copy number variants, which enabled the identification of novel miHAs in GVHD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sato-Otsubo, A. et al. Genome-wide surveillance of mismatched alleles for graft versus host disease in stem cell transplantation. Blood 126, 2752–2764 (2015). This GWAS is the largest conducted in HSCT to date and identified numerous loci that are associated with GVHD.

    Article  CAS  PubMed  Google Scholar 

  66. Ogawa, S. et al. Exploration of the genetic basis of GVHD by genetic association studies. Biol. Blood Marrow Transplant. 15, 39–41 (2009).

    Article  PubMed  Google Scholar 

  67. Bari, R. et al. Genome-wide single-nucleotide polymorphism analysis revealed SUFU suppression of acute graft-versus-host disease through downregulation of HLA-DR expression in recipient dendritic cells. Sci. Rep. 5, 11098 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hong, E. P. & Park, J. W. Sample size and statistical power calculation in genetic association studies. Genomics Inform. 10, 117–122 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Purcell, S., Cherny, S. S. & Sham, P. C. Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 19, 149–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Genovese, G. et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329, 841–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Olabisi, O. A. et al. APOL1 kidney disease risk variants cause cytotoxicity by depleting cellular potassium and inducing stress-activated protein kinases. Proc. Natl Acad. Sci. USA 113, 830–837 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Kruzel-Davila, E. et al. APOL1-mediated cell injury involves disruption of conserved trafficking processes. J. Am. Soc. Nephrol. http://dx.doi.org/10.1681/ASN.2016050546 (2016).

  73. Callender, C. O. et al. Blacks as donors for transplantation: suboptimal outcomes overcome by transplantation into other minorities. Transplant. Proc. 40, 995–1000 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Reeves-Daniel, A. M. et al. The APOL1 gene and allograft survival after kidney transplantation. Am. J. Transplant. 11, 1025–1030 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Freedman, B. I. et al. Apolipoprotein L1 gene variants in deceased organ donors are associated with renal allograft failure. Am. J. Transplant. 15, 1615–1622 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Freedman, B. I. et al. APOL1 genotype and kidney transplantation outcomes from deceased African American donors. Transplantation 100, 194–202 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lee, B. T. et al. The APOL1 genotype of African American kidney transplant recipients does not impact 5-year allograft survival. Am. J. Transplant. 12, 1924–1928 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Grams, M. E. et al. Kidney-failure risk projection for the living kidney-donor candidate. N. Engl. J. Med. 374, 411–421 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Parsa, A. et al. APOL1 risk variants, race, and progression of chronic kidney disease. N. Engl. J. Med. 369, 2183–2196 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zwang, N. A. et al. APOL1-associated end-stage renal disease in a living kidney transplant donor. Am. J. Transplant. 16, 3568–3572 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Ojo, A. & Knoll, G. A. APOL1 genotyping of African American deceased organ donors: not just yet. Am. J. Transplant. 15, 1457–1458 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Ross, L. F. & Thistlethwaite, J. R. Introducing genetic tests with uncertain implications in living donor kidney transplantation: ApoL1 as a case study. Prog. Transplant. 26, 203–206 (2016).

    Article  PubMed  Google Scholar 

  83. Freedman, B. I. & Julian, B. A. Should kidney donors be genotyped for APOL1 risk alleles? Kidney Int. 87, 671–673 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cohen, D. M., Mittalhenkle, A., Scott, D. L., Young, C. J. & Norman, D. J. African American living-kidney donors should be screened for APOL1 risk alleles. Transplantation 92, 722–725 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Chandraker, A. The real world impact of APOL1 variants on kidney transplantation. Transplantation 100, 16–17 (2016).

    Article  PubMed  Google Scholar 

  86. Ma, J. et al. Deceased donor multidrug resistance protein 1 and caveolin 1 gene variants may influence allograft survival in kidney transplantation. Kidney Int. 88, 584–592 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Oetting, W. S. et al. Donor polymorphisms of Toll-like receptor 4 associated with graft failure in liver transplant recipients. Liver Transplant. 18, 1399–1405 (2012).

    Article  Google Scholar 

  88. Jacobson, P. A. et al. Novel polymorphisms associated with tacrolimus trough concentrations: results from a multicenter kidney transplant consortium. Transplantation 91, 300–308 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tavira, B. et al. Mitochondrial DNA haplogroups and risk of new-onset diabetes among tacrolimus-treated renal transplanted patients. Gene 538, 195–198 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Farh, K. K.-H. et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518, 337–343 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. [No authors listed]. On beyond GWAS. Nat. Genet. 42, 551–551 (2010).

  92. Thomson, R. et al. Evolution of the primate trypanolytic factor APOL1. Proc. Natl Acad. Sci. USA 111, E2130–E2139 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Dorr, C. R. et al. Deceased-donor apolipoprotein L1 renal-risk variants have minimal effects on liver transplant outcomes. PLoS ONE 11, e0152775 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Oetting, W. S. et al. Validation of single nucleotide polymorphisms associated with acute rejection in kidney transplant recipients using a large multi-center cohort. Transpl. Int. 24, 1231–1238 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cole, B., van Setten, J. & Keating, B. The distance between us: the landscape of recipient-specific loss-of-function in solid organ transplantation and association with rejection-free graft survival. Am. J. Transplant. 16 (Suppl. 3), abstr. D304 (2016).

    Google Scholar 

  96. Reindl-Schwaighofer, R. et al. Alloimmunity through non-HLA epitopes in kidney transplantation. Am.J. Transplant. 16 (Suppl. 3), abstr. D30 (2016).

    Google Scholar 

  97. Köttgen, A. et al. Multiple loci associated with indices of renal function and chronic kidney disease. Nat. Genet. 41, 712–717 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Menon, M. C. et al. Intronic locus determines SHROOM3 expression and potentiates renal allograft fibrosis. J. Clin. Invest. 125, 208–221 (2015).

    Article  PubMed  Google Scholar 

  99. Sampson, J. K. et al. Whole exome sequencing to estimate alloreactivity potential between donors and recipients in stem cell transplantation. Br. J. Haematol. 166, 566–570 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mesnard, L. et al. Exome sequencing and prediction of long-term kidney allograft function. PLoS Comput. Biol. 12, e1005088 (2015).

    Article  CAS  Google Scholar 

  101. Todd, J. L. et al. Whole exome sequencing: a novel strategy to understand chronic lung allograft dysfunction (CLAD). J. Heart Lung Transplant. 33, S140 (2014).

    Article  Google Scholar 

  102. Shreders, A., Asmann, Y., Wang, X. & Roy, V. Using whole exome sequencing to identify genetic variation and polymorphisms associated with graft versus host disease in allogeneic stem cell transplant recipients. Blood 126, 5414 (2015).

    Google Scholar 

  103. Keating, B., Li, Y., Olthoff, K., Wang, J. & Shaked, A. Application of second generation sequencing and AlloAntibody screening to the organ transplantation arena. J. Am. Transplant. 15 (Suppl. 3), abstr. 436 (2015).

    Google Scholar 

  104. Dorr, C. et al. Differentially expressed gene transcripts using RNA sequencing from the blood of immunosuppressed kidney allograft recipients. PLoS ONE 10, e0125045 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lin, Y. et al. RNA-seq analysis of clinical-grade osteochondral allografts reveals activation of early response genes. J. Orthop. Res. 34, 1950–1959 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gregson, A. L. et al. Altered exosomal RNA profiles in bronchoalveolar lavage from lung transplants with acute rejection. Am. J. Respir. Crit. Care Med. 192, 1490–1503 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ben-Dov, I. et al. MicroRNA sequence profiles of human kidney allograft with or without tubulointerstitial fibrosis. Transplantation 94, 1086–1094 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Naesens, M., Kuypers, D. R. J. & Sarwal, M. Calcineurin inhibitor nephrotoxicity. Clin. J. Am. Soc. Nephrol. 4, 481–508 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Staatz, C., Taylor, P. & Tett, S. Low tacrolimus concentrations and increased risk of early acute rejection in adult renal transplantation. Nephrol. Dial. Transplant. 16, 1905–1909 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Relling, M. V. & Evans, W. E. Pharmacogenomics in the clinic. Nature 526, 343–350 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hewett, M. et al. PharmGKB: the Pharmacogenetics Knowledge Base. Nucleic Acids Res. 30, 163–165 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhang, X. et al. Influence of CYP3A5 and MDR1 polymorphisms on tacrolimus concentration in the early stage after renal transplantation. Clin. Transplant. 19, 638–643 (2005).

    Article  PubMed  Google Scholar 

  113. Vafadari, R. et al. Genetic polymorphisms in ABCB1 influence the pharmacodynamics of tacrolimus. Ther. Drug Monit. 35, 459–465 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. Hustert, E. et al. The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics 11, 773–779 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Kuehl, P. et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat. Genet. 27, 383–391 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Pallet, N. et al. Kidney transplant recipients carrying the CYP3A4*22 allelic variant have reduced tacrolimus clearance and often reach supratherapeutic tacrolimus concentrations. Am. J. Transplant. 15, 800–805 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Lamba, J., Hebert, J. M., Schuetz, E. G., Klein, T. E. & Altman, R. B. PharmGKB summary: very important pharmacogene information for CYP3A5. Pharmacogenet. Genomics 22, 555–558 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Birdwell, K. A. et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for CYP3A5 genotype and tacrolimus dosing. Clin. Pharmacol. Ther. 98, 19–24 (2015). These guidelines represent the integration of knowledge from numerous studies on CYP3A5 genotype and aim to change clinical practice in transplantation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Passey, C. et al. Validation of tacrolimus equation to predict troughs using genetic and clinical factors. Pharmacogenomics 13, 1141–1147 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sanghavi, K. et al. Genotype-guided tacrolimus dosing in African-American kidney transplant recipients. Pharmacogenomics J. 17, 61–68 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Pallet, N. et al. Long-term clinical impact of adaptation of initial tacrolimus dosing to CYP3A5 genotype. Am. J. Transplant. 16, 2670–2675 (2016).

    Article  CAS  PubMed  Google Scholar 

  122. Rojas, L. et al. Effect of CYP3A5*3 on kidney transplant recipients treated with tacrolimus: a systematic review and meta-analysis of observational studies. Pharmacogenomics J. 15, 38–48 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Macher, H. C. et al. Monitoring of transplanted liver health by quantification of organ-specific genomic marker in circulating DNA from receptor. PLoS ONE 9, e113987 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Moreira, V. G., García, B. P., Martín, J. M. B., Suárez, F. O. & Alvarez, F. V. Cell-free DNA as a noninvasive acute rejection marker in renal transplantation. Clin. Chem. 55, 1958–1966 (2009).

    Article  CAS  Google Scholar 

  125. Sigdel, T. K. et al. A rapid noninvasive assay for the detection of renal transplant injury. Transplantation 96, 97–101 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Josephson, M. A. Monitoring and managing graft health in the kidney transplant recipient. Clin. J. Am. Soc. Nephrol. 6, 1774–1780 (2011).

    Article  PubMed  Google Scholar 

  127. Lo, D. J., Kaplan, B. & Kirk, A. D. Biomarkers for kidney transplant rejection. Nat. Rev. Nephrol. 10, 215–225 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Viklicky, O., Hribova, P. & Brabcova, I. Molecular markers of rejection and tolerance: lessons from clinical research. Nephrol. Dial. Transplant. 28, 2701–2708 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. Suthanthiran, M. et al. Urinary-cell mRNA profile and acute cellular rejection in kidney allografts. N. Engl. J. Med. 190, 2175–2176 (2013).

    Google Scholar 

  130. Keslar, K. S. et al. Multicenter evaluation of a standardized protocol for noninvasive gene expression profiling. Am. J. Transplant. 13, 1891–1897 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Roedder, S. et al. The kSORT assay to detect renal transplant patients at high risk for acute rejection: results of the multicenter AART study. PLoS Med. 11, e1001759 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Gimino, V. J., Lande, J. D., Berryman, T. R., King, R. A. & Hertz, M. I. Gene expression profiling of bronchoalveolar lavage cells in acute lung rejection. Am. J. Respir. Crit. Care Med. 168, 1237–1242 (2003).

    Article  PubMed  Google Scholar 

  133. Morgun, A. et al. Molecular profiling improves diagnoses of rejection and infection in transplanted organs. Circ. Res. 98, e74–e83 (2006).

    Article  CAS  PubMed  Google Scholar 

  134. Halloran, P. F. et al. Microarray diagnosis of antibody-mediated rejection in kidney transplant biopsies: an international prospective study (INTERCOM). Am. J. Transplant. 13, 2865–2874 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. Sellarés, J. et al. Molecular diagnosis of antibody-mediated rejection in human kidney transplants. Am. J. Transplant. 13, 971–983 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Halloran, P. F., Merino Lopez, M. & Barreto Pereira, A. Identifying subphenotypes of antibody-mediated rejection in kidney transplants. Am. J. Transplant. 16, 908–920 (2016).

    Article  CAS  PubMed  Google Scholar 

  137. Li, L. et al. A peripheral blood diagnostic test for acute rejection in renal transplantation. Am. J. Transplant. 12, 2710–2718 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Li, L. et al. Identification of common blood gene signatures for the diagnosis of renal and cardiac acute allograft rejection. PLoS ONE 8, e82153 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. De Vlaminck, I. et al. Circulating cell-free DNA enables noninvasive diagnosis of heart transplant rejection. Sci. Transl Med. 6, 241ra77 (2014). This is the first study of its kind in transplantation, and it validates the use of cfDNA as a marker of organ transplant rejection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Snyder, T. M., Khush, K. K., Valantine, H. A. & Quake, S. R. Universal noninvasive detection of solid organ transplant rejection. Proc. Natl Acad. Sci. USA 108, 6229–6234 (2011).

    Article  PubMed  Google Scholar 

  141. De Vlaminck, I. et al. Noninvasive monitoring of infection and rejection after lung transplantation. Proc. Natl Acad. Sci. USA 112, 13336–13341 (2015).

    Article  CAS  PubMed  Google Scholar 

  142. Beck, J. et al. Digital droplet PCR for rapid quantification of donor DNA in the circulation of transplant recipients as a potential universal biomarker of graft injury. Clin. Chem. 59, 1732–1741 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. Aljurf, M. et al. Chimerism analysis of cell-free DNA in patients treated with hematopoietic stem cell transplantation may predict early relapse in patients with hematologic malignancies. Biotechnol. Res. Int. 2016, 8589270 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Burnham, P. et al. Single-stranded DNA library preparation uncovers the origin and diversity of ultrashort cell-free DNA in plasma. Sci. Rep. 6, 27859 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Burra, P. & De Bona, M. Quality of life following organ transplantation. Transpl. Int. 20, 397–409 (2007).

    Article  PubMed  Google Scholar 

  146. Xiong, J. et al. Lack of association between interleukin-10 gene polymorphisms and graft rejection risk in kidney transplantation recipients: a meta-analysis. PLoS ONE 10, e0127540 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Liu, F. et al. Interleukin-10-1082G/A polymorphism and acute liver graft rejection: a meta-analysis. World J. Gastroenterol. 18, 847–854 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Arora, M. et al. Validation study failed to confirm an association between genetic variants in the base excision repair pathway and transplant-related mortality and relapse after hematopoietic cell transplantation. Biol. Blood Marrow Transplant. 22, 1531–1532 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Thyagarajan, B. et al. Association between genetic variants in the base excision repair pathway and outcomes after hematopoietic cell transplantations. Biol. Blood Marrow Transplant. 16, 1084–1089 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. International Genetics & Translational Research in Transplantation Network. Design and implementation of the International Genetics and Translational Research in Transplantation Network. Transplantation 99, 2401–2412 (2015). This paper reports on the newly conceived iGeneTRAiN initiative, which seeks to alleviate many of the sample size and reproducibility issues found in transplantation studies by establishing an international consortium.

  151. Li, Y. R. et al. Concept and design of a genome-wide association genotyping array tailored for transplantation-specific studies. Genome Med. 7, 90 (2015). This paper delineates the creation of a transplantation-specific GWAS array that will be used on samples collected by the iGeneTRAiN initiative.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Sigdel, T. K. et al. Mining the human urine proteome for monitoring renal transplant injury. Kidney Int. 89, 1244–1252 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Crespo, E. et al. Molecular and functional noninvasive immune monitoring in the ESCAPE study for prediction of subclinical renal allograft rejection. Transplantation http://dx.doi.org/10.1097/TP.0000000000001287 (2016). This paper reports a study of one of the earliest clinically available gene expression-based non-invasive diagnostics in the field of kidney transplantation.

  154. Grskovic, M. et al. Validation of a clinical-grade assay to measure donor-derived cell-free DNA in solid organ transplant recipients. J. Mol. Diagn. 18, 890–902 (2016).

    Article  CAS  PubMed  Google Scholar 

  155. Pham, M. X. et al. Gene-expression profiling for rejection surveillance after cardiac transplantation. N. Engl. J. Med. 362, 1890–1900 (2010).

    Article  CAS  PubMed  Google Scholar 

  156. Sarwal, M. M. et al. Transplantomics and biomarkers in organ transplantation: a report from the first international conference. Transplantation 91, 379–382 (2011).

    PubMed  PubMed Central  Google Scholar 

  157. Nakorchevsky, A. et al. Molecular mechanisms of chronic kidney transplant rejection via large-scale proteogenomic analysis of tissue biopsies. J. Am. Soc. Nephrol. 21, 362–373 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Akhtar, M. Z. et al. Using an integrated -omics approach to identify key cellular processes that are disturbed in the kidney after brain death. Am. J. Transplant. 16, 1421–1440 (2016).

    Article  CAS  PubMed  Google Scholar 

  159. Gehlenborg, N. et al. Visualization of omics data for systems biology. Nat. Methods 7, S56–S68 (2010).

    Article  CAS  PubMed  Google Scholar 

  160. Lee, D. et al. Rapid determination of Perv copy number from porcine genomic DNA by real-time polymerase chain reaction. Anim. Biotechnol. 22, 175–180 (2011).

    Article  CAS  PubMed  Google Scholar 

  161. Oriol, R., Ye, Y., Koren, E. & Cooper, D. K. Carbohydrate antigens of pig tissues reacting with human natural antibodies as potential targets for hyperacute vascular rejection in pig-to-man organ xenotransplantation. Transplantation 56, 1433–1442 (1993).

    Article  CAS  PubMed  Google Scholar 

  162. Yang, L. et al. Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science 350, 1101–1104 (2015).

    Article  CAS  PubMed  Google Scholar 

  163. Sato, M. et al. The combinational use of CRISPR/Cas9-based gene editing and targeted toxin technology enables efficient biallelic knockout of the α-1,3-galactosyltransferase gene in porcine embryonic fibroblasts. Xenotransplantation 21, 291–300 (2014).

    Article  PubMed  Google Scholar 

  164. Billingham, R. E., Brent, L. & Medawar, P. B. 'Actively acquired tolerance' of foreign cells. Nature 172, 603–606 (1953). This study reports the discovery of acquired tolerance, work for which the authors received the 1953 Nobel Prize.

    Article  CAS  PubMed  Google Scholar 

  165. Wood, K. K. & Sakaguchi, S. Regulatory T cells in transplantation tolerance. Nat. Rev. Immunol. 3, 200–210 (2003).

    Article  CAS  Google Scholar 

  166. Luan, Y. et al. Monocytic myeloid-derived suppressor cells accumulate in renal transplant patients and mediate CD4+Foxp3+ Treg expansion. Am. J. Transplant. 13, 3123–3131 (2013).

    Article  CAS  PubMed  Google Scholar 

  167. Drujont, L. et al. Evaluation of the therapeutic potential of bone marrow-derived myeloid suppressor cell (MDSC) adoptive transfer in mouse models of autoimmunity and allograft rejection. PLoS ONE 9, e100013 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Tang, Q. & Bluestone, J. A. Regulatory T-cell therapy in transplantation: moving to the clinic. Cold Spring Harb. Perspect. Med. 3, a015552 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Brouard, S. et al. Identification of a peripheral blood transcriptional biomarker panel associated with operational renal allograft tolerance. Proc. Natl Acad. Sci. USA 104, 15448–15453 (2007).

    Article  PubMed  Google Scholar 

  170. Chesneau, M. et al. Tolerant kidney transplant patients produce B cells with regulatory properties. J. Am. Soc. Nephrol. 26, 2588–2598 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Roedder, S. et al. A three-gene assay for monitoring immune quiescence in kidney transplantation. J. Am. Soc. Nephrol. 26, 2042–2053 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kawai, T. et al. Long-term results in recipients of combined HLA-mismatched kidney and bone marrow transplantation without maintenance immunosuppression. Am. J. Transplant. 14, 1599–1611 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Leventhal, J. R. et al. Immune reconstitution/immunocompetence in recipients of kidney plus hematopoietic stem/facilitating cell transplants. Transplantation 99, 288–298 (2015).

    Article  CAS  PubMed  Google Scholar 

  174. Le Guen, V. et al. Alloantigen gene transfer to hepatocytes promotes tolerance to pancreatic islet graft by inducing CD8+ regulatory T cells. J. Hepatol. http://dx.doi.org/10.1016/j.jhep.2016.11.019 (2016).

  175. Jindra, P. T., Tripathi, S., Tian, C., Iacomini, J. & Bagley, J. Tolerance to MHC class II disparate allografts through genetic modification of bone marrow. Gene Ther. 20, 478–486 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Morris, H. et al. Tracking donor-reactive T cells: evidence for clonal deletion in tolerant kidney transplant patients. Sci. Transl Med. 7, 272ra10 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Rebollo-Mesa, I. et al. Biomarkers of tolerance in kidney transplantation: are we predicting tolerance or response to immunosuppressive treatment? Am. J. Transplant. 16, 3443–3457 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Sagoo, P. et al. Development of a cross-platform biomarker signature to detect renal transplant tolerance in humans. J. Clin. Invest. 120, 1848–1861 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Roedder, S., Gao, X. & Sarwal, M. M. The pits and pearls in translating operational tolerance biomarkers into clinical practice. Curr. Opin. Organ Transplant. 17, 655–662 (2012).

    Article  PubMed  Google Scholar 

  180. Martínez-Llordella, M. et al. Using transcriptional profiling to develop a diagnostic test of operational tolerance in liver transplant recipients. J. Clin. Invest. 118, 2845–2857 (2008).

    PubMed  PubMed Central  Google Scholar 

  181. Bohne, F. et al. Intra-graft expression of genes involved in iron homeostasis predicts the development of operational tolerance in human liver transplantation. J. Clin. Invest. 122, 368–382 (2012).

    Article  CAS  PubMed  Google Scholar 

  182. Anglicheau, D. et al. MicroRNA expression profiles predictive of human renal allograft status. Proc. Natl Acad. Sci. USA 106, 5330–5335 (2009).

    Article  PubMed  Google Scholar 

  183. Sui, W. et al. Microarray analysis of microRNA expression in acute rejection after renal transplantation. Transpl. Immunol. 19, 81–85 (2008).

    Article  CAS  PubMed  Google Scholar 

  184. Danger, R. et al. Expression of miR-142-5p in peripheral blood mononuclear cells from renal transplant patients with chronic antibody-mediated rejection. PLoS ONE 8, e60702 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Matz, M. et al. Free microRNA levels in plasma distinguish T-cell mediated rejection from stable graft function after kidney transplantation. Transpl. Immunol. 39, 52–59 (2016).

    Article  CAS  PubMed  Google Scholar 

  186. Oghumu, S. et al. Acute pyelonephritis in renal allografts: a new role for microRNAs? Transplantation 97, 559–568 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Shaked, A. et al. An ectopically expressed serum miRNA signature is prognostic, diagnostic, and biologically related to liver allograft rejection. Hepatology 65, 269–280 (2017).

    Article  CAS  PubMed  Google Scholar 

  188. Xu, Z., Sharma, M., Gelman, A., Hachem, R. & Mohanakumar, T. Significant role for microRNA-21 affecting Toll-like receptor pathway in primary graft dysfunction after human lung transplantation. J. Heart Lung Transplant. 36, 331–339 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Van Huyen, J. P. D. et al. MicroRNAs as non-invasive biomarkers of heart transplant rejection. Eur. Heart J. 35, 3194–3202 (2014).

    Article  CAS  Google Scholar 

  190. Asaoka, T. et al. MicroRNA signature of intestinal acute cellular rejection in formalin-fixed paraffin-embedded mucosal biopsies. Am. J. Transplant. 12, 458–468 (2012).

    Article  CAS  PubMed  Google Scholar 

  191. Kanak, M. A. et al. Evaluation of microRNA375 as a novel biomarker for graft damage in clinical islet transplantation. Transplantation 99, 1568–1573 (2015).

    Article  CAS  PubMed  Google Scholar 

  192. Ulbing, M. et al. MicroRNAs 223-3p and 93-5p in patients with chronic kidney disease before and after renal transplantation. Bone 95, 115–123 (2017).

    Article  CAS  PubMed  Google Scholar 

  193. Gunasekaran, M. et al. Donor-derived exosomes with lung self-antigens in human lung allograft rejection. Am. J. Transplant. 17, 474–484 (2017).

    Article  CAS  PubMed  Google Scholar 

  194. Scian, M. J. et al. MicroRNA profiles in allograft tissues and paired urines associate with chronic allograft dysfunction with IF/TA. Am. J. Transplant. 11, 2110–2122 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Wei, L., Gong, X., Martinez, O. M. & Krams, S. M. Differential expression and functions of microRNAs in liver transplantation and potential use as non-invasive biomarkers. Transpl. Immunol. 29, 123–129 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Glowacki, F. et al. Increased circulating miR-21 levels are associated with kidney fibrosis. PLoS ONE 8, e58014 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Chau, B. N. et al. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci. Transl Med. 4, 121ra18 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Wilflingseder, J. et al. MiRNA profiling discriminates types of rejection and injury in human renal allografts. Transplantation 95, 835–841 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Gupta, S. K. et al. MiR-21 promotes fibrosis in an acute cardiac allograft transplantation model. Cardiovasc. Res. 110, 215–226 (2016).

    Article  CAS  PubMed  Google Scholar 

  200. Huibers, M. M. H. et al. Changes of plasma microRNAs in heart transplantation patients do not reflect microRNA changes in the cardiac allograft vasculopathy vessel wall. J. Heart Lung Transplant. 32, S242 (2013).

    Google Scholar 

  201. Su, S. et al. MiR-142-5p and miR-130a-3p are regulated by IL-4 and IL-13 and control profibrogenic macrophage program. Nat. Commun. 6, 8523 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Godwin, J. G. et al. Identification of a microRNA signature of renal ischemia reperfusion injury. Proc. Natl Acad. Sci. USA 107, 14339–14344 (2010).

    Article  PubMed  Google Scholar 

  203. Day, E., Kearns, P. K., Taylor, C. J. & Bradley, J. A. Transplantation between monozygotic twins. Transplantation 98, 485–489 (2014).

    Article  PubMed  Google Scholar 

  204. Rodriguez, R. M. et al. DNA methylation dynamics in blood after hematopoietic cell transplant. PLoS ONE 8, e56931 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Paul, D. S. et al. A donor-specific epigenetic classifier for acute graft-versus-host disease severity in hematopoietic stem cell transplantation. Genome Med. 7, 128 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Mehta, T. K. et al. Quantitative detection of promoter hypermethylation as a biomarker of acute kidney injury during transplantation. Transplant. Proc. 38, 3420–3426 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Lehmann-Werman, R. et al. Identification of tissue-specific cell death using methylation patterns of circulating DNA. Proc. Natl Acad. Sci. USA 113, E1826–E1834 (2016).

    Article  CAS  PubMed  Google Scholar 

  208. Sun, K. et al. Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments. Proc. Natl Acad. Sci. USA 112, 201508736 (2015). This study delineates a method that can identify the organ-specific origin of circulating cfDNA in transplantation.

    Google Scholar 

  209. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02088931 (2016).

  210. Hoffmann, P. et al. Loss of FOXP3 expression in natural human CD4+CD25+ regulatory T cells upon repetitive in vitro stimulation. Eur. J. Immunol. 39, 1088–1097 (2009).

    Article  CAS  PubMed  Google Scholar 

  211. Tao, R. et al. Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat. Med. 13, 1299–1307 (2007).

    Article  CAS  PubMed  Google Scholar 

  212. Van Loosdregt, J. et al. Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization. Blood 115, 965–974 (2010).

    Article  CAS  PubMed  Google Scholar 

  213. Benichou, G. Direct and indirect antigen recognition: the pathways to allograft immune rejection. Front. Biosci. 4, D476–D480 (1999).

    CAS  PubMed  Google Scholar 

  214. Benichou, G. Direct versus indirect allorecognition pathways: on the right track. Am. J. Transplant. 9, 655–656 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Conlon, T. M. et al. Germinal center alloantibody responses are mediated exclusively by indirect-pathway CD4 T follicular helper cells. J. Immunol. 188, 2643–2652 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Sayegh, M. H., Khoury, S. J., Hancock, W. W., Weiner, H. L. & Carpenter, C. B. Induction of immunity and oral tolerance to alloantigen by polymorphic class II major histocompatibility complex allopeptides in the rat. Transplant. Proc. 25, 357–358 (1993).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minnie M. Sarwal.

Ethics declarations

Competing interests

M.M.S. is the founder of ORGAN-I (California, USA), a spin-out company from Stanford University (California, USA) that developed the kSORT assay for the assessment of acute kidney transplant rejection using a blood test. M.M.S. is a scientific advisory board member for Immucor (Georgia, USA), a diagnostic company that is commercializing the kSORT assay.

Related links

PowerPoint slides

Glossary

Tolerance

A state of immune unresponsiveness and quiescence towards specific antigens. In the case of transplantation, tolerance is directed towards donor-specific antigens.

Allogeneic

A term that describes tissues that are of distinct genetic origins and thus often immunologically incompatible.

Acute rejection

An episode of sudden deterioration in allograft function as a result of either antibody-mediated rejection or T cell-mediated rejection, which result from different molecular processes.

Isograft

A graft between two individuals who are genetically identical, such as in the case of monozygotic twins.

Allografts

Grafts from another member of the same species, such as in the case of organ transplantation, as opposed to grafts from a member of a different species (xenograft) or from the recipient themselves (autograft).

Ischaemic and reperfusion damage

Damage to an organ as a result of a transient inadequate blood supply.

Delayed graft function

A state in which renal failure persists after transplantation, thus necessitating dialysis.

New-onset diabetes after transplantation

(NODAT). The occurrence of diabetes mellitus after transplantation in a patient who did not have the disease before. This occurs in 2–53% of all solid-organ transplants and is due in part to the immunosuppressive medications that are used to prevent transplant rejection.

Alloimmunity

An immune response to antigens that are both non-self and from the same species.

Allorecognition

The ability of a host to recognize allogeneic tissue as distinct from its own.

Complement system

A component of the innate immune system that can be activated by antigen-bound antibodies.

Central tolerance

The mechanisms by which T cells and B cells are rendered non-reactive to an antigen, typically a self-antigen, in the primary lymphoid organs.

Peripheral tolerance

The mechanisms by which T cells and B cells are rendered non-reactive to an antigen outside the primary lymphoid organs.

Regulatory T cells

(Treg cells). A subpopulation of T cells that are generally immunosuppressive rather than pro-inflammatory.

Tolerogenic

The quality of being able to induce immunological tolerance.

Survival

In the context of this Review, an outcome measured as the time until either graft failure (when referring to allograft survival) or patient mortality (when referring to recipient survival).

Ambiguity rates

The rates at which sequenced regions have a low level of confidence in excluding possible allelic variations.

Whole-exome sequencing

Sequencing of all protein- coding regions in the genome.

Whole-genome sequencing

Sequencing of the complete DNA genetic material in a cell or organism.

Graft-versus-host disease

(GVHD). Largely specific to haematopoietic stem cell transplantation, it is a medical complication in which immune cells in the donated tissue reject and attack the host cells.

Killer-cell immunoglobulin-like receptors

(KIRs). Receptors that are expressed on the surface of natural killer cells and modulate their cytotoxic activity by recognizing major histocompatibility complex class I allelic variants.

MHC class I polypeptide-related sequence A

(MICA). A cell-surface antigen that is recognized by the receptor NKG2D, which is found on natural killer cells, T cells and macrophages.

Minor histocompatibility antigens

(miHAs). The distinct peptide products of polymorphic genes that distinguish the recipient from the donor.

Cryptic antigens

Self-antigens that are not clonally deleted in the thymus owing to low surface presentation on antigen-presenting cells (APCs). These self-antigens can be expressed by APCs following differential processing by inflammatory proteases.

Trough levels

The lowest levels of a pharmaceutical present in the blood before the next dose.

Long-term graft function

Refers to the functional characteristics of the transplanted organ, which typically decrease over time owing to immune injury and subsequent fibrosis. Biomarkers of function include serum creatinine levels for kidney transplants, pulmonary function tests for lung transplants, and bile or specific enzyme levels for liver transplants.

HLA restriction

An analytical condition in which association tests are confined to subgroups that share common HLA alleles.

Lead SNP

The single-nucleotide polymorphism (SNP) within any given locus in a genome-wide association study that has the strongest statistical significance.

Interstitial fibrosis and tubular atrophy

(IFTA). Historically called chronic allograft nephropathy, it is the most common cause of long-term renal graft failure and is characterizedby the gradual deterioration of graft function.

Pharmacokinetics

The study of how an organism affects a pharmaceutical agent, one aspect of which is the metabolism of the drug. The levels of immunosuppressive drugs are highly affected by individual variability in specific metabolizing enzymes.

Acute pyelonephritis

A bacterial infection of the kidney. Individuals who are taking immunosuppressive medication are at an increased risk of developing this condition.

Xenografts

Grafts from one species to a different species, such as in the case of heart valve replacement, which often involves the transplantation of heart valves from pigs into humans.

Sirtuins

A class of proteins implicated in processes such as ageing, apoptosis and inflammation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Sarwal, M. Transplant genetics and genomics. Nat Rev Genet 18, 309–326 (2017). https://doi.org/10.1038/nrg.2017.12

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg.2017.12

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing