Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Determinants of genetic diversity

This article has been updated

Key Points

  • Lewontin's paradox — the much larger variation in species abundance than in genetic diversity — is closer to being explained.

  • The reproductive strategy of species has an impact on genome-wide diversity, providing a connection between population dynamic processes and the long-term effective population size (Ne).

  • Selection at linked sites also affects genome-wide diversity, but not to an extent that it is sufficient alone to explain Lewontin's paradox.

  • Selection and demography, among other factors, contribute to variation in Ne within genomes and leads to variation in diversity in different genomic regions of the same species.

Abstract

Genetic polymorphism varies among species and within genomes, and has important implications for the evolution and conservation of species. The determinants of this variation have been poorly understood, but population genomic data from a wide range of organisms now make it possible to delineate the underlying evolutionary processes, notably how variation in the effective population size (Ne) governs genetic diversity. Comparative population genomics is on its way to providing a solution to 'Lewontin's paradox' — the discrepancy between the many orders of magnitude of variation in population size and the much narrower distribution of diversity levels. It seems that linked selection plays an important part both in the overall genetic diversity of a species and in the variation in diversity within the genome. Genetic diversity also seems to be predictable from the life history of a species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic diversity and the r/K gradient in animals.
Figure 2: Overview of determinants of genetic diversity.
Figure 3: Genetic diversity affected by the density of targets for selection and by recombination rate.
Figure 4: Genetic diversity in autosomes and the Y chromosome.

Similar content being viewed by others

Change history

  • 08 June 2016

    In the original version of this article, the author name in reference 73 (Stebbins, G. L. Self fertilization and population variability in the higher plants. Am. Naturalist 91, 41–46 (1957)) was mis-spelled. This has now been corrected. The authors apologise for this error.

References

  1. Lewontin, R. C. & Hubby, J. L. A molecular approach to the study of genic heterozygosity in natural populations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics 54, 595–609 (1966).

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Harris, H. Enzyme polymorphisms in man. Proc. R. Soc. Lond. B 164, 298–310 (1966).

    Article  CAS  PubMed  Google Scholar 

  3. Quintana-Murci, L. & Clark, A. G. Population genetic tools for dissecting innate immunity in humans. Nat. Rev. Immunol. 13, 280–293 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Bodmer, W. Genetic characterization of human populations: from ABO to a genetic map of the British people. Genetics 199, 267–279 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Hake, S. & Ross-Ibarra, J. Genetic, evolutionary and plant breeding insights from the domestication of maize. eLife 4, e05861 (2015).

    Article  PubMed Central  CAS  Google Scholar 

  6. Soares, M. P. & Weiss, G. The Iron Age of host–microbe interactions. EMBO Rep. 16, 1482–1500 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Vander Wal, E., Garant, D., Festa-Bianchet, M. & Pelletier, F. Evolutionary rescue in vertebrates: evidence, applications and uncertainty. Phil. Trans. R. Soc. B 368, 20120090 (2012).

    Article  Google Scholar 

  8. Forcada, J. & Hoffman, J. I. Climate change selects for heterozygosity in a declining fur seal population. Nature 511, 462–465 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Begun, D. J. et al. Population genomics: whole-genome analysis of polymorphism and divergence in Drosophila simulans. PLoS Biol. 5, e310 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Lack, J. B. et al. The Drosophila genome nexus: a population genomic resource of 623 Drosophila melanogaster genomes, including 197 from a single ancestral range population. Genetics 199, 1229–1241 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. McVean, G., Spencer, C. C. A. & Chaix, R. Perspectives on human genetic variation from the HapMap project. PLoS Genet. 1, e54 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 526, 68–74 (2015).

  13. Tenaillon, M. I. et al. Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc. Natl Acad. Sci. USA 98, 9161–9166 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nordborg, M. et al. The pattern of polymorphism in Arabidopsis thaliana. PLoS Biol. 3, e196 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Doniger, S. W. et al. A catalog of neutral and deleterious polymorphism in yeast. PLoS Genet. 4, e1000183 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Wong, G. K. S. et al. A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms. Nature 432, 717–722 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Sachidanandam, R. et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409, 928–933 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Hodgkinson, A. & Eyre-Walker, A. Variation in the mutation rate across mammalian genomes. Nat. Rev. Genet. 12, 756–766 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Lynch, M. Evolution of the mutation rate. Trends Genet. 26, 345–352 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Charlesworth, B. Effective population size and patterns of molecular evolution and variation. Nat. Rev. Genet. 10, 195–205 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Kimura, M. The Neutral Theory of Molecular Evolution (Cambridge Univ. Press, 1983).

    Book  Google Scholar 

  22. Lewontin, R. The Genetic Basis of Evolutionary Change (Columbia Univ. Press, 1974). This book is a remarkably clear and early introduction to the problem of variation in genetic diversity and the first statement of the so-called Lewontin's paradox.

    Google Scholar 

  23. Leffler, E. M. et al. Revisiting an old riddle: what determines genetic diversity levels within species? PLoS Biol. 10, e1001388 (2012). This article contains a thorough review of the distribution of DNA sequence diversity across hundreds of eukaryotic species.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Reed, D. H. & Frankham, R. Correlation between fitness and genetic diversity. Conserv. Biol. 17, 230–237 (2003).

    Article  Google Scholar 

  25. Reed, D. H. & Frankham, R. How closely correlated are molecular and quantitative measures of genetic variation? A meta-analysis. Evolution 55, 1095–1103 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Bjørnstad, O. N. & Grenfell, B. T. Noisy clockwork: time series analysis of population fluctuations in animals. Science 293, 638–643 (2001).

    Article  PubMed  Google Scholar 

  27. Sun, J., Cornelius, S. P., Janssen, J., Gray, K. A. & Motter, A. E. Regularity underlies erratic population abundances in marine ecosystems. J. R. Soc. Interface 12, 20150235 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Banks, S. C. et al. How does ecological disturbance influence genetic diversity? Trends Ecol. Evol. 28, 670–679 (2013).

    Article  PubMed  Google Scholar 

  29. Alcala, N. & Vuilleumier, S. Turnover and accumulation of genetic diversity across large time-scale cycles of isolation and connection of populations. Proc. R. Soc. B 281, 20141369 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mayr, E. Animal Species and Evolution (Harvard Univ. Press, 1963).

    Book  Google Scholar 

  31. Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Stuessy, T. F., Takayama, K., López-Sepúlveda, P. & Crawford, D. J. Interpretation of patterns of genetic variation in endemic plant species of oceanic islands. Bot. J. Linnean Soc. 174, 276–288 (2014).

    Article  Google Scholar 

  33. Aguilar, R., Quesada, M., Ashworth, L., Herrerias-Diego, Y. & Lobo, J. Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Mol. Ecol. 17, 5177–5188 (2008).

    Article  PubMed  Google Scholar 

  34. Caplins, S. A. et al. Landscape structure and the genetic effects of a population collapse. Proc. R. Soc. B 281, 20141798 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Coltman, D. W. Molecular ecological approaches to studying the evolutionary impact of selective harvesting in wildlife. Mol. Ecol. 17, 221–235 (2008).

    Article  PubMed  Google Scholar 

  36. Lynch, M. The Origins of Genome Architecture (Sinauer Associates, 2007).

    Google Scholar 

  37. Romiguier, J. et al. Comparative population genomics in animals uncovers the determinants of genetic diversity. Nature 515, 261–263 (2014). This study shows a comparative analysis of patterns of diversity across animals revealing a strong influence of the life-history traits of species.

    Article  CAS  PubMed  Google Scholar 

  38. Sung, W., Ackerman, M. S., Miller, S. F., Doak, T. G. & Lynch, M. Drift-barrier hypothesis and mutation-rate evolution. Proc. Natl Acad. Sci. USA 109, 18488–18492 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ness, R. W., Morgan, A. D., Vasanthakrishnan, R. B., Colegrave, N. & Keightley, P. D. Extensive de novo mutation rate variation between individuals and across the genome of Chlamydomonas reinhardtii. Genome Res. 25, 1739–1749 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Wright, S. Size of population and breeding structure in relation to evolution. Science 87, 430–431 (1938).

    Google Scholar 

  41. Weber, D., Stewart, B. S., Garza, J. C. & Lehman, N. An empirical genetic assessment of the severity of the northern elephant seal population bottleneck. Curr. Biol. 10, 1287–1290 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Hedrick, P. W. Conservation genetics and North American bison (Bison bison). J. Hered. 100, 411–420 (2009).

    Article  PubMed  Google Scholar 

  43. Spielman, D., Brook, B. W. & Frankham, R. Most species are not driven to extinction before genetic factors impact them. Proc. Natl Acad. Sci. USA 101, 15261–15264 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nabholz, B., Mauffrey, J. -F., Bazin, E., Galtier, N. & Glemin, S. Determination of mitochondrial genetic diversity in mammals. Genetics 178, 351–361 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  45. McCusker, M. R. & Bentzen, P. Positive relationships between genetic diversity and abundance in fishes. Mol. Ecol. 19, 4852–4862 (2010).

    Article  PubMed  Google Scholar 

  46. Perry, G. H. et al. Comparative RNA sequencing reveals substantial genetic variation in endangered primates. Genome Res. 22, 602–610 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Pinsky, M. L. & Palumbi, S. R. Meta-analysis reveals lower genetic diversity in overfished populations. Mol. Ecol. 23, 29–39 (2014).

    Article  PubMed  Google Scholar 

  48. Ho, S. Y. W. & Shapiro, B. Skyline-plot methods for estimating demographic history from nucleotide sequences. Mol. Ecol. Resour. 11, 423–434 (2011).

    Article  PubMed  Google Scholar 

  49. Drummond, A. J., Rambaut, A., Shapiro, B. & Pybus, O. G. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol. Biol. Evol. 22, 1185–1192 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Liu, X. & Fu, Y. -X. Exploring population size changes using SNP frequency spectra. Nat. Genet. 47, 555–559 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Schiffels, S. & Durbin, R. Inferring human population size and separation history from multiple genome sequences. Nat. Genet. 46, 919–925 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Nadachowska-Brzyska, K., Li, C., Smeds, L., Zhang, G. & Ellegren, H. Temporal dynamics of avian populations during Pleistocene revealed by whole-genome sequences. Curr. Biol. 25, 1375–1380 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Jarne, P. Mating system, bottlenecks and genetic polymorphism in hermaphroditic animals. Genet. Res. 65, 193–207 (1995).

    Article  Google Scholar 

  55. Charlesworth, D. & Wright, S. Breeding systems and genome evolution. Curr. Opin. Genet. Dev. 11, 685–690 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Glémin, S., Bazin, E. & Charlesworth, D. Impact of mating systems on patterns of sequence polymorphism in flowering plants. Proc. R. Soc. B 273, 3011–3019 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Glémin, S. & Muyle, A. Mating systems and selection efficacy: a test using chloroplastic sequence data in angiosperms. J. Evol. Biol. 27, 1386–1399 (2014).

    Article  PubMed  Google Scholar 

  58. Hartfield, M. Evolutionary genetic consequences of facultative sex and outcrossing. J. Evol. Biol. 29, 5–22 (2016). This review discusses the theoretical predictions and empirical evidence regarding genome evolution in asexual versus sexual contexts.

    Article  CAS  PubMed  Google Scholar 

  59. Slotte, T. et al. The Capsella rubella genome and the genomic consequences of rapid mating system evolution. Nat. Genet. 45, 831–835 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Burgarella, C. et al. Molecular evolution of freshwater snails with contrasting mating systems. Mol. Biol. Evol. 32, 2403–2416 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Thomas, C. G. et al. Full-genome evolutionary histories of selfing, splitting, and selection in Caenorhabditis. Genome Res. 25, 667–678 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Dey, A., Chan, C. K. W., Thomas, C. G. & Cutter, A. D. Molecular hyperdiversity defines populations of the nematode Caenorhabditis brenneri. Proc. Natl Acad. Sci. USA 110, 11056–11060 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Dolgin, E. S., Charlesworth, B. & Cutter, A. D. Population frequencies of transposable elements in selfing and outcrossing Caenorhabditis nematodes. Genet. Res. 90, 317–329 (2008).

    Article  CAS  Google Scholar 

  64. Wright, S. I., Kalisz, S. & Slotte, T. Evolutionary consequences of self-fertilization in plants. Proc. R. Soc. B 280, 20130133 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Balloux, F., Lehmann, L. & de MeeÛs, T. The population genetics of clonal and partially clonal diploids. Genetics 164, 1635–1644 (2003).

    PubMed  PubMed Central  Google Scholar 

  66. Mark Welch, D. B. & Meselson, M. Evidence for the evolution of Bdelloid rotifers without sexual reproduction or genetic exchange. Science 288, 1211–1215 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Delmotte, F. et al. Phylogenetic evidence for hybrid origins of asexual lineages in an aphid species. Evolution 57, 1291–1303 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Schaefer, I. et al. No evidence for the 'Meselson effect' in parthenogenetic oribatid mites (Oribatida, Acari). J. Evol. Biol. 19, 184–193 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Schwander, T., Henry, L. & Crespi Bernard, J. Molecular evidence for ancient asexuality in Timema stick insects. Curr. Biol. 21, 1129–1134 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Hollister, J. D. et al. Recurrent loss of sex is associated with accumulation of deleterious mutations in Oenothera. Mol. Biol. Evol. 32, 896–905 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Maynard Smith, J. The Evolution of Sex (Cambridge Univ. Press, 1978).

    Google Scholar 

  72. McDonald, M. J., Rice, D. P. & Desai, M. M. Sex speeds adaptation by altering the dynamics of molecular evolution. Nature 531, 233–236 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Stebbins, G. L. Self fertilization and population variability in the higher plants. Am. Naturalist 91, 41–46 (1957).

    Article  Google Scholar 

  74. Judson, O. P. & Normark, B. B. Ancient asexual scandals. Trends Ecol. Evol. 11, 41–46 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. Simon, J. C., Delmotte, F., Rispe, C. & Crease, T. Phylogenetic evidence for hybrid origins of asexual lineages in an aphid species. Evolution 57, 1291–1303 (2003).

    Article  PubMed  Google Scholar 

  76. Igic, B. & Busch, J. W. Is self-fertilization an evolutionary dead end? New Phytol. 198, 386–397 (2013).

    Article  PubMed  Google Scholar 

  77. Tajima, F. Relationship between DNA polymorphism and fixation time. Genetics 125, 447–454 (1990).

    PubMed  PubMed Central  CAS  Google Scholar 

  78. Cutter, A. D. & Payseur, B. A. Genomic signatures of selection at linked sites: unifying the disparity among species. Nat. Rev. Genet. 14, 262–274 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Maynard Smith, J. & Haigh, J. The hitch-hiking effect of a favourable gene. Genet. Res. 23, 23–35 (1974).

    Article  Google Scholar 

  80. Kaplan, N. L., Hudson, R. R. & Langley, C. H. The “hitchhiking effect” revisited. Genetics 123, 887–899 (1989).

    PubMed  PubMed Central  CAS  Google Scholar 

  81. Gillespie, J. H. Genetic drift in an infinite population: the pseudohitchhiking model. Genetics 155, 909–919 (2000).

    PubMed  PubMed Central  CAS  Google Scholar 

  82. Gillespie, J. H. Is the population size of a species relevant to its evolution? Evolution 55, 2161–2169 (2001). This paper shows a theoretical examination of the effects of recurrent adaptive substitutions on linked loci and their relationship to N e.

    Article  CAS  PubMed  Google Scholar 

  83. Charlesworth, B., Morgan, M. T. & Charlesworth, D. The effect of deleterious mutations on neutral molecular variation. Genetics 134, 1289–1303 (1993). This study shows a theoretical examination of the effects of recurrent deleterious substitutions on linked loci and the background selection model.

    PubMed  PubMed Central  CAS  Google Scholar 

  84. Charlesworth, B. The effect of background selection against deleterious mutations on weakly selected, linked variants. Genet. Res. 63, 213–227 (1994).

    Article  CAS  PubMed  Google Scholar 

  85. Corbett-Detig, R. B., Hartl, D. L. & Sackton, T. B. Natural selection constrains neutral diversity across a wide range of species. PLoS Biol. 13, e1002112 (2015). This article demonstrates the role of linked selection in shaping the within-genome variation in polymorphism and its relationship with N e.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Coop, G. Does linked selection explain the narrow range of genetic diversity across species? bioRxiv http://dx.doi.org/10.1101/042598 (2016).

  87. Elyashiv, E. et al. A genomic map of the effects of linked selection in Drosophila. arXiv http://arXiv.org//abs/1408.5461v1 (2014).

  88. Comeron, J. M. Background selection as baseline for nucleotide variation across the Drosophila genome. PLoS Genet. 10, e1004434 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Enard, D., Messer, P. W. & Petrov, D. A. Genome-wide signals of positive selection in human evolution. Genome Res. 24, 885–895 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Gossmann, T. I., Woolfit, M. & Eyre-Walker, A. Quantifying the variation in the effective population size within a genome. Genetics 189, 1389–1402 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wu, C.-I. The genic view of the process of speciation. J. Evol. Biol. 14, 851–865 (2001).

    Article  Google Scholar 

  92. Begun, D. J. & Aquadro, C. F. Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster. Nature 356, 519–520 (1992).

    Article  CAS  PubMed  Google Scholar 

  93. Nachman, M. W. Single nucleotide polymorphisms and recombination rate in humans. Trends Genet. 17, 481–485 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Lercher, M. J. & Hurst, L. D. Human SNP variability and mutation rate are higher in regions of high recombination. Trends Genet. 18, 337–340 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Dvorak, J., Luo, M. C. & Yang, Z. L. Restriction fragment length polymorphism and divergence in the genomic regions of high and low recombination in self-fertilizing and cross-fertilizing Aegilops species. Genetics 148, 423–434 (1998).

    PubMed  PubMed Central  CAS  Google Scholar 

  96. Stephan, W. & Langley, C. H. DNA polymorphism in Lycopersicon and crossing-over per physical length. Genetics 150, 1585–1593 (1998).

    PubMed  PubMed Central  CAS  Google Scholar 

  97. Cutter, A. D. & Choi, J. Y. Natural selection shapes nucleotide polymorphism across the genome of the nematode Caenorhabditis briggsae. Genome Res. 20, 1103–1111 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Fay, J. C. & Wu, C. I. Hitchhiking under positive Darwinian selection. Genetics 155, 1405–1413 (2000).

    PubMed  PubMed Central  CAS  Google Scholar 

  99. Campos, J. L., Halligan, D. L., Haddrill, P. R. & Charlesworth, B. The relation between recombination rate and patterns of molecular evolution and variation in Drosophila melanogaster. Mol. Biol. Evol. 31, 1010–1028 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Messer, P. W. & Petrov, D. A. Frequent adaptation and the McDonald–Kreitman test. Proc. Natl Acad. Sci. USA 110, 8615–8620 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Sella, G., Petrov, D. A., Przeworski, M. & Andolfatto, P. Pervasive natural selection in the Drosophila genome? PLoS Genet. 5, e1000495 (2009). This article reviews the evidence for a pervasive role of linked selection on patterns of genetic variation in Drosophila species.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Slotte, T. The impact of linked selection on plant genomic variation. Brief. Funct. Genomics 13, 268–275 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Lohmueller, K. E. et al. Natural selection affects multiple aspects of genetic variation at putatively neutral sites across the human genome. PLoS Genet. 7, e1002326 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Messer, P. W. SLiM: simulating evolution with selection and linkage. Genetics 194, 1037–1039 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Hernandez, R. D. A flexible forward simulator for populations subject to selection and demography. Bioinformatics 24, 2786–2787 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Bank, C., Ewing, G. B., Ferrer-Admettla, A., Foll, M. & Jensen, J. D. Thinking too positive? Revisiting current methods of population genetic selection inference. Trends Genet. 30, 540–546 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Coop, G. & Ralph, P. Patterns of neutral diversity under general models of selective sweeps. Genetics 192, 205–224 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Bolívar, P., Mugal, C. F., Nater, A. & Ellegren, H. Recombination rate variation modulates gene sequence evolution mainly via GC-biased gene conversion, not Hill–Robertson interference, in an avian system. Mol. Biol. Evol. 33, 216–227 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Payseur, B. A. & Nachman, M. W. Gene density and human nucleotide polymorphism. Mol. Biol. Evol. 19, 336–340 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Charlesworth, B. Background selection and patterns of genetic diversity in Drosophila melanogaster. Genet. Res. 68, 131–149 (1996).

    Article  CAS  PubMed  Google Scholar 

  111. Hudson, R. R. & Kaplan, N. L. Deleterious background selection with recombination. Genetics 141, 1605–1617 (1995).

    PubMed  PubMed Central  CAS  Google Scholar 

  112. Nordborg, M., Charlesworth, B. & Charlesworth, D. The effect of recombination on background selection. Genet. Res. 67, 159–174 (1996).

    Article  CAS  PubMed  Google Scholar 

  113. Flowers, J. M. et al. Natural selection in gene-dense regions shapes the genomic pattern of polymorphism in wild and domesticated rice. Mol. Biol. Evol. 29, 675–687 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Burri, R. et al. Linked selection and recombination rate variation drive the evolution of the genomic landscape of differentiation across the speciation continuum of Ficedula flycatchers. Genome Res. 25, 1656–1665 (2015). This study is a high-resolution examination of genome-wide patterns of diversity and the role of recombination and linked selection in several species of flycatcher.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Nabholz, B. et al. Transcriptome population genomics reveals severe bottleneck and domestication cost in the African rice (Oryza glaberrima). Mol. Ecol. 23, 2210–2227 (2014).

    Article  CAS  PubMed  Google Scholar 

  116. Hellmann, I., Ebersberger, I., Ptak, S. E., Pääbo, S. & Przeworski, M. A neutral explanation for the correlation of diversity with recombination rates in humans. Am. J. Hum. Genet. 72, 1527–1535 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Yang, S. et al. Parent-progeny sequencing indicates higher mutation rates in heterozygotes. Nature 523, 463–467 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Arbeithuber, B., Betancourt, A. J., Ebner, T. & Tiemann-Boege, I. Crossovers are associated with mutation and biased gene conversion at recombination hotspots. Proc. Natl Acad. Sci. USA 112, 2109–2114 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Rattray, A., Santoyo, G., Shafer, B. & Strathern, J. N. Elevated mutation rate during meiosis in Saccharomyces cerevisiae. PLoS Genet. 11, e1004910 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Duret, L. & Galtier, N. Biased gene conversion and the evolution of mammalian genomic landscapes. Annu. Rev. Genom. Hum. Genet. 10, 285–311 (2009).

    Article  CAS  Google Scholar 

  121. Wallberg, A., Glémin, S. & Webster, M. T. Extreme recombination frequencies shape genome variation and evolution in the honeybee, Apis mellifera. PLoS Genet. 11, e1005189 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Hammer, M. F. et al. The ratio of human X chromosome to autosome diversity is positively correlated with genetic distance from genes. Nat. Genet. 42, 830–831 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Arbiza, L., Gottipati, S., Siepel, A. & Keinan, A. Contrasting X-linked and autosomal diversity across 14 human populations. Am. J. Hum. Genet. 94, 827–844 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Gottipati, S., Arbiza, L., Siepel, A., Clark, A. G. & Keinan, A. Analyses of X-linked and autosomal genetic variation in population-scale whole genome sequencing. Nat. Genet. 43, 741–743 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Charlesworth, B. The role of background selection in shaping patterns of molecular evolution and variation: evidence from variability on the Drosophila X chromosome. Genetics 191, 233–246 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Frankham, R. How closely does genetic diversity in finite populations conform to predictions of neutral theory? Large deficits in regions of low recombination. Heredity 108, 167–178 (2012). This paper reviews and demonstrates the reduction in genetic diversity in low-recombining genomic regions, including sex chromosomes, in plants and animals.

    Article  CAS  PubMed  Google Scholar 

  127. Mank, J. E., Vicoso, B., Berlin, S. & Charlesworth, B. Effective population size and the faster-X effect: empirical results and their interpretation. Evolution 64, 663–674 (2010).

    Article  PubMed  Google Scholar 

  128. Corl, A. & Ellegren, H. The genomic signature of sexual selection in the genetic diversity of the sex chromosomes and autosomes. Evolution 66, 2138–2149 (2012).

    Article  PubMed  Google Scholar 

  129. Huang, H. & Rabosky, D. L. Sex-linked genomic variation and its relationship to avian plumage dichromatism and sexual selection. BMC Evol. Biol. 15, 199 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Smeds, L. et al. Genomic identification and characterization of the pseudoautosomal region in highly differentiated avian sex chromosomes. Nat. Commun. 5, 5448 (2014).

    Article  PubMed  CAS  Google Scholar 

  131. Lien, S., Szyda, J., Schechinger, B., Rappold, G. & Arnheim, N. Evidence for heterogeneity in recombination in the human pseudoautosomal region: high resolution analysis by sperm typing and radiation-hybrid mapping. Am. J. Hum. Genet. 66, 557–566 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Bussell, J. J., Pearson, N. M., Kanda, R., Filatov, D. A. & Lahn, B. T. Human polymorphism and human–chimpanzee divergence in pseudoautosomal region correlate with local recombination rate. Gene 368, 94–100 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Charlesworth, B. & Charlesworth, D. The degeneration of Y chromosomes. Phil. Trans. R. Soc. Lond. B 355, 1563–1572 (2000).

    Article  CAS  Google Scholar 

  134. Bachtrog, D. Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nat. Rev. Genet. 14, 113–124 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Mank, J. E. Small but mighty: the evolutionary dynamics of W and Y sex chromosomes. Chromosome Res. 20, 21–33 (2011).

    Article  CAS  Google Scholar 

  136. Hellborg, L. & Ellegren, H. Low levels of nucleotide diversity in mammalian Y chromosomes. Mol. Biol. Evol. 21, 158–163 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Bachtrog, D., Thornton, K., Clark, A., Andolfatto, P. & Harrison, R. Extensive introgression of mitochondrial DNA relative to nuclear genes in the Drosophila yakuba species group. Evolution 60, 292–302 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Shen, P. et al. Population genetic implications from sequence variation in four Y chromosome genes. Proc. Natl Acad. Sci. USA 97, 7354–7359 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Qiu, S., Bergero, R., Forrest, A., Kaiser, V. B. & Charlesworth, D. Nucleotide diversity in Silene latifolia autosomal and sex-linked genes. Proc. R. Soc. B 277, 3283–3290 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Filatov, D. A., Laporte, V., Vitte, C. & Charlesworth, D. DNA diversity in sex-linked and autosomal genes of the plant species Silene latifolia and Silene dioica. Mol. Biol. Evol. 18, 1442–1454 (2001).

    Article  CAS  PubMed  Google Scholar 

  141. Smeds, L. et al. Evolutionary analysis of the female-specific avian W chromosome. Nat. Commun. 6, 7330 (2015).

    Article  PubMed  CAS  Google Scholar 

  142. Wilson Sayres, M. A., Lohmueller, K. E. & Nielsen, R. Natural selection reduced diversity on human Y chromosomes. PLoS Genet. 10, e1004064 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Ellegren, H. Characteristics, causes and evolutionary consequences of male-biased mutation. Proc. R. Soc. B 274, 1–10 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Kong, A. et al. Fine-scale recombination rate differences between sexes, populations and individuals. Nature 467, 1099–1103 (2010).

    Article  CAS  PubMed  Google Scholar 

  145. Venn, O. et al. Strong male bias drives germline mutation in chimpanzees. Science 344, 1272–1275 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Cutter, A. D., Jovelin, R. & Dey, A. Molecular hyperdiversity and evolution in very large populations. Mol. Ecol. 22, 2074–2095 (2013). This article discusses the specificities and challenges associated with very highly polymorphic species, with a focus on Caenorhabditis nematodes.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Drouin, G. Characterization of the gene conversions between the multigene family members of the yeast genome. J. Mol. Evol. 55, 14–23 (2002).

    Article  CAS  PubMed  Google Scholar 

  148. Borts, R. H. & Haber, J. E. Meiotic recombination in yeast: alteration by multiple heterozygosities. Science 237, 1459–1465 (1987).

    Article  CAS  PubMed  Google Scholar 

  149. Dobzhansky, T. Evolution, Genetics, and Man (Wiley, 1955).

    Google Scholar 

  150. Ohta, T. Slightly deleterious mutant substitutions in evolution. Nature 246, 96–98 (1973).

    Article  CAS  PubMed  Google Scholar 

  151. Hubby, J. L. & Lewontin, R. C. A molecular approach to the study of genic heterozygosity in natural populations. I. The number of alleles at different loci in Drosophila pseudoobscura. Genetics 54, 577–594 (1966).

    PubMed  PubMed Central  CAS  Google Scholar 

  152. Soulé, M. in Molecular Evolution (ed. Ayala, F.) 60–77 (Sinauer Associates, 1976).

    Google Scholar 

  153. Nevo, E., Beiles, A. & Ben-Shlomo, R. in Evolutionary Dynamics of Genetic Diversity: Proceedings of a Symposium held in Manchester, England, March 29–30, 1983 (ed. Mani, G. S.) (Springer, 1984).

    Google Scholar 

  154. Hamrick, J. L. & Godt, M. J. W. Effects of life history traits on genetic diversity in plant species. Phil. Trans. R. Soc. Lond. B 351, 1291–1298 (1996).

    Article  Google Scholar 

  155. Cole, C. T. Genetic variation in rare and common plants. Annu. Rev. Ecol. Evol. Systemat. 34, 213–237 (2003).

    Article  Google Scholar 

  156. Avise, J. C. et al. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu. Rev. Ecol. Systemat. 18, 489–522 (1987).

    Article  Google Scholar 

  157. Bazin, E., Glémin, S. & Galtier, N. Population size does not influence mitochondrial genetic diversity in animals. Science 312, 570–572 (2006).

    Article  CAS  PubMed  Google Scholar 

  158. Nabholz, B., Glémin, S. & Galtier, N. The erratic mitochondrial clock: variations of mutation rate, not population size, affect mtDNA diversity across birds and mammals. BMC Evol. Biol. 9, 1–13 (2009).

    Article  CAS  Google Scholar 

  159. Ballard, J. W. O. & Whitlock, M. C. The incomplete natural history of mitochondria. Mol. Ecol. 13, 729–744 (2004).

    Article  PubMed  Google Scholar 

  160. Berlin, S., Tomaras, D. & Charlesworth, B. Low mitochondrial variability in birds may indicate Hill–Robertson effects on the W chromosome. Heredity 99, 389–396 (2007).

    Article  CAS  PubMed  Google Scholar 

  161. Hurst, G. D. D. & Jiggins, F. M. Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts. Proc. R. Soc. B 272, 1525–1534 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Galtier, N., Nabholz, B., Glémin, S. & Hurst, G. D. D. Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Mol. Ecol. 18, 4541–4550 (2009).

    Article  CAS  PubMed  Google Scholar 

  163. Piganeau, G. & Eyre-Walker, A. Evidence for variation in the effective population size of animal mitochondrial DNA. PLoS ONE 4, e4396 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Jarne, P. & Lagoda, P. J. L. Microsatellites, from molecules to populations and back. Trends Ecol. Evol. 11, 424–429 (1996).

    Article  CAS  PubMed  Google Scholar 

  165. Väli, Ü., Einarsson, A., Waits, L. & Ellegren, H. To what extent do microsatellite markers reflect genome-wide genetic diversity in natural populations? Mol. Ecol. 17, 3808–3817 (2008).

    Article  PubMed  Google Scholar 

  166. Fungtammasan, A. et al. Accurate typing of short tandem repeats from genome-wide sequencing data and its applications. Genome Res. 25, 736–749 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Ellegren, H. Genome sequencing and population genomics in non-model organisms. Trends Ecol. Evol. 29, 51–63 (2014).

    Article  PubMed  Google Scholar 

  168. Lynch, M. & Conery, J. S. The origins of genome complexity. Science 302, 1401–1404 (2003).

    Article  CAS  PubMed  Google Scholar 

  169. Wright, S. Evolution in Mendelian populations. Genetics 16, 97–159 (1931).

    PubMed  PubMed Central  CAS  Google Scholar 

  170. Luikart, G., Ryman, N., Tallmon, D., Schwartz, M. & Allendorf, F. Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches. Conserv. Genet. 11, 355–373 (2010).

    Article  CAS  Google Scholar 

  171. Palstra, F. P. & Fraser, D. J. Effective/census population size ratio estimation: a compendium and appraisal. Ecol. Evol. 2, 2357–2365 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Gilbert, K. J. & Whitlock, M. C. Evaluating methods for estimating local effective population size with and without migration. Evolution 69, 2154–2166 (2015).

    Article  PubMed  Google Scholar 

  173. Browning, S. R. & Browning, B. L. Accurate non-parametric estimation of recent effective population size from segments of identity by descent. Am. J. Hum. Genet. 97, 404–418 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Kirin, M. et al. Genomic runs of homozygosity record population history and consanguinity. PLoS ONE 5, e13996 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Palamara, P. F., Lencz, T., Darvasi, A. & Pe'er, I. Length distributions of identity by descent reveal fine-scale demographic history. Am. J. Hum. Genet. 91, 809–822 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Swedish Research Council grants (2010–5650 and 2013–8271), a European Research Council grant (AdG 249976) and the Knut and Alice Wallenberg Foundation to H.E., and by a European Research Council grant (AdG 232971) and a French National Research Agency grant (ANR-10-BINF-01-01) to N.G. The authors thank N. Bierne, S. Glemin and M. Lascoux for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hans Ellegren or Nicolas Galtier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Genetic diversity

(Also known as genetic polymorphism). Variation in a DNA sequence between distinct individuals (or chromosomes) of a given species (or population).

Allozymes

Allelic variants of proteins that can be separated by electrophoresis based on differences in charge or structure.

Fixation

The complete spread of a mutation in the population such that it replaces all other alleles at a site.

Genetic drift

Fluctuation of allele frequency among generations in a population owing to the randomness of survival and reproduction of individuals, irrespective of selective pressures.

Effective population size

(Ne). The number of breeding individuals in an idealized population that would show the same amount of genetic drift (or inbreeding, or any other variable of interest) as the population under consideration.

Census population size

(Nc).The number of individuals in a population.

Frequency-dependent selection

A form of selection in which the selective advantage or disadvantage of a genotype is dependent on its frequency relative to other genotypes.

Bottleneck

A sharp and rapid reduction in the size of a population.

Heterozygosity

The probability that two randomly sampled gene copies in a population carry distinct alleles; a measure of the genetic diversity.

Drift-barrier hypothesis

The idea, based on the concept of diminishing returns, that selection can only improve a trait up to a point at which the next incremental improvement will be overwhelmed by the power of genetic drift.

Coalescent theory

A retrospective model of the distribution of gene divergence in a genealogy.

Identity-by-descent segments

Chromosomal segments carried by two or more individuals that are identical because they have been inherited from a common ancestor, without recombination.

Polyploidization

A form of genome evolution in which the number of sets of chromosomes increases.

Linkage disequilibrium

The non-random association of alleles at two loci, often but not always due to physical linkage on the same chromosome.

Selective sweep

Elimination or reduction of genetic diversity in the neighbourhood of a beneficial allele that increases in frequency in the population, typically after an environmental change.

Hard sweeps

Selective sweeps in which the beneficial allele corresponds to a single, new mutation appearing after an environmental change.

Soft sweeps

Selective sweeps in which the beneficial allele exists before an environmental change (thus representing standing variation) and is initially neutral or even slightly deleterious, or appears several times independently.

Genetic draft

Pervasive reduction of genetic diversity owing to recurrent selective sweeps.

Background selection

Reduction of genetic diversity owing to selection against deleterious mutations at linked loci.

Introgression

New alleles entering the population by hybridization with members of a differentiated population or even a different species.

Hitch-hiking

The change in allele frequency at a locus that itself is not necessarily affected by selection but is genetically linked to a locus that is.

Allele frequency spectrum

The distribution of the frequency of variants across biallelic loci in a population sample.

Polygyny

A mating system in which males mate with more than one female.

Polyandry

A mating system in which females mate with more than one male.

Heterogamety

When an organism of a particular sex carries two different types of sex chromosomes: that is, males of many animals and plants and females of birds, some fish and lizards, butterflies, and others.

Hemizygous

The situation when there is only one chromosome copy in an individual of a diploid species, as for the X chromosome in males of many species.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ellegren, H., Galtier, N. Determinants of genetic diversity. Nat Rev Genet 17, 422–433 (2016). https://doi.org/10.1038/nrg.2016.58

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg.2016.58

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing