Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chromatin dynamics during the cell cycle at centromeres

Key Points

  • Centromeric chromatin is the foundation of the kinetochore, and centromere maintenance and kinetochore establishment are tightly coupled to the cell cycle. This is regulated by a complex network of players, including histone variants, histone chaperones, chromatin-remodelling factors and chromatin-modifying enzymes.

  • The centric region of centromeres is embedded in pericentric heterochromatin, and both domains are in continuous crosstalk, enabling the formation of a complex higher-order chromatin structure.

  • Centromeric chromatin is nucleated by nucleosomes containing the H3 variant CenH3CENP-A, to which the other core components centromere protein B (CENP-B) and CENP-C bind directly (proteins that are conserved in most eukaryotic species). Although centromeres usually form at special tandem repeat DNA sequences, their position is determined epigenetically by CenH3CENP-A.

  • Centromeric chromatin consists of CenH3CENP-A nucleosomes interspersed with H3.1 and H3.3 nucleosomes, forming a unique biochemical environment that changes during the cell cycle and is tightly regulated.

  • Chromosomes in species with regional centromeres (including humans and a large portion of eukaryotes) can only have one functional centromere. Neocentromeres can form in cases in which this equilibrium is disturbed or in which centromeres are lost.

  • Neocentromere formation has been linked to or is concomitant with some disease states, and it is prevalent in chromosome rearrangements in cancer.

Abstract

Centromeric chromatin undergoes major changes in composition and architecture during each cell cycle. These changes in specialized chromatin facilitate kinetochore formation in mitosis to ensure proper chromosome segregation. Thus, proper orchestration of centromeric chromatin dynamics during interphase, including replication in S phase, is crucial. We provide the current view concerning the centromeric architecture associated with satellite repeat sequences in mammals and its dynamics during the cell cycle. We summarize the contributions of deposited histone variants and their chaperones, other centromeric components — including proteins and their post-translational modifications, and RNAs — and we link the expression and deposition timing of each component during the cell cycle. Because neocentromeres occur at ectopic sites, we highlight how cell cycle processes can go wrong, leading to neocentromere formation and potentially disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Centromeric chromatin dynamics during the cell cycle.
Figure 2: Molecular features of centromeric chromatin during the cell cycle.
Figure 3: Cell cycle timing of deposition and chaperones of histone H3 variants and key centromere proteins.
Figure 4: Cell cycle dynamics of histone modifications of centromeric and pericentric chromatin.
Figure 5: Dynamics of centromeric chromatin composition during the cell cycle.
Figure 6: Ectopic CenH3CENP-A deposition in cells overexpressing CenH3CENP-A.

Similar content being viewed by others

References

  1. Flemming, W. Zellsubstanz, Kern und Zelltheilung (in German) (F.C.W. Vogel, Leipzig, 1882).

    Google Scholar 

  2. Fukagawa, T. & Earnshaw, W. C. The centromere: chromatin foundation for the kinetochore machinery. Dev. Cell 30, 496–508 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. McKinley, K. L. & Cheeseman, I. M. The molecular basis for centromere identity and function. Nat. Rev. Mol. Cell Biol. 17, 16–29 (2016).

    CAS  PubMed  Google Scholar 

  4. Verdaasdonk, J. S. & Bloom, K. Centromeres: unique chromatin structures that drive chromosome segregation. Nat. Rev. Mol. Cell Biol. 12, 320–332 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Melters, D. P., Paliulis, L. V., Korf, I. F. & Chan, S. W. Holocentric chromosomes: convergent evolution, meiotic adaptations, and genomic analysis. Chromosome Res. 20, 579–593 (2012).

    CAS  PubMed  Google Scholar 

  6. Steiner, F. A. & Henikoff, S. Holocentromeres are dispersed point centromeres localized at transcription factor hotspots. eLife 3, e02025 (2014).

    PubMed  PubMed Central  Google Scholar 

  7. Sullivan, L. L., Boivin, C. D., Mravinac, B., Song, I. Y. & Sullivan, B. A. Genomic size of CENP-A domain is proportional to total alpha satellite array size at human centromeres and expands in cancer cells. Chromosome Res. 19, 457–470 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Sevim, V., Bashir, A., Chin, C. S. & Miga, K. H. Alpha-CENTAURI: assessing novel centromeric repeat sequence variation with long read sequencing. Bioinformatics 32, 1921–1924 (2016).

    PubMed  PubMed Central  Google Scholar 

  9. Melters, D. P. et al. Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biol. 14, R10 (2013).

    PubMed  PubMed Central  Google Scholar 

  10. Miga, K. H. et al. Centromere reference models for human chromosomes X and Y satellite arrays. Genome Res. 24, 697–707 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Marshall, O. J., Chueh, A. C., Wong, L. H. & Choo, K. H. Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution. Am. J. Hum. Genet. 82, 261–282 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Müller, S. & Almouzni, G. A network of players in H3 histone variant deposition and maintenance at centromeres. Biochim. Biophys. Acta 1839, 241–250 (2014).

    PubMed  Google Scholar 

  13. Earnshaw, W. C. & Rothfield, N. Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 91, 313–321 (1985). These authors discovered the key centromere components CenH3CENP-A, CENP-B and CENP-B.

    CAS  PubMed  Google Scholar 

  14. Palmer, D. K., O'Day, K., Trong, H. L., Charbonneau, H. & Margolis, R. L. Purification of the centromere-specific protein CENP-A and demonstration that it is a distinctive histone. Proc. Natl Acad. Sci. USA 88, 3734–3738 (1991). The discovery that CenH3CENP-A is a histone H3 variant.

    CAS  PubMed  Google Scholar 

  15. Talbert, P. B. et al. A unified phylogeny-based nomenclature for histone variants. Epigenetics Chromatin 5, 7 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Earnshaw, W. C. & Cleveland, D. W. CENP-A and the CENP nomenclature: response to Talbert and Henikoff. Trends Genet. 29, 500–502 (2013).

    CAS  PubMed  Google Scholar 

  17. Earnshaw, W. C. et al. Esperanto for histones: CENP-A, not CenH3, is the centromeric histone H3 variant. Chromosome Res. 21, 101–106 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Jansen, L. E., Black, B. E., Foltz, D. R. & Cleveland, D. W. Propagation of centromeric chromatin requires exit from mitosis. J. Cell Biol. 176, 795–805 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Müller, S. et al. Phosphorylation and DNA binding of HJURP determine its centromeric recruitment and function in CenH3CENP-A loading. Cell Rep. 8, 190–203 (2014).

    PubMed  Google Scholar 

  20. Prendergast, L. et al. Premitotic assembly of human CENPs -T and -W switches centromeric chromatin to a mitotic state. PLoS Biol. 9, e1001082 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Prendergast, L. et al. The CENP-T-CENP-W complex is a binding partner of the H2A-H2B chaperone FACT. Genes Dev. 30, 1313–1326 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Dornblut, C. et al. A CENP-S/X complex assembles at the centromere in S and G2 phases of the human cell cycle. Open Biol. 4, 130229 (2014).

    PubMed  PubMed Central  Google Scholar 

  23. Masumoto, H. et al. Assay of centromere function using a human artificial chromosome. Chromosoma 107, 406–416 (1998).

    CAS  PubMed  Google Scholar 

  24. Ohzeki, J. et al. Breaking the HAC Barrier: histone H3K9 acetyl/methyl balance regulates CENP-A assembly. EMBO J. 31, 2391–2402 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Barnhart, M. C. et al. HJURP is a CENP-A chromatin assembly factor sufficient to form a functional de novo kinetochore. J. Cell Biol. 194, 229–243 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Tachiwana, H. et al. HJURP involvement in de novo CenH3CENP-A and CENP-C recruitment. Cell Rep. 11, 22–32 (2015).

    CAS  PubMed  Google Scholar 

  27. Gascoigne, K. E. et al. Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes. Cell 145, 410–422 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mendiburo, M. J., Padeken, J., Fulop, S., Schepers, A. & Heun, P. Drosophila CENH3 is sufficient for centromere formation. Science 334, 686–690 (2011). This work describes how CenH3CID is sufficient to establish functional kinetochores using the LacI–LacO targeting system.

    CAS  PubMed  Google Scholar 

  29. Bodor, D. L. et al. The quantitative architecture of centromeric chromatin. eLife 3, e02137 (2014).

    PubMed  PubMed Central  Google Scholar 

  30. Chen, C. C. & Mellone, B. G. Chromatin assembly: journey to the CENter of the chromosome. J. Cell Biol. 214, 13–24 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Filipescu, D., Müller, S. & Almouzni, G. Histone H3 variants and their chaperones during development and disease: contributing to epigenetic control. Annu. Rev. Cell Dev. Biol. 30, 615–646 (2014).

    CAS  PubMed  Google Scholar 

  32. Szenker, E., Ray-Gallet, D. & Almouzni, G. The double face of the histone variant H3.3. Cell Res. 21, 421–434 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Boyarchuk, E., Filipescu, D., Vassias, I., Cantaloube, S. & Almouzni, G. The histone variant composition of centromeres is controlled by the pericentric heterochromatin state during the cell cycle. J. Cell Sci. 127, 3347–3359 (2014).

    CAS  PubMed  Google Scholar 

  34. Wieland, G., Orthaus, S., Ohndorf, S., Diekmann, S. & Hemmerich, P. Functional complementation of human centromere protein A (CENP-A) by Cse4p from Saccharomyces cerevisiae. Mol. Cell. Biol. 24, 6620–6630 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Howman, E. V. et al. Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice. Proc. Natl Acad. Sci. USA 97, 1148–1153 (2000).

    CAS  PubMed  Google Scholar 

  36. Regnier, V. et al. CENP-A is required for accurate chromosome segregation and sustained kinetochore association of BubR1. Mol. Cell. Biol. 25, 3967–3981 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Pearson, C. G. et al. Stable kinetochore-microtubule attachment constrains centromere positioning in metaphase. Curr. Biol. 14, 1962–1967 (2004).

    CAS  PubMed  Google Scholar 

  38. Takayama, Y. et al. Biphasic incorporation of centromeric histone CENP-A in fission yeast. Mol. Biol. Cell 19, 682–690 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lando, D. et al. Quantitative single-molecule microscopy reveals that CENP-ACnp1 deposition occurs during G2 in fission yeast. Open Biol. 2, 120078 (2012).

    PubMed  PubMed Central  Google Scholar 

  40. Gurard-Levin, Z. A., Quivy, J. P. & Almouzni, G. Histone chaperones: assisting histone traffic and nucleosome dynamics. Annu. Rev. Biochem. 83, 487–517 (2014).

    CAS  PubMed  Google Scholar 

  41. Tagami, H., Ray-Gallet, D., Almouzni, G. & Nakatani, Y. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116, 51–61 (2004). An important paper describing the differences in H3.1 and H3.3 deposition coupled to the cell cycle.

    CAS  PubMed  Google Scholar 

  42. Latreille, D., Bluy, L., Benkirane, M. & Kiernan, R. E. Identification of histone 3 variant 2 interacting factors. Nucleic Acids Res. 42, 3542–3550 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lewis, P. W., Elsaesser, S. J., Noh, K. M., Stadler, S. C. & Allis, C. D. Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc. Natl Acad. Sci. USA 107, 14075–14080 (2010).

    CAS  PubMed  Google Scholar 

  44. Ray-Gallet, D. et al. Dynamics of histone H3 deposition in vivo reveal a nucleosome gap-filling mechanism for H3.3 to maintain chromatin integrity. Mol. Cell 44, 928–941 (2011).

    CAS  PubMed  Google Scholar 

  45. Adam, S., Polo, S. E. & Almouzni, G. Transcription recovery after DNA damage requires chromatin priming by the H3.3 histone chaperone HIRA. Cell 155, 94–106 (2013).

    CAS  PubMed  Google Scholar 

  46. Goldberg, A. D. et al. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140, 678–691 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Dunleavy, E. M. et al. HJURP is a cell-cycle-dependent maintenance and deposition factor of CENP-A at centromeres. Cell 137, 485–497 (2009).

    CAS  PubMed  Google Scholar 

  48. Foltz, D. R. et al. Centromere-specific assembly of CENP-A nucleosomes is mediated by HJURP. Cell 137, 472–484 (2009). References 47 and 48, which were published back to back, describe the discovery of HJURP as a CenH3CENP-A chaperone.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Black, B. E. et al. Centromere identity maintained by nucleosomes assembled with histone H3 containing the CENP-A targeting domain. Mol. Cell 25, 309–322 (2007). This work describes the discovery of the CATD of CenH3CENP-A, which was later identified as the binding interface with HJURP.

    CAS  PubMed  Google Scholar 

  50. Okada, M. et al. The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nat. Cell Biol. 8, 446–457 (2006).

    CAS  PubMed  Google Scholar 

  51. Foltz, D. R. et al. The human CENP-A centromeric nucleosome-associated complex. Nat. Cell Biol. 8, 458–469 (2006). The isolation of the CCAN as a complex associated with centromeres. These components are part of centromeric chromatin and the kinetochore.

    CAS  PubMed  Google Scholar 

  52. Izuta, H. et al. Comprehensive analysis of the ICEN (Interphase Centromere Complex) components enriched in the CENP-A chromatin of human cells. Genes Cells 11, 673–684 (2006).

    CAS  PubMed  Google Scholar 

  53. Tachiwana, H. et al. Crystal structure of the human centromeric nucleosome containing CENP-A. Nature 476, 232–235 (2011). This work showed the first crystal structure of a nucleosome core particle with the CenH3CENP-A H3 variant.

    CAS  PubMed  Google Scholar 

  54. Masumoto, H., Masukata, H., Muro, Y., Nozaki, N. & Okazaki, T. A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite. J. Cell Biol. 109, 1963–1973 (1989).

    CAS  PubMed  Google Scholar 

  55. Fachinetti, D. et al. DNA sequence-specific binding of CENP-B enhances the fidelity of human centromere function. Dev. Cell 33, 314–327 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Perez-Castro, A. V. et al. Centromeric protein B null mice are viable with no apparent abnormalities. Dev. Biol. 201, 135–143 (1998).

    CAS  PubMed  Google Scholar 

  57. Kapoor, M. et al. The cenpB gene is not essential in mice. Chromosoma 107, 570–576 (1998).

    CAS  PubMed  Google Scholar 

  58. Hudson, D. F. et al. Centromere protein B null mice are mitotically and meiotically normal but have lower body and testis weights. J. Cell Biol. 141, 309–319 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kato, H. et al. A conserved mechanism for centromeric nucleosome recognition by centromere protein CENP-C. Science 340, 1110–1113 (2013). An important structural paper showing how CenH3CENP-A interacts with CENP-C.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Falk, S. J. et al. Chromosomes. CENP-C reshapes and stabilizes CENP-A nucleosomes at the centromere. Science 348, 699–703 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Hemmerich, P. et al. Dynamics of inner kinetochore assembly and maintenance in living cells. J. Cell Biol. 180, 1101–1114 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Roulland, Y. et al. The flexible ends of CENP-A nucleosome are required for mitotic fidelity. Mol. Cell 63, 674–685 (2016).

    CAS  PubMed  Google Scholar 

  63. Hori, T. et al. CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore. Cell 135, 1039–1052 (2008).

    CAS  PubMed  Google Scholar 

  64. Abendroth, C. et al. The CENP-T C-terminus is exclusively proximal to H3.1 and not to H3.2 or H3.3. Int. J. Mol. Sci. 16, 5839–5863 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Suzuki, A., Badger, B. L. & Salmon, E. D. A quantitative description of Ndc80 complex linkage to human kinetochores. Nat. Commun. 6, 8161 (2015).

    PubMed  PubMed Central  Google Scholar 

  66. Hori, T., Shang, W. H., Takeuchi, K. & Fukagawa, T. The CCAN recruits CENP-A to the centromere and forms the structural core for kinetochore assembly. J. Cell Biol. 200, 45–60 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Klare, K. et al. CENP-C is a blueprint for constitutive centromere-associated network assembly within human kinetochores. J. Cell Biol. 210, 11–22 (2015).

    CAS  PubMed  Google Scholar 

  68. Liu, Y. et al. Insights from the reconstitution of the divergent outer kinetochore of Drosophila melanogaster. Open Biol. 6, 150236 (2016).

    PubMed  PubMed Central  Google Scholar 

  69. Thakur, J. & Henikoff, S. CENPT bridges adjacent CENPA nucleosomes on young human alpha-satellite dimers. Genome Res. 26, 1178–1187 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. McKinley, K. L. et al. The CENP-L-N complex forms a critical node in an integrated meshwork of interactions at the centromere-kinetochore interface. Mol. Cell 60, 886–898 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Nishino, T. et al. CENP-T-W-S-X forms a unique centromeric chromatin structure with a histone-like fold. Cell 148, 487–501 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Fang, J. et al. Structural transitions of centromeric chromatin regulate the cell cycle-dependent recruitment of CENP-N. Genes Dev. 29, 1058–1073 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Quenet, D. & Dalal, Y. A long non-coding RNA is required for targeting centromeric protein A to the human centromere. eLife 3, e03254 (2014).

    PubMed  Google Scholar 

  74. Choi, E. S. et al. Identification of noncoding transcripts from within CENP-A chromatin at fission yeast centromeres. J. Biol. Chem. 286, 23600–23607 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Chan, F. L. et al. Active transcription and essential role of RNA polymerase II at the centromere during mitosis. Proc. Natl Acad. Sci. USA 109, 1979–1984 (2012).

    CAS  PubMed  Google Scholar 

  76. Saffery, R. et al. Transcription within a functional human centromere. Mol. Cell 12, 509–516 (2003).

    CAS  PubMed  Google Scholar 

  77. Maison, C. & Almouzni, G. HP1 and the dynamics of heterochromatin maintenance. Nat. Rev. Mol. Cell Biol. 5, 296–304 (2004).

    CAS  PubMed  Google Scholar 

  78. Catania, S. & Allshire, R. C. Anarchic centromeres: deciphering order from apparent chaos. Curr. Opin. Cell Biol. 26, 41–50 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Chen, C. C. et al. CAL1 is the Drosophila CENP-A assembly factor. J. Cell Biol. 204, 313–329 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Nakano, M. et al. Inactivation of a human kinetochore by specific targeting of chromatin modifiers. Dev. Cell 14, 507–522 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Martins, N. M. et al. Epigenetic engineering shows that a human centromere resists silencing mediated by H3K27me3/K9me3. Mol. Biol. Cell 27, 177–196 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Bergmann, J. H. et al. Epigenetic engineering: histone H3K9 acetylation is compatible with kinetochore structure and function. J. Cell Sci. 125, 411–421 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Guenatri, M., Bailly, D., Maison, C. & Almouzni, G. Mouse centric and pericentric satellite repeats form distinct functional heterochromatin. J. Cell Biol. 166, 493–505 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Probst, A. V. & Almouzni, G. Heterochromatin establishment in the context of genome-wide epigenetic reprogramming. Trends Genet. 27, 177–185 (2011).

    CAS  PubMed  Google Scholar 

  85. Hahn, M. et al. Suv4-20h2 mediates chromatin compaction and is important for cohesin recruitment to heterochromatin. Genes Dev. 27, 859–872 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Bergmann, J. H. et al. Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore. EMBO J. 30, 328–340 (2011).

    CAS  PubMed  Google Scholar 

  87. Hori, T. et al. Histone H4 Lys 20 monomethylation of the CENP-A nucleosome is essential for kinetochore assembly. Dev. Cell 29, 740–749 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Maison, C. et al. Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat. Genet. 30, 329–334 (2002).

    PubMed  Google Scholar 

  89. Maison, C. et al. SUMOylation promotes de novo targeting of HP1alpha to pericentric heterochromatin. Nat. Genet. 43, 220–227 (2011).

    CAS  PubMed  Google Scholar 

  90. Bailey, A. O. et al. Posttranslational modification of CENP-A influences the conformation of centromeric chromatin. Proc. Natl Acad. Sci. USA 110, 11827–11832 (2013).

    CAS  PubMed  Google Scholar 

  91. Goutte-Gattat, D. et al. Phosphorylation of the CENP-A amino-terminus in mitotic centromeric chromatin is required for kinetochore function. Proc. Natl Acad. Sci. USA 110, 8579–8584 (2013).

    CAS  PubMed  Google Scholar 

  92. Rossetto, D., Avvakumov, N. & Cote, J. Histone phosphorylation: a chromatin modification involved in diverse nuclear events. Epigenetics 7, 1098–1108 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Hinchcliffe, E. H. et al. Chromosome missegregation during anaphase triggers p53 cell cycle arrest through histone H3.3 Ser31 phosphorylation. Nat. Cell Biol. 18, 668–675 (2016).

    CAS  PubMed  Google Scholar 

  94. Hake, S. B. et al. Serine 31 phosphorylation of histone variant H3.3 is specific to regions bordering centromeres in metaphase chromosomes. Proc. Natl Acad. Sci. USA 102, 6344–6349 (2005).

    CAS  PubMed  Google Scholar 

  95. Allshire, R. C., Nimmo, E. R., Ekwall, K., Javerzat, J. P. & Cranston, G. Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation. Genes Dev. 9, 218–233 (1995).

    CAS  PubMed  Google Scholar 

  96. Allshire, R. C. & Ekwall, K. Epigenetic regulation of chromatin states in Schizosaccharomyces pombe. Cold Spring Harb. Perspect. Biol. 7, a018770 (2015).

    PubMed  PubMed Central  Google Scholar 

  97. Folco, H. D., Pidoux, A. L., Urano, T. & Allshire, R. C. Heterochromatin and RNAi are required to establish CENP-A chromatin at centromeres. Science 319, 94–97 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Scott, K. C., White, C. V. & Willard, H. F. An RNA polymerase III-dependent heterochromatin barrier at fission yeast centromere 1. PLoS ONE 2, e1099 (2007).

    PubMed  PubMed Central  Google Scholar 

  99. Cole, H. A., Howard, B. H. & Clark, D. J. The centromeric nucleosome of budding yeast is perfectly positioned and covers the entire centromere. Proc. Natl Acad. Sci. USA 108, 12687–12692 (2011).

    CAS  PubMed  Google Scholar 

  100. Ribeiro, S. A., Vagnarelli, P. & Earnshaw, W. C. DNA content of a functioning chicken kinetochore. Chromosome Res. 22, 7–13 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Almouzni, G. & Probst, A. V. Heterochromatin maintenance and establishment: lessons from the mouse pericentromere. Nucleus 2, 332–338 (2011).

    PubMed  Google Scholar 

  102. Dalal, Y., Wang, H., Lindsay, S. & Henikoff, S. Tetrameric structure of centromeric nucleosomes in interphase Drosophila cells. PLoS Biol. 5, e218 (2007).

    PubMed  PubMed Central  Google Scholar 

  103. Furuyama, T., Codomo, C. A. & Henikoff, S. Reconstitution of hemisomes on budding yeast centromeric DNA. Nucleic Acids Res. 41, 5769–5783 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Bui, M. et al. Cell-cycle-dependent structural transitions in the human CENP-A nucleosome in vivo. Cell 150, 317–326 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Miell, M. D. et al. CENP-A confers a reduction in height on octameric nucleosomes. Nat. Struct. Mol. Biol. 20, 763–765 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Codomo, C. A., Furuyama, T. & Henikoff, S. CENP-A octamers do not confer a reduction in nucleosome height by AFM. Nat. Struct. Mol. Biol. 21, 4–5 (2014).

    CAS  PubMed  Google Scholar 

  107. Henikoff, S. et al. The budding yeast Centromere DNA Element II wraps a stable Cse4 hemisome in either orientation in vivo. eLife 3, e01861 (2014).

    PubMed  PubMed Central  Google Scholar 

  108. Wisniewski, J. et al. Imaging the fate of histone Cse4 reveals de novo replacement in S phase and subsequent stable residence at centromeres. eLife 3, e02203 (2014).

    PubMed  PubMed Central  Google Scholar 

  109. Arimura, Y. et al. Crystal structure and stable property of the cancer-associated heterotypic nucleosome containing CENP-A and H3.3. Sci. Rep. 4, 7115 (2014).

    PubMed  PubMed Central  Google Scholar 

  110. Dunleavy, E. M., Zhang, W. & Karpen, G. H. Solo or doppio: how many CENP-As make a centromeric nucleosome? Nat. Struct. Mol. Biol. 20, 648–650 (2013).

    CAS  PubMed  Google Scholar 

  111. Dunleavy, E. M., Almouzni, G. & Karpen, G. H. H3.3 is deposited at centromeres in S phase as a placeholder for newly assembled CENP-A in G1 phase. Nucleus 2, 146–157 (2011). This work shows that H3.3 is lost at centromeres during mitosis, suggesting that it serves as a placeholder for CenH3CENP-A until its levels are replenished between telophase and early G1 phase.

    PubMed  PubMed Central  Google Scholar 

  112. Clement, C. & Almouzni, G. MCM2 binding to histones H3-H4 and ASF1 supports a tetramer-to-dimer model for histone inheritance at the replication fork. Nat. Struct. Mol. Biol. 22, 587–589 (2015).

    CAS  PubMed  Google Scholar 

  113. Huang, H. et al. A unique binding mode enables MCM2 to chaperone histones H3-H4 at replication forks. Nat. Struct. Mol. Biol. 22, 618–626 (2015). This recent paper shows how MCM2 can handle and recycle histones, including CenH3CENP-A, at the replication fork during S phase.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Richet, N. et al. Structural insight into how the human helicase subunit MCM2 may act as a histone chaperone together with ASF1 at the replication fork. Nucleic Acids Res. 43, 1905–1917 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Lacoste, N. et al. Mislocalization of the centromeric histone variant CenH3/CENP-A in human cells depends on the chaperone DAXX. Mol. Cell 53, 615–629 (2014). A key paper showing how DAXX can handle the incorporation of ectopic CenH3CENP-A in cells overexpressing this histone variant.

    Google Scholar 

  116. Alabert, C. et al. Nascent chromatin capture proteomics determines chromatin dynamics during DNA replication and identifies unknown fork components. Nat. Cell Biol. 16, 281–293 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Mejlvang, J. et al. New histone supply regulates replication fork speed and PCNA unloading. J. Cell Biol. 204, 29–43 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Chen, C. C. et al. Establishment of centromeric chromatin by the CENP-A assembly factor CAL1 requires FACT-mediated transcription. Dev. Cell 34, 73–84 (2015).

    PubMed  PubMed Central  Google Scholar 

  119. Sims, R. J. III, Belotserkovskaya, R. & Reinberg, D. Elongation by RNA polymerase II: the short and long of it. Genes Dev. 18, 2437–2468 (2004).

    CAS  PubMed  Google Scholar 

  120. Formosa, T. The role of FACT in making and breaking nucleosomes. Biochim. Biophys. Acta 1819, 247–255 (2013).

    PubMed  Google Scholar 

  121. Hayashi, T. et al. Mis16 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres. Cell 118, 715–729 (2004).

    CAS  PubMed  Google Scholar 

  122. Okada, M., Okawa, K., Isobe, T. & Fukagawa, T. CENP-H-containing complex facilitates centromere deposition of CENP-A in cooperation with FACT and CHD1. Mol. Biol. Cell 20, 3986–3995 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Fujita, Y. et al. Priming of centromere for CENP-A recruitment by human hMis18alpha, hMis18beta, and M18BP1. Dev. Cell 12, 17–30 (2007).

    CAS  PubMed  Google Scholar 

  124. Ohzeki, J. et al. KAT7/HBO1/MYST2 regulates CENP-A chromatin assembly by antagonizing Suv39h1-mediated centromere inactivation. Dev. Cell 37, 413–427 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Furuyama, T., Dalal, Y. & Henikoff, S. Chaperone-mediated assembly of centromeric chromatin in vitro. Proc. Natl Acad. Sci. USA 103, 6172–6177 (2006).

    CAS  PubMed  Google Scholar 

  126. Subramanian, L. et al. Centromere localization and function of Mis18 requires Yippee-like domain-mediated oligomerization. EMBO Rep. 17, 496–507 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Nardi, I. K., Zasadzinska, E., Stellfox, M. E., Knippler, C. M. & Foltz, D. R. Licensing of centromeric chromatin assembly through the Mis18alpha-Mis18beta heterotetramer. Mol. Cell 61, 774–787 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. McKinley, K. L. & Cheeseman, I. M. Polo-like kinase 1 licenses CENP-A deposition at centromeres. Cell 158, 397–411 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Moree, B., Meyer, C. B., Fuller, C. J. & Straight, A. F. CENP-C recruits M18BP1 to centromeres to promote CENP-A chromatin assembly. J. Cell Biol. 194, 855–871 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Westhorpe, F. G., Fuller, C. J. & Straight, A. F. A cell-free CENP-A assembly system defines the chromatin requirements for centromere maintenance. J. Cell Biol. 209, 789–801 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Maddox, P. S., Hyndman, F., Monen, J., Oegema, K. & Desai, A. Functional genomics identifies a Myb domain-containing protein family required for assembly of CENP-A chromatin. J. Cell Biol. 176, 757–763 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Schittenhelm, R. B., Althoff, F., Heidmann, S. & Lehner, C. F. Detrimental incorporation of excess Cenp-A/Cid and Cenp-C into Drosophila centromeres is prevented by limiting amounts of the bridging factor Cal1. J. Cell Sci. 123, 3768–3779 (2010).

    CAS  PubMed  Google Scholar 

  133. Silva, M. C. et al. Cdk activity couples epigenetic centromere inheritance to cell cycle progression. Dev. Cell 22, 52–63 (2012).

    CAS  PubMed  Google Scholar 

  134. Basilico, F. et al. The pseudo GTPase CENP-M drives human kinetochore assembly. eLife 3, e02978 (2014).

    PubMed  PubMed Central  Google Scholar 

  135. Wang, J. et al. Mitotic regulator Mis18beta interacts with and specifies the centromeric assembly of molecular chaperone HJURP. J. Biol. Chem. 289, 8326–8336 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Perpelescu, M. et al. HJURP is involved in the expansion of centromeric chromatin. Mol. Biol. Cell 26, 2742–2754 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Zasadzinska, E., Barnhart-Dailey, M. C., Kuich, P. H. & Foltz, D. R. Dimerization of the CENP-A assembly factor HJURP is required for centromeric nucleosome deposition. EMBO J. 32, 2113–2124 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Shuaib, M., Ouararhni, K., Dimitrov, S. & Hamiche, A. HJURP binds CENP-A via a highly conserved N-terminal domain and mediates its deposition at centromeres. Proc. Natl Acad. Sci. USA 107, 1349–1354 (2010).

    CAS  PubMed  Google Scholar 

  139. Kato, T. et al. Activation of Holliday junction recognizing protein involved in the chromosomal stability and immortality of cancer cells. Cancer Res. 67, 8544–8553 (2007).

    CAS  PubMed  Google Scholar 

  140. Yu, Z. et al. Dynamic phosphorylation of CENP-A at Ser68 orchestrates its cell-cycle-dependent deposition at centromeres. Dev. Cell 32, 68–81 (2015).

    PubMed  Google Scholar 

  141. Hu, H. et al. Structure of a CENP-A-histone H4 heterodimer in complex with chaperone HJURP. Genes Dev. 25, 901–906 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Niikura, Y. et al. CENP-A K124 ubiquitylation is required for CENP-A deposition at the centromere. Dev. Cell 32, 589–603 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Bade, D., Pauleau, A. L., Wendler, A. & Erhardt, S. The E3 ligase CUL3/RDX controls centromere maintenance by ubiquitylating and stabilizing CENP-A in a CAL1-dependent manner. Dev. Cell 28, 508–519 (2014).

    CAS  PubMed  Google Scholar 

  144. Bernad, R. et al. Xenopus HJURP and condensin II are required for CENP-A assembly. J. Cell Biol. 192, 569–582 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Tomonaga, T. et al. Overexpression and mistargeting of centromere protein-A in human primary colorectal cancer. Cancer Res. 63, 3511–3516 (2003).

    CAS  PubMed  Google Scholar 

  146. Wu, Q. et al. Expression and prognostic significance of centromere protein A in human lung adenocarcinoma. Lung Cancer 77, 407–414 (2012).

    PubMed  Google Scholar 

  147. McGovern, S. L., Qi, Y., Pusztai, L., Symmans, W. F. & Buchholz, T. A. Centromere protein-A, an essential centromere protein, is a prognostic marker for relapse in estrogen receptor-positive breast cancer. Breast Cancer Res. 14, R72 (2012).

    PubMed  PubMed Central  Google Scholar 

  148. Qiu, J. J. et al. Prognostic value of centromere protein-A expression in patients with epithelial ovarian cancer. Tumour Biol. 34, 2971–2975 (2013).

    CAS  PubMed  Google Scholar 

  149. Moreno-Moreno, O., Torras-Llort, M. & Azorin, F. Proteolysis restricts localization of CID, the centromere-specific histone H3 variant of Drosophila, to centromeres. Nucleic Acids Res. 34, 6247–6255 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Collins, K. A., Camahort, R., Seidel, C., Gerton, J. L. & Biggins, S. The overexpression of a Saccharomyces cerevisiae centromeric histone H3 variant mutant protein leads to a defect in kinetochore biorientation. Genetics 175, 513–525 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Hewawasam, G. et al. Psh1 is an E3 ubiquitin ligase that targets the centromeric histone variant Cse4. Mol. Cell 40, 444–454 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Pezer, Z., Harr, B., Teschke, M., Babiker, H. & Tautz, D. Divergence patterns of genic copy number variation in natural populations of the house mouse (Mus musculus domesticus) reveal three conserved genes with major population-specific expansions. Genome Res. 25, 1114–1124 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Cutler, G. & Kassner, P. D. Copy number variation in the mouse genome: implications for the mouse as a model organism for human disease. Cytogenet. Genome Res. 123, 297–306 (2008).

    CAS  PubMed  Google Scholar 

  154. Gordon, D. J., Resio, B. & Pellman, D. Causes and consequences of aneuploidy in cancer. Nat. Rev. Genet. 13, 189–203 (2012).

    CAS  PubMed  Google Scholar 

  155. Voullaire, L. E., Slater, H. R., Petrovic, V. & Choo, K. H. A functional marker centromere with no detectable alpha-satellite, satellite III, or CENP-B protein: activation of a latent centromere? Am. J. Hum. Genet. 52, 1153–1163 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Plaja, A. et al. Variegated aneuploidy related to premature centromere division (PCD) is expressed in vivo and is a cancer-prone disease. Am. J. Med. Genet. 98, 216–223 (2001).

    CAS  PubMed  Google Scholar 

  157. Gisselsson, D. et al. The structure and dynamics of ring chromosomes in human neoplastic and non-neoplastic cells. Hum. Genet. 104, 315–325 (1999).

    CAS  PubMed  Google Scholar 

  158. Sirvent, N. et al. Characterization of centromere alterations in liposarcomas. Genes Chromosomes Cancer 29, 117–129 (2000).

    CAS  PubMed  Google Scholar 

  159. Amor, D. J. et al. Human centromere repositioning “in progress”. Proc. Natl Acad. Sci. USA 101, 6542–6547 (2004).

    CAS  PubMed  Google Scholar 

  160. Scott, K. C. & Sullivan, B. A. Neocentromeres: a place for everything and everything in its place. Trends Genet. 30, 66–74 (2014).

    CAS  PubMed  Google Scholar 

  161. Blom, E., Heyning, F. H. & Kroes, W. G. A case of angioimmunoblastic T-cell non-Hodgkin lymphoma with a neocentric inv dup(1). Cancer Genet. Cytogenet. 202, 38–42 (2010).

    CAS  PubMed  Google Scholar 

  162. Ishii, K. et al. Heterochromatin integrity affects chromosome reorganization after centromere dysfunction. Science 321, 1088–1091 (2008).

    CAS  PubMed  Google Scholar 

  163. Shang, W. H. et al. Chromosome engineering allows the efficient isolation of vertebrate neocentromeres. Dev. Cell 24, 635–648 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Olszak, A. M. et al. Heterochromatin boundaries are hotspots for de novo kinetochore formation. Nat. Cell Biol. 13, 799–808 (2011).

    CAS  PubMed  Google Scholar 

  165. Okada, T. et al. CENP-B controls centromere formation depending on the chromatin context. Cell 131, 1287–1300 (2007).

    CAS  PubMed  Google Scholar 

  166. Rudd, M. K., Mays, R. W., Schwartz, S. & Willard, H. F. Human artificial chromosomes with alpha satellite-based de novo centromeres show increased frequency of nondisjunction and anaphase lag. Mol. Cell. Biol. 23, 7689–7697 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Akiyoshi, B. & Gull, K. Discovery of unconventional kinetochores in kinetoplastids. Cell 156, 1247–1258 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Drinnenberg, I. A., deYoung, D., Henikoff, S. & Malik, H. S. Recurrent loss of CenH3 is associated with independent transitions to holocentricity in insects. eLife http://dx.doi.org/10.7554/eLife.03676 (2014).

  169. Przewloka, M. R. et al. CENP-C is a structural platform for kinetochore assembly. Curr. Biol. 21, 399–405 (2011).

    CAS  PubMed  Google Scholar 

  170. Nishino, T. et al. CENP-T provides a structural platform for outer kinetochore assembly. EMBO J. 32, 424–436 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Marthiens, V., Piel, M. & Basto, R. Never tear us apart — the importance of centrosome clustering. J. Cell Sci. 125, 3281–3292 (2012).

    CAS  PubMed  Google Scholar 

  172. Glynn, E. F. et al. Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLoS Biol. 2, E259 (2004).

    PubMed  PubMed Central  Google Scholar 

  173. Lu, J. & Gilbert, D. M. Proliferation-dependent and cell cycle regulated transcription of mouse pericentric heterochromatin. J. Cell Biol. 179, 411–421 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Drinnenberg, I. A., Hennikoff, S. & Malik, H. S. Evolutionary turnover of kinetochore proteins: a ship of Theseus? Trends Cell Biol. 26, 498–510 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Nagpal, H. & Fukagawa, T. Kinetochore assembly and function through the cell cycle. Chromosoma 125, 645–659 (2016).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank I. A. Drinnenberg, D. Ray-Gallet, D. Filipescu and D. Fachinetti for useful discussion and proofreading of this Review. We also thank H. Tachiwana for drawing the nucleosomal structure illustrations. S.M. thanks the R. Rodriguez laboratory for support. This work was supported by la Ligue Nationale contre le Cancer (Equipe labellisée Ligue), the European Commission Network of Excellence EpiGeneSys (HEALTH-F4-2010-257082), the European Research Council (advanced grant 2009-AdG_20090506 'Eccentric'), the European Commission (large-scale integrating project FP7_HEALTH-2010-259743 'MODHEP'), the French National Research Agency (ANR) ('ChromaTin' ANR-10-BLAN-1326-03, ANR-11-LABX-0044_DEEP and ANR-10-IDEX-0001-02 PSL; and 'CHAPINHIB' ANR-12-BSV5-0022-02) and the Aviesan Instituts thématiques multi-organismes (Aviesan-ITMO) cancer project 'Epigenomics of breast cancer'. S.M. was also supported by the Marie Curie Initial Training Network (Nucleosome 4D), and La Fondation pour la recherche médicale.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geneviève Almouzni.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

α-Satellite sequences

Tandem repeat DNA sequences found at centromeres. The sequences are highly divergent among species.

Neocentromeres

Ectopic centromeres that are formed at loci other than the usual α-satellite sequence.

Homotypic

A nucleosome that has copies of the same variant of H3, H2A or H2B.

Recycled

Histones are evicted during S phase and transcription, and new histones can be deposited de novo or the old histones can be deposited again, meaning that they are recycled.

Heterotypic

A nucleosome that has different variants of H3, H2A or H2B.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, S., Almouzni, G. Chromatin dynamics during the cell cycle at centromeres. Nat Rev Genet 18, 192–208 (2017). https://doi.org/10.1038/nrg.2016.157

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg.2016.157

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing