Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Building a lineage from single cells: genetic techniques for cell lineage tracking

Key Points

  • Methods for tracing lineage can be divided into two groups. Prospective methods trace lineage forwards from the application of an experimentally delivered marker, and retrospective methods trace lineage backwards, using endogenous marks that naturally accumulate in the genome.

  • Early methods using sparse retroviral labelling for prospective lineage tracing have given way to retroviral barcodes of essentially unlimited complexity, allowing the labelling and recovery of large populations of cells for lineage tracing experiments.

  • Genetic recombination with Cre-loxP or engineered transposon systems is a popular method for lineage tracing in genetically accessible model organisms. Recent work has demonstrated that CRISPR–Cas9 genome editing is a promising way to track and synthetically reconstruct cell lineage relationships in complex multicellular organisms, and may supplement or supplant older recombination-based systems in the future.

  • Recent advances in single-cell genome amplification and sequencing make it possible to harness naturally occurring somatic mutations to infer cell lineage information retrospectively. Somatic mutations of many classes, including long interspersed nuclear element 1 (L1; also known as LINE-1) retrotransposition events, copy-number variants, single-nucleotide variants and microsatellite length variants, are appropriate for lineage tracing.

  • Single-cell genome-sequencing experiments require genome amplification, and investigators must consider the frequencies and types of errors that are introduced by different amplification methods to select an approach that best balances signal and noise for the experiment at hand.

  • When designing a lineage tracing experiment, it is important to consider the strengths and weaknesses of either a prospective or a retrospective approach. Prospective approaches require genetic access to the cell population being labelled, but can often be higher throughput and less expensive than retrospective approaches. Retrospective approaches use marks that accumulate in the genome, making any purifiable population accessible to analysis, but can be low-throughput and expensive.

Abstract

Resolving lineage relationships between cells in an organism is a fundamental interest of developmental biology. Furthermore, investigating lineage can drive understanding of pathological states, including cancer, as well as understanding of developmental pathways that are amenable to manipulation by directed differentiation. Although lineage tracking through the injection of retroviral libraries has long been the state of the art, a recent explosion of methodological advances in exogenous labelling and single-cell sequencing have enabled lineage tracking at larger scales, in more detail, and in a wider range of species than was previously considered possible. In this Review, we discuss these techniques for cell lineage tracking, with attention both to those that trace lineage forwards from experimental labelling, and those that trace backwards across the life history of an organism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Prospective and retrospective lineage tracing.
Figure 2: Highlighted genetic methods and strategies for prospective lineage tracing in vertebrate animal models and cell culture.
Figure 3: Prospective and retrospective lineage tracing of brain development.
Figure 4: Somatic mutation in the genome.

Similar content being viewed by others

References

  1. Deppe, U. et al. Cell lineages of the embryo of the nematode Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 75, 376–380 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119 (1983).

    Article  CAS  PubMed  Google Scholar 

  3. Mintz, B. Gene control of mammalian pigmentary differentiation. I. Clonal origin of melanocytes. Proc. Natl Acad. Sci. USA 58, 344–351 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kelly, S. J. Studies of the developmental potential of 4- and 8-cell stage mouse blastomeres. J. Exp. Zool. 200, 365–376 (1977).

    Article  CAS  PubMed  Google Scholar 

  5. Le Douarin, N. M. & Teillet, M. A. The migration of neural crest cells to the wall of the digestive tract in avian embryo. J. Embryol. Exp. Morphol. 30, 31–48 (1973).

    CAS  PubMed  Google Scholar 

  6. Rosenquist, G. C. The location of the pregut endoderm in the chick embryo at the primitive streak stage as determined by radioautographic mapping. Dev. Biol. 26, 323–335 (1971).

    Article  CAS  PubMed  Google Scholar 

  7. Johnson, M. H. & Ziomek, C. A. The foundation of two distinct cell lineages within the mouse morula. Cell 24, 71–80 (1981).

    Article  CAS  PubMed  Google Scholar 

  8. Lawson, K. A., Meneses, J. J. & Pedersen, R. A. Cell fate and cell lineage in the endoderm of the presomite mouse embryo, studied with an intracellular tracer. Dev. Biol. 115, 325–339 (1986).

    Article  CAS  PubMed  Google Scholar 

  9. Pedersen, R. A., Wu, K. & Bałakier, H. Origin of the inner cell mass in mouse embryos: cell lineage analysis by microinjection. Dev. Biol. 117, 581–595 (1986).

    Article  CAS  PubMed  Google Scholar 

  10. Clarke, J. D. & Tickle, C. Fate maps old and new. Nat. Cell Biol. 1, E103–E109 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Gerrits, A. et al. Cellular barcoding tool for clonal analysis in the hematopoietic system. Blood 115, 2610–2618 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Cai, D., Cohen, K. B., Luo, T., Lichtman, J. W. & Sanes, J. R. Improved tools for the Brainbow toolbox. Nat. Methods 10, 540–547 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262–1278 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Navin, N. et al. Tumour evolution inferred by single-cell sequencing. Nature 472, 90–94 (2011). The authors pioneered the sequencing of dividing cancer cells by single-nucleus sequencing (SNS) to construct the lineage of a breast tumour.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, Y. et al. Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512, 155–160 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Behjati, S. et al. Genome sequencing of normal cells reveals developmental lineages and mutational processes. Nature 513, 422–425 (2014). This study uses cell culture as an in vivo DNA-amplification method, sequencing clonal lines of mouse cells to identify lineages in adult tissues.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lodato, M. A. et al. Somatic mutation in single human neurons tracks developmental and transcriptional history. Science 350, 94–98 (2015). The authors sequence normal human brain tissue and identify SNVs, which they use to place adult neurons in a lineage tree.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Beddington, R. An autoradiographic analysis of the potency of embryonic ectoderm in the 8th day postimplantation mouse embryo. Development 64, 87–104 (1981).

    Article  CAS  Google Scholar 

  19. Serbedzija, G. N., Bronner-Fraser, M. & Fraser, S. E. A vital dye analysis of the timing and pathways of avian trunk neural crest cell migration. Development 106, 809–816 (1989).

    Article  CAS  PubMed  Google Scholar 

  20. Turner, D. L. & Cepko, C. L. A common progenitor for neurons and glia persists in rat retina late in development. Nature 328, 131–136 (1987).

    Article  CAS  PubMed  Google Scholar 

  21. Frank, E. & Sanes, J. R. Lineage of neurons and glia in chick dorsal root ganglia: analysis in vivo with a recombinant retrovirus. Development 111, 895–908 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Brown, K. N. et al. Clonal production and organization of inhibitory interneurons in the neocortex. Science 334, 480–486 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S. & Kriegstein, A. R. Neurons derived from radial glial cells establish radial units in neocortex. Nature 409, 714–720 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Noctor, S. C., Martinez- Cerdeño, V., Ivic, L. & Kriegstein, A. R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat. Neurosci. 7, 136–144 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Gertz, C. C., Lui, J. H., LaMonica, B. E., Wang, X. & Kriegstein, A. R. Diverse behaviors of outer radial glia in developing ferret and human cortex. J. Neurosci. 34, 2559–2570 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Betizeau, M. et al. Precursor diversity and complexity of lineage relationships in the outer subventricular zone of the primate. Neuron 80, 442–457 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Walsh, C. A. & Cepko, C. L. Clonally related cortical cells show several migration patterns. Science 241, 1342–1345 (1988).

    Article  CAS  PubMed  Google Scholar 

  28. Walsh, C. A. & Cepko, C. L. Widespread dispersion of neuronal clones across functional regions of the cerebral cortex. Science 255, 434–440 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Walsh, C. A. & Cepko, C. L. Clonal dispersion in proliferative layers of developing cerebral cortex. Nature 362, 632–635 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Reid, C. B., Liang, I. & Walsh, C. Systematic widespread clonal organization in cerebral cortex. Neuron 15, 299–310 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Golden, J. A., Fields-Berry, S. C. & Cepko, C. L. Construction and characterization of a highly complex retroviral library for lineage analysis. Proc. Natl Acad. Sci. USA 92, 5704–5708 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fuentealba, L. C. et al. Embryonic origin of postnatal neural stem cells. Cell 161, 1644–1655 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mayer, C. et al. Clonally related forebrain interneurons disperse broadly across both functional areas and structural boundaries. Neuron 87, 989–998 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Harwell, C. C. et al. Wide dispersion and diversity of clonally related inhibitory interneurons. Neuron 87, 999–1007 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lu, R., Neff, N. F., Quake, S. R. & Weissman, I. L. Tracking single hematopoietic stem cells in vivo using high-throughput sequencing in conjunction with viral genetic barcoding. Nat. Biotechnol. 29, 928–933 (2011). The authors demonstrate a method for combining viral genetic barcoding with high-throughput next-generation sequencing, then apply this method to follow the differentiation of single haematopoietic stem cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Holt, C. E., Garlick, N. & Cornel, E. Lipofection of cDNAs in the embryonic vertebrate central nervous system. Neuron 4, 203–214 (1990).

    Article  CAS  PubMed  Google Scholar 

  37. Emerson, M. M. & Cepko, C. L. Identification of a retina-specific Otx2 enhancer element active in immature developing photoreceptors. Dev. Biol. 360, 241–255 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fukuchi-Shimogori, T. & Grove, E. A. Neocortex patterning by the secreted signaling molecule FGF8. Science 294, 1071–1074 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. LoTurco, J., Manent, J.-B. & Sidiqi, F. New and improved tools for in utero electroporation studies of developing cerebral cortex. Cereb. Cortex 19 (Suppl. 1), i120–i125 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wu, S., Meir, Y. & Coates, C. J. piggyBac is a flexible and highly active transposon as compared to sleeping beauty, Tol2, and Mos1 in mammalian cells. Proc. Natl Acad. Sci. USA 103, 15008–15013 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. VandenDriessche, T., Ivics, Z., Izsvák, Z. & Chuah, M. K. L. Emerging potential of transposons for gene therapy and generation of induced pluripotent stem cells. Blood 114, 1461–1468 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Yoshida, A. et al. Simultaneous expression of different transgenes in neurons and glia by combining in utero electroporation with the Tol2 transposon-mediated gene transfer system. Genes Cells 15, 501–512 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen, F. & LoTurco, J. A method for stable transgenesis of radial glia lineage in rat neocortex by piggyBac mediated transposition. J. Neurosci. Methods 207, 172–180 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Siddiqi, F. et al. Fate mapping by piggyBac transposase reveals that neocortical GLAST + progenitors generate more astrocytes than nestin + progenitors in rat neocortex. Cereb. Cortex 24, 508–520 (2014).

    Article  PubMed  Google Scholar 

  45. Ding, S. et al. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122, 473–483 (2005). This study demonstrated that the piggyBac transposon could be used for genetic manipulation in human and mouse cells.

    Article  CAS  PubMed  Google Scholar 

  46. Wilson, M. H., Coates, C. J. & George, A. L. PiggyBac transposon-mediated gene transfer in human cells. Mol. Ther. 15, 139–145 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Woltjen, K. et al. PiggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458, 766–770 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Orban, P. C., Chui, D. & Marth, J. D. Tissue- and site-specific DNA recombination in transgenic mice. Proc. Natl Acad. Sci. USA 89, 6861–6865 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Branda, C. S. & Dymecki, S. M. Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev. Cell 6, 7–28 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Greig, L. C., Woodworth, M. B., Greppi, C. & Macklis, J. D. Ctip1 controls acquisition of sensory area identity and establishment of sensory input fields in the developing neocortex. Neuron 90, 261–277 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Awatramani, R., Soriano, P., Rodriguez, C., Mai, J. J. & Dymecki, S. M. Cryptic boundaries in roof plate and choroid plexus identified by intersectional gene activation. Nat. Genet. 35, 70–75 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Farago, A. F., Awatramani, R. B. & Dymecki, S. M. Assembly of the brainstem cochlear nuclear complex is revealed by intersectional and subtractive genetic fate maps. Neuron 50, 205–218 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Yamamoto, M. et al. A multifunctional reporter mouse line for Cre- and FLP-dependent lineage analysis. Genesis 47, 107–114 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zong, H., Espinosa, J. S., Su, H. H., Muzumdar, M. D. & Luo, L. Mosaic analysis with double markers in mice. Cell 121, 479–492 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Bonaguidi, M. A. et al. In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell 145, 1142–1155 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hippenmeyer, S. et al. Genetic mosaic dissection of Lis1 and Ndel1 in neuronal migration. Neuron 68, 695–709 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007). In this work, the authors present the Brainbow method for stochastic multicolour labelling in mice in vivo.

    Article  CAS  PubMed  Google Scholar 

  58. Snippert, H. J. et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143, 134–144 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Sutherland, K. D. et al. Cell of origin of small cell lung cancer: inactivation of Trp53 and Rb1 in distinct cell types of adult mouse lung. Cancer Cell 19, 754–764 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Beier, K. T., Samson, M. E. S., Matsuda, T. & Cepko, C. L. Conditional expression of the TVA receptor allows clonal analysis of descendents from Cre-expressing progenitor cells. Dev. Biol. 353, 309–320 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cornils, K. et al. Multiplexing clonality: combining RGB marking and genetic barcoding. Nucleic Acids Res. 42, e56 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Loulier, K. et al. Multiplex cell and lineage tracking with combinatorial labels. Neuron 81, 505–520 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Kimmerling, R. J. et al. A microfluidic platform enabling single-cell RNA-seq of multigenerational lineages. Nat. Commun. 7, 10220 (2015).

    Article  CAS  Google Scholar 

  64. McKenna, A. et al. Whole organism lineage tracing by combinatorial and cumulative genome editing. Science 353, aaf7907 (2016). This study represents a proof of principle for the use of genome editing to simultaneously mark large numbers of lineages in a developing organism, opening the door for the next generation of high-throughput lineage tracing methods.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Junker, J. P. et al. Massively parallel whole-organism lineage tracing using CRISPR/Cas9 induced genetic scars. Preprint at bioRxiv http://dx.doi.org/10.1101/056499 (2016).

    Google Scholar 

  66. Kalhor, R., Mali, P. & Church, G. M. Rapidly evolving homing CRISPR barcodes. Nat. Methods http://dx.doi.org/10.1038/nmeth.4108 (2016).

  67. Frieda, K. L. et al. Synthetic recording and in situ readout of lineage information in single cells. Nature http://dx.doi.org/10.1038/nature20777 (2016).

  68. Schmidt, S. T., Zimmerman, S. M., Wang, J., Kim, S. K. & Quake, S. R. Cell lineage tracing using nuclease barcoding. Preprint at arXiv https://arxiv.org/abs/1606.00786 (2016).

    Google Scholar 

  69. Salipante, S. J., Kas, A., McMonagle, E. & Horwitz, M. S. Phylogenetic analysis of developmental and postnatal mouse cell lineages. Evol. Dev. 12, 84–94 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Shapiro, E., Biezuner, T. & Linnarsson, S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat. Rev. Genet. 14, 618–630 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Grün, D. & van Oudenaarden, A. Design and analysis of single-cell sequencing experiments. Cell 163, 799–810 (2015).

    Article  PubMed  CAS  Google Scholar 

  72. Gawad, C., Koh, W. & Quake, S. R. Single-cell genome sequencing: current state of the science. Nat. Rev. Genet. 17, 175–188 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Ostertag, E. M. & Kazazian, H. H. Biology of mammalian L1 retrotransposons. Annu. Rev. Genet. 35, 501–538 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Muotri, A. R. et al. Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 435, 903–910 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Erwin, J. A., Marchetto, M. C. & Gage, F. H. Mobile DNA elements in the generation of diversity and complexity in the brain. Nat. Rev. Neurosci. 15, 497–506 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Coufal, N. G. et al. L1 retrotransposition in human neural progenitor cells. Nature 460, 1127–1131 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Baillie, J. K. et al. Somatic retrotransposition alters the genetic landscape of the human brain. Nature 479, 534–537 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Evrony, G. D. et al. Single-neuron sequencing analysis of l1 retrotransposition and somatic mutation in the human brain. Cell 151, 483–496 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Upton, K. R. et al. Ubiquitous L1 mosaicism in hippocampal neurons. Cell 161, 228–239 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Evrony, G. D., Lee, E., Park, P. J. & Walsh, C. A. Resolving rates of mutation in the brain using single-neuron genomics. eLife 5, e12966 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Evrony, G. D. et al. Cell lineage analysis in human brain using endogenous retroelements. Neuron 85, 49–59 (2015). This study demonstrated that somatic L1 retrotransposition events could be used to identify distinct lineages in normal human brain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Abyzov, A. et al. Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells. Nature 492, 438–442 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Knouse, K. A., Wu, J. & Amon, A. Assessment of megabase-scale somatic copy number variation using single-cell sequencing. Genome Res. 26, 376–384 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. McConnell, M. J. et al. Mosaic copy number variation in human neurons. Science 342, 632–637 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cai, X. et al. Single-cell, genome-wide sequencing identifies clonal somatic copy-number variation in the human brain. Cell Rep. 8, 1280–1289 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Baslan, T. et al. Optimizing sparse sequencing of single cells for highly multiplex copy number profiling. Genome Res. 25, 714–724 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Frank, S. A. Somatic evolutionary genomics: mutations during development cause highly variable genetic mosaicism with risk of cancer & neurodegeneration. Proc. Natl Acad. Sci. USA 107 (Suppl. 1), 1725–1730 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hazen, J. L. et al. The complete genome sequences, unique mutational spectra, and developmental potency of adult neurons revealed by cloning. Neuron 89, 1223–1236 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zafar, H., Wang, Y., Nakhleh, L., Navin, N. & Chen, K. Monovar: single-nucleotide variant detection in single cells. Nat. Methods 13, 505–507 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ellegren, H. Microsatellites: simple sequences with complex evolution. Nat. Rev. Genet. 5, 435–445 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Frumkin, D., Wasserstrom, A., Kaplan, S., Feige, U. & Shapiro, E. Genomic variability within an organism exposes its cell lineage tree. PLoS Comput. Biol. 1, e50 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Salipante, S. J. & Horwitz, M. S. Phylogenetic fate mapping. Proc. Natl Acad. Sci. USA 103, 5448–5453 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Reizel, Y. et al. Colon stem cell and crypt dynamics exposed by cell lineage reconstruction. PLoS Genet. 7, e1002192 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Reizel, Y. et al. Cell lineage analysis of the mammalian female germline. PLoS Genet. 8, e1002477 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Thibodeau, S. N., Bren, G. & Schaid, D. Microsatellite instability in cancer of the proximal colon. Science 260, 816–819 (1993).

    Article  CAS  PubMed  Google Scholar 

  96. Ionov, Y., Peinado, M. A., Malkhosyan, S., Shibata, D. & Perucho, M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363, 558–561 (1993).

    Article  CAS  PubMed  Google Scholar 

  97. Turajlic, S., McGranahan, N. & Swanton, C. Inferring mutational timing and reconstructing tumour evolutionary histories. Biochim. Biophys. Acta 1855, 264–275 (2015).

    CAS  PubMed  Google Scholar 

  98. Ross, E. M. & Markowetz, F. OncoNEM: inferring tumor evolution from single-cell sequencing data. Genome Biol. 17, 69 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Li, Y. et al. Single-cell sequencing analysis characterizes common and cell-lineage-specific mutations in a muscle-invasive bladder cancer. Gigascience 1, 12 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Xu, X. et al. Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 148, 886–895 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Shibata, D., Navidi, W., Salovaara, R., Li, Z. H. & Aaltonen, L. A. Somatic microsatellite mutations as molecular tumor clocks. Nat. Med. 2, 676–681 (1996).

    Article  CAS  PubMed  Google Scholar 

  102. Naxerova, K. & Jain, R. K. Using tumour phylogenetics to identify the roots of metastasis in humans. Nat. Rev. Clin. Oncol. 12, 258–272 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Frumkin, D. et al. Cell lineage analysis of a mouse tumor. Cancer Res. 68, 5924–5931 (2008). After previous work by the authors demonstrated the theoretical feasibility of using somatic microsatellite variability to reconstruct lineage, this study carried out the experiments, demonstrating that cells in a mouse tumour could be traced back to their somatic origin.

    Article  CAS  PubMed  Google Scholar 

  104. Shlush, L. I. et al. Cell lineage analysis of acute leukemia relapse uncovers the role of replication-rate heterogeneity and microsatellite instability. Blood 120, 603–612 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Ding, L. et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481, 506–510 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Martincorena, I. et al. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348, 880–886 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yachida, S. et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467, 1114–1117 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hou, Y. et al. Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell 148, 873–885 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Gawad, C., Koh, W. & Quake, S. R. Dissecting the clonal origins of childhood acute lymphoblastic leukemia by single-cell genomics. Proc. Natl Acad. Sci. USA 111, 17947–17952 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wang, Y. & Navin, N. E. Advances and applications of single-cell sequencing technologies. Mol. Cell 58, 598–609 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Dean, F. B. et al. Comprehensive human genome amplification using multiple displacement amplification. Proc. Natl Acad. Sci. USA 99, 5261–5266 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wang, J., Fan, H. C., Behr, B. & Quake, S. R. Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm. Cell 150, 402–412 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Fu, Y. et al. Uniform and accurate single-cell sequencing based on emulsion whole-genome amplification. Proc. Natl Acad. Sci. USA 112, 11923–11928 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sidore, A. M., Lan, F., Lim, S. W. & Abate, A. R. Enhanced sequencing coverage with digital droplet multiple displacement amplification. Nucleic Acids Res. 44, e66 (2016).

    Article  PubMed  CAS  Google Scholar 

  115. Rhee, M., Light, Y. K., Meagher, R. J. & Singh, A. K. Digital Droplet Multiple Displacement Amplification (ddMDA) for whole genome sequencing of limited dna samples. PLoS ONE 11, e0153699 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Szulwach, K. E. et al. Single-cell genetic analysis using automated microfluidics to resolve somatic mosaicism. PLoS ONE 10, e0135007 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Barker, D. L. et al. Two methods of whole-genome amplification enable accurate genotyping across a 2320-SNP linkage panel. Genome Res. 14, 901–907 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ning, L. et al. Quantitative assessment of single-cell whole genome amplification methods for detecting copy number variation using hippocampal neurons. Sci. Rep. 5, 11415 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zong, C., Lu, S., Chapman, A. R. & Xie, X. S. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science 338, 1622–1626 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Voet, T. et al. Single-cell paired-end genome sequencing reveals structural variation per cell cycle. Nucleic Acids Res. 41, 6119–6138 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Leung, M. L. et al. Highly multiplexed targeted DNA sequencing from single nuclei. Nat. Protoc. 11, 214–235 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Chow, H.-M. & Herrup, K. Genomic integrity and the ageing brain. Nat. Rev. Neurosci. 16, 672–684 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Spalding, K. L., Bhardwaj, R. D., Buchholz, B. A., Druid, H. & Frisén, J. Retrospective birth dating ofçcells in humans. Cell 122, 133–143 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Leung, M. L., Wang, Y., Waters, J. & Navin, N. E. SNES: single nucleus exome sequencing. Genome Biol. 16, 55 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Knouse, K. A., Wu, J., Whittaker, C. A. & Amon, A. Single cell sequencing reveals low levels of aneuploidy across mammalian tissues. Proc. Natl Acad. Sci. USA 111, 13409–13414 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Espina, V. et al. Laser-capture microdissection. Nat. Protoc. 1, 586–603 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Gutierrez-Gonzalez, L. et al. Analysis of the clonal architecture of the human small intestinal epithelium establishes a common stem cell for all lineages and reveals a mechanism for the fixation and spread of mutations. J. Pathol. 217, 489–496 (2009).

    Article  CAS  PubMed  Google Scholar 

  128. Crosetto, N., Bienko, M. & van Oudenaarden, A. Spatially resolved transcriptomics and beyond. Nat. Rev. Genet. 16, 57–66 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Larsson, C., Grundberg, I., Söderberg, O. & Nilsson, M. In situ detection and genotyping of individual mRNA molecules. Nat. Methods 7, 395–397 (2010).

    Article  CAS  PubMed  Google Scholar 

  130. Larsson, C. et al. In situ genotyping individual DNA molecules by target-primed rolling-circle amplification of padlock probes. Nat. Methods 1, 227–232 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Ke, R. et al. In situ sequencing for RNA analysis in preserved tissue and cells. Nat. Methods 10, 857–860 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Lee, J. H. et al. Highly multiplexed subcellular RNA sequencing in situ. Science 343, 1360–1363 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lee, J. H. et al. Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues. Nat. Protoc. 10, 442–458 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Janiszewska, M. et al. In situ single-cell analysis identifies heterogeneity for PIK3CA mutation and HER2 amplification in HER2-positive breast cancer. Nat. Genet. 47, 1212–1219 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Macosko, E. Z. et al. Highly parallel genome- wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ware, M. L., Tavazoie, S. F., Reid, C. B. & Walsh, C. A. Coexistence of widespread clones and large radial clones in early embryonic ferret cortex. Cereb. Cortex 9, 636–645 (1999).

    Article  CAS  PubMed  Google Scholar 

  137. Reid, C. B., Tavazoie, S. F. & Walsh, C. A. Clonal dispersion and evidence for asymmetric cell division in ferret cortex. Development 124, 2441–2450 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Walsh laboratory, especially M. Lodato, for helpful comments. This work was supported by the Manton Center for Orphan Disease Research and grants from the National Institute of Neurological Disorders and Stroke (NINDS) (R01 NS032457, R01 NS079277 and U01 MH106883) to C.A.W. M.B.W. is supported by the Leonard and Isabelle Goldenson Research Fellowship. K.M.G. is supported by US National Institutes of Health (NIH) grant T32 MH20017. C.A.W. is a Distinguished Investigator of the Paul G. Allen Family Foundation and an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher A. Walsh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Fate-mapping methods

Approaches that apply a heritable mark to a given progenitor or class of progenitors, then use the inheritance of the mark to define the progeny of that cell or class.

Genetic mosaicism

The state of containing more than one distinct genome within a single organism, whether achieved by experimental means (by combining early-stage embryos from different individuals or species) or by natural means (by considering differences in DNA from cell to cell).

Prospective lineage analysis

An approach that applies an experimental label to cells, which is then examined at some point in the future to construct a lineage tree looking forwards from development.

Retrospective lineage analysis

An approach that uses naturally occurring labels (for example, somatic mutations) to construct a lineage tree looking backwards at development.

Intersectional analyses

Using two attributes of a cell population (for example, the expression from two different promoters) to select only cells that display both attributes.

Organotypic slice culture

A culture system in which a slice of tissue is cultured, rather than a collection of dissociated cells, to more closely mimic the biological context of an organ.

Cut-and-paste mechanism

Method of mobilization by class II DNA transposable elements, in which the transposon excises itself from its genomic location using transposase protein and integrates into a new target site.

Cre-loxP

A genetic system derived from P1 bacteriophage and adapted for use in genetically modifiable organisms. The site-specific recombinase Cre inverts or recombines any sequence located between 34 bp loxP sites, depending on their orientation.

FLP-FRT

A genetic system derived from Saccharomyces cerevisiae and adapted for use in genetically modifiable organisms. The site-specific recombinase FLP inverts or recombines any sequence located between 34 bp FRT sites, depending on their orientation.

loxP-STOP-loxP

A DNA element containing a transcription termination sequence flanked by loxP sequences, allowing the transcription termination sequence to be removed by the activity of Cre recombinase.

Pulse

An experiment in which a brief bolus of label is followed by a period with no label, allowing events that occurred within a specific time window to be marked.

Leakiness

Activity in the absence of inducing signal.

Microsatellites

(Also known as short tandem repeats). Short genomic repeats consisting of a set of tandem nucleotides, with repeat numbers varying between different alleles.

Digital droplet PCR

A polymerase chain reaction in which the reaction is divided into thousands of small droplets, allowing absolute quantification of PCR products.

Organoid

A three-dimensional culture model of a whole or partial organ or tissue.

Clade

A group on a dendrogram (tree diagram) that is separate from another group.

Nested

To have a set fully contained within a broader set.

Allelic dropout

One of two alleles at a genomic locus fails to amplify and is therefore not recovered in sequencing data. Compare with locus dropout, in which both alleles at a given locus fail to amplify.

Chimeric amplification

In whole-genome amplification, when one amplicon misprimes another locus, leading to a hybrid DNA product with sequences from the original amplicon adjacent to those from the second locus.

Induced pluripotent stem cell

(iPSC). A cell that is capable of giving rise to daughter cells of many or all lineages, derived by reprogramming of an adult cell using pluripotency factors.

Triturated

A homogeneous solution created by mixing or grinding, such as pipetting cells up and down to create a uniform suspension.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woodworth, M., Girskis, K. & Walsh, C. Building a lineage from single cells: genetic techniques for cell lineage tracking. Nat Rev Genet 18, 230–244 (2017). https://doi.org/10.1038/nrg.2016.159

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg.2016.159

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer