Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulatory activities of transposable elements: from conflicts to benefits

Key Points

  • Transposable elements (TEs) are increasingly recognized as a potent source of regulatory sequences in eukaryotic genomes

  • The selfish replication cycle of TEs drove the evolution of finely tuned regulatory activities that favoured their propagation and has predisposed them to be co-opted for the regulation of host genes

  • There is a growing number of examples of TE-derived sequences that have been co-opted to regulate important biological processes in organismal development and physiology

  • Dysfunction of TE-derived regulatory sequences is also emerging as a potential driver of diseases including cancer and autoimmunity

  • Functional genomics and genome-editing technologies herald an exciting era for understanding the biological effect of TEs

Abstract

Transposable elements (TEs) are a prolific source of tightly regulated, biochemically active non-coding elements, such as transcription factor-binding sites and non-coding RNAs. Many recent studies reinvigorate the idea that these elements are pervasively co-opted for the regulation of host genes. We argue that the inherent genetic properties of TEs and the conflicting relationships with their hosts facilitate their recruitment for regulatory functions in diverse genomes. We review recent findings supporting the long-standing hypothesis that the waves of TE invasions endured by organisms for eons have catalysed the evolution of gene-regulatory networks. We also discuss the challenges of dissecting and interpreting the phenotypic effect of regulatory activities encoded by TEs in health and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Origins of TE regulatory activities and how they may affect host genes.
Figure 2: Examples of phenotypes driven by TE regulatory activity.
Figure 3: TEs can be aberrantly unmasked to promote disease states.

Similar content being viewed by others

References

  1. McClintock, B. Intranuclear systems controlling gene action and mutation. Brookhaven Symp. Biol. 8, 58–74 (1956).

    Google Scholar 

  2. Britten, R. J. & Kohne, D. E. Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science 161, 529–540 (1968).

    CAS  PubMed  Google Scholar 

  3. Britten, R. J. & Davidson, E. H. Repetitive and non-repetitive DNA sequences and a speculation on the origins of evolutionary novelty. Q. Rev. Biol. 46, 111–138 (1971).

    CAS  PubMed  Google Scholar 

  4. Orgel, L. E., Crick, F. H. & Sapienza, C. Selfish DNA. Nature 288, 645–646 (1980).

    CAS  PubMed  Google Scholar 

  5. Doolittle, W. F. & Sapienza, C. Selfish genes, the phenotype paradigm and genome evolution. Nature 284, 601–603 (1980).

    CAS  PubMed  Google Scholar 

  6. Lynch, M. The Origins of Genome Architecture (Sinauer Associates Incorporated, 2007).

    Google Scholar 

  7. Mager, D. L. & Stoye, J. P. Mammalian endogenous retroviruses. Microbiol. Spectr. 3, MDNA3-0009-2014 (2015).

    PubMed  Google Scholar 

  8. Richardson, S. R. et al. The influence of LINE-1 and SINE retrotransposons on mammalian genomes. Microbiol. Spectr. 3, MDNA3-0061-2014 (2015).

    PubMed  Google Scholar 

  9. Speek, M. Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes. Mol. Cell. Biol. 21, 1973–1985 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    CAS  PubMed  Google Scholar 

  11. Feschotte, C., Zhang, X. & Wessler, S. R. Mobile DNA II (eds Craig, N. L., Craigie, R., Gellert, M. & Lambowitz, A. M.) 1147–1158 (ASM Press, 2002).

    Google Scholar 

  12. Faulkner, G. J. et al. The regulated retrotransposon transcriptome of mammalian cells. Nat. Genet. 41, 563–571 (2009).

    CAS  PubMed  Google Scholar 

  13. Lisch, D. How important are transposons for plant evolution? Nat. Rev. Genet. 14, 49–61 (2013).

    CAS  PubMed  Google Scholar 

  14. Feschotte, C. Transposable elements and the evolution of regulatory networks. Nat. Rev. Genet. 9, 397–405 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bourque, G. et al. Evolution of the mammalian transcription factor binding repertoire via transposable elements. Genome Res. 18, 1752–1762 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Roman, A. C., Benitez, D. A., Carvajal-Gonzalez, J. M. & Fernandez-Salguero, P. M. Genome-wide B1 retrotransposon binds the transcription factors dioxin receptor and Slug and regulates gene expression in vivo. Proc. Natl Acad. Sci. USA 105, 1632–1637 (2008).

    CAS  PubMed  Google Scholar 

  17. Kunarso, G. et al. Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nat. Genet. 42, 631–634 (2010).

    CAS  PubMed  Google Scholar 

  18. Testori, A. et al. The role of transposable elements in shaping the combinatorial interaction of transcription factors. BMC Genomics 13, 400 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sundaram, V. et al. Widespread contribution of transposable elements to the innovation of gene regulatory networks. Genome Res. 24, 1963–1976 (2014). This is the most comprehensive assessment so far of the contribution of TEs to the genomic landscape of transcription factor binding in human and mouse cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Teng, L., He, B., Gao, P., Gao, L. & Tan, K. Discover context-specific combinatorial transcription factor interactions by integrating diverse ChIP-Seq data sets. Nucleic Acids Res. 42, e24 (2014).

    PubMed  Google Scholar 

  21. Thompson, P. J., Macfarlan, T. S. & Lorincz, M. C. Long terminal repeats: from parasitic elements to building blocks of the transcriptional regulatory repertoire. Mol. Cell 62, 766–776 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lisch, D. & Damon, L. Regulation of transposable elements in maize. Curr. Opin. Plant Biol. 15, 511–516 (2012).

    CAS  PubMed  Google Scholar 

  23. Gerdes, P., Richardson, S. R., Mager, D. L. & Faulkner, G. J. Transposable elements in the mammalian embryo: pioneers surviving through stealth and service. Genome Biol. 17, 100 (2016).

    PubMed  PubMed Central  Google Scholar 

  24. Kazazian, H. H. Jr. Mobile DNA transposition in somatic cells. BMC Biol. 9, 62 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Perrat, P. N. et al. Transposition-driven genomic heterogeneity in the Drosophila brain. Science 340, 91–95 (2013).

    CAS  PubMed  Google Scholar 

  26. Levin, H. L. & Moran, J. V. Dynamic interactions between transposable elements and their hosts. Nat. Rev. Genet. 12, 615–627 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu, S. et al. Mu transposon insertion sites and meiotic recombination events co-localize with epigenetic marks for open chromatin across the maize genome. PLoS Genet. 5, e1000733 (2009).

    PubMed  PubMed Central  Google Scholar 

  28. Naito, K. et al. Unexpected consequences of a sudden and massive transposon amplification on rice gene expression. Nature 461, 1130–1134 (2009).

    CAS  PubMed  Google Scholar 

  29. Leem, Y.-E. et al. Retrotransposon Tf1 is targeted to Pol II promoters by transcription activators. Mol. Cell 30, 98–107 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Liao, G.-C., Rehm, E. J. & Rubin, G. M. Insertion site preferences of the P transposable element in Drosophila melanogaster. Proc. Natl Acad. Sci. 97, 3347–3351 (2000).

    CAS  PubMed  Google Scholar 

  31. Schröder, A. R. W. et al. HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110, 521–529 (2002).

    PubMed  Google Scholar 

  32. Friedli, M. & Trono, D. The developmental control of transposable elements and the evolution of higher species. Annu. Rev. Cell Dev. Biol. 31, 429–451 (2015).

    CAS  PubMed  Google Scholar 

  33. Wolf, G., Greenberg, D. & Macfarlan, T. S. Spotting the enemy within: targeted silencing of foreign DNA in mammalian genomes by the Krüppel-associated box zinc finger protein family. Mob. DNA 6, 17 (2015).

    PubMed  PubMed Central  Google Scholar 

  34. Cohen, C. J., Lock, W. M. & Mager, D. L. Endogenous retroviral LTRs as promoters for human genes: a critical assessment. Gene 448, 105–114 (2009).

    CAS  PubMed  Google Scholar 

  35. Rebollo, R., Farivar, S. & Mager, D. L. C-GATE — catalogue of genes affected by transposable elements. Mob. DNA 3, 9 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hirsch, C. D. & Springer, N. M. Transposable element influences on gene expression in plants. Biochim. Biophys. Acta http://dx.doi.org/10.1016/j.bbagrm.2016.05.010 (2016).

  37. Elbarbary, R. A., Lucas, B. A. & Maquat, L. E. Retrotransposons as regulators of gene expression. Science 351, aac7247 (2016).

    PubMed  PubMed Central  Google Scholar 

  38. Macfarlan, T. S. et al. Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 487, 57–63 (2012). References 17 and 38 are seminal studies hinting at the recurrent regulatory co-option of ERVs in mammalian early development.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Melé, M. et al. Human genomics. The human transcriptome across tissues and individuals. Science 348, 660–665 (2015).

    PubMed  PubMed Central  Google Scholar 

  40. Batut, P., Dobin, A., Plessy, C., Carninci, P. & Gingeras, T. R. High-fidelity promoter profiling reveals widespread alternative promoter usage and transposon-driven developmental gene expression. Genome Res. 23, 169–180 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Jacques, P.-É., Jeyakani, J. & Bourque, G. The majority of primate-specific regulatory sequences are derived from transposable elements. PLoS Genet. 9, e1003504 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang, T. et al. Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53. Proc. Natl Acad. Sci. USA 104, 18613–18618 (2007).

    CAS  PubMed  Google Scholar 

  43. Chuong, E. B., Elde, N. C. & Feschotte, C. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science 351, 1083–1087 (2016). This is the first application of the CRISPR–Cas9 system to establish the functional importance of TE-derived cis -regulatory elements, here, shown to be co-opted for the human innate immune response.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Van Bortle, K. & Corces, V. G. The role of chromatin insulators in nuclear architecture and genome function. Curr. Opin. Genet. Dev. 23, 212–218 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Schmidt, D. et al. Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages. Cell 148, 335–348 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Crepaldi, L. et al. Binding of TFIIIC to sine elements controls the relocation of activity-dependent neuronal genes to transcription factories. PLoS Genet. 9, e1003699 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, J. et al. MIR retrotransposon sequences provide insulators to the human genome. Proc. Natl Acad. Sci. USA 112, E4428–E4437 (2015). References 45–47 show that SINEs frequently have properties of architectural elements partitioning the mammalian genome into distinct topological domains.

    CAS  PubMed  Google Scholar 

  48. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Cournac, A., Koszul, R. & Mozziconacci, J. The 3D folding of metazoan genomes correlates with the association of similar repetitive elements. Nucleic Acids Res. 44, 245–255 (2016).

    CAS  PubMed  Google Scholar 

  51. Mateo, L., Ullastres, A. & Gonzalez, J. A transposable element insertion confers xenobiotic resistance in Drosophila. PLoS Genet. 10, e1004560 (2014). This is a meticulous investigation of the physiological effect of a TE insertion with adaptive regulatory effects in D. melanogaster.

    PubMed  PubMed Central  Google Scholar 

  52. Lippman, Z. et al. Role of transposable elements in heterochromatin and epigenetic control. Nature 430, 471–476 (2004).

    CAS  PubMed  Google Scholar 

  53. Rebollo, R. et al. Retrotransposon-induced heterochromatin spreading in the mouse revealed by insertional polymorphisms. PLoS Genet. 7, e1002301 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. de Souza, F. S. J., Franchini, L. F. & Rubinstein, M. Exaptation of transposable elements into novel cis-regulatory elements: is the evidence always strong? Mol. Biol. Evol. 30, 1239–1251 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. del Rosario, R. C. H., Rayan, N. A. & Shyam, P. Noncoding origins of anthropoid traits and a new null model of transposon functionalization. Genome Res. 24, 1469–1484 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Brosius, J. & Gould, S. J. On 'genomenclature': a comprehensive (and respectful) taxonomy for pseudogenes and other 'junk DNA'. Proc. Natl Acad. Sci. USA 89, 10706–10710 (1992).

    CAS  PubMed  Google Scholar 

  57. Miller, W. J., McDonald, J. F. & Pinsker, W. Molecular domestication of mobile elements. Genetica 100, 261–270 (1997).

    CAS  PubMed  Google Scholar 

  58. Lowe, C. B. & Haussler, D. 29 mammalian genomes reveal novel exaptations of mobile elements for likely regulatory functions in the human genome. PLoS ONE 7, e43128 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Bejerano, G. et al. A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature 441, 87–90 (2006).

    CAS  PubMed  Google Scholar 

  60. Samstein, R. M., Josefowicz, S. Z., Arvey, A., Treuting, P. M. & Rudensky, A. Y. Extrathymic generation of regulatory T cells in placental mammals mitigates maternal–fetal conflict. Cell 150, 29–38 (2012). This is a careful study tracing the origination of an enhancer that is essential for extrathymic regulatory T cell differentiation to an ancient TE insertion that was co-opted in the common ancestor of placental mammals.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Lam, D. D. et al. Partially redundant enhancers cooperatively maintain mammalian Pomc expression above a critical functional threshold. PLoS Genet. 11, e1004935 (2015).

    PubMed  PubMed Central  Google Scholar 

  62. Lynch, V. J., Leclerc, R. D., May, G. & Wagner, G. P. Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. 43, 1154–1159 (2011).

  63. Notwell, J. H., Chung, T., Heavner, W. & Bejerano, G. A family of transposable elements co-opted into developmental enhancers in the mouse neocortex. Nat. Commun. 6, 6644 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Nishihara, H. et al. Coordinately co-opted multiple transposable elements constitute an enhancer for wnt5a expression in the mammalian secondary palate. PLOS Genet. 12, e1006380 (2016).

    PubMed  PubMed Central  Google Scholar 

  65. Ahituv, N. et al. Deletion of ultraconserved elements yields viable mice. PLoS Biol. 5, e234 (2007).

    PubMed  PubMed Central  Google Scholar 

  66. Stone, E. A., Cooper, G. M. & Sidow, A. Trade-offs in detecting evolutionarily constrained sequence by comparative genomics. Annu. Rev. Genomics Hum. Genet. 6, 143–164 (2005).

    CAS  PubMed  Google Scholar 

  67. Boffelli, D. et al. Phylogenetic shadowing of primate sequences to find functional regions of the human genome. Science 299, 1391–1394 (2003).

    CAS  PubMed  Google Scholar 

  68. Weirauch, M. T. & Hughes, T. R. Conserved expression without conserved regulatory sequence: the more things change, the more they stay the same. Trends Genet. 26, 66–74 (2010).

    CAS  PubMed  Google Scholar 

  69. Kapusta, A. & Feschotte, C. Volatile evolution of long noncoding RNA repertoires: mechanisms and biological implications. Trends Genet. 30, 439–452 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Ting, C.-N., Rosenberg, M. P., Snow, C. M., Samuelson, L. C. & Meisler, M. H. Endogenous retroviral sequences are required for tissue-specific expression of a human salivary amylase gene. Genes Dev. 6, 1457–1465 (1992).

    CAS  PubMed  Google Scholar 

  71. Emera, D. & Wagner, G. P. Transformation of a transposon into a derived prolactin promoter with function during human pregnancy. Proc. Natl Acad. Sci. USA 109, 11246–11251 (2012).

    CAS  PubMed  Google Scholar 

  72. Gerlo, S., Davis, J. R. E., Mager, D. L. & Kooijman, R. Prolactin in man: a tale of two promoters. Bioessays 28, 1051–1055 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Sasaki, T. et al. Possible involvement of SINEs in mammalian-specific brain formation. Proc. Natl Acad. Sci. USA 105, 4220–4225 (2008).

    CAS  PubMed  Google Scholar 

  74. Flemr, M. et al. A retrotransposon-driven dicer isoform directs endogenous small interfering RNA production in mouse oocytes. Cell 155, 807–816 (2013). This is a compelling study using TALEN editing to show the phenotypic importance of a lineage-specific TE insertion driving the emergence of an alternative protein isoform with a novel function.

    CAS  PubMed  Google Scholar 

  75. Ferreira, L. M. R. et al. A distant trophoblast-specific enhancer controls HLA-G expression at the maternal–fetal interface. Proc. Natl Acad. Sci. USA 113, 5364–5369 (2016).

    CAS  PubMed  Google Scholar 

  76. Studer, A., Zhao, Q., Ross-Ibarra, J. & Doebley, J. Identification of a functional transposon insertion in the maize domestication gene tb1. Nat. Genet. 43, 1160–1163 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Butelli, E. et al. Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell 24, 1242–1255 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Sun, W., Shen, Y.-H., Han, M.-J., Cao, Y.-F. & Zhang, Z. An adaptive transposable element insertion in the regulatory region of the EO gene in the domesticated silkworm, Bombyx mori. Mol. Biol. Evol. 31, 3302–3313 (2014).

    CAS  PubMed  Google Scholar 

  79. Klütsch, C. F. C. & de Caprona, M. D. C. The IGF1 small dog haplotype is derived from Middle Eastern grey wolves: a closer look at statistics, sampling, and the alleged Middle Eastern origin of small dogs. BMC Biol. 8, 119 (2010).

    PubMed  PubMed Central  Google Scholar 

  80. Clark, L. A., Wahl, J. M., Rees, C. A. & Murphy, K. E. Retrotransposon insertion in SILV is responsible for merle patterning of the domestic dog. Proc. Natl Acad. Sci. USA 103, 1376–1381 (2006).

    CAS  PubMed  Google Scholar 

  81. David, V. A. et al. Endogenous retrovirus insertion in the KIT oncogene determines White and White spotting in domestic cats. G3 (Bethesda) 4, 1881–1891 (2014).

    CAS  Google Scholar 

  82. Van't Hof, A. E. et al. The industrial melanism mutation in British peppered moths is a transposable element. Nature 534, 102–105 (2016). This is a classic example of environmental adaptation traced to a TE insertion with cis -regulatory effect.

    CAS  PubMed  Google Scholar 

  83. Swinnen, G., Goossens, A. & Pauwels, L. Lessons from domestication: targeting cis-regulatory elements for crop improvement. Trends Plant Sci. 21, 506–515 (2016).

    CAS  PubMed  Google Scholar 

  84. Shubin, N., Tabin, C. & Carroll, S. Deep homology and the origins of evolutionary novelty. Nature 457, 818–823 (2009).

    CAS  PubMed  Google Scholar 

  85. Sorrells, T. R. & Johnson, A. D. Making sense of transcription networks. Cell 161, 714–723 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Chuong, E. B., Rumi, M. A. K., Soares, M. J. & Baker, J. C. Endogenous retroviruses function as species-specific enhancer elements in the placenta. Nat. Genet. 45, 325–329 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Chuong, E. B. Retroviruses facilitate the rapid evolution of the mammalian placenta. Bioessays 35, 853–861 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Xie, M. et al. DNA hypomethylation within specific transposable element families associates with tissue-specific enhancer landscape. Nat. Genet. 45, 836–841 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Lynch, V. J. et al. Ancient transposable elements transformed the uterine regulatory landscape and transcriptome during the evolution of mammalian pregnancy. Cell Rep. 10, 551–561 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Dewannieux, M., Dupressoir, A., Harper, F., Pierron, G. & Heidmann, T. Identification of autonomous IAP LTR retrotransposons mobile in mammalian cells. Nat. Genet. 36, 534–539 (2004).

    CAS  PubMed  Google Scholar 

  91. Brady, T. et al. Integration target site selection by a resurrected human endogenous retrovirus. Genes Dev. 23, 633–642 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Fontanillas, P., Hartl, D. L. & Reuter, M. Genome organization and gene expression shape the transposable element distribution in the Drosophila melanogaster euchromatin. PLoS Genet. 3, e210 (2007).

    PubMed  PubMed Central  Google Scholar 

  93. McVicker, G. & Green, P. Genomic signatures of germline gene expression. Genome Res. 20, 1503–1511 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang, Y., Ying, Z. & Mager, D. L. Gene properties and chromatin state influence the accumulation of transposable elements in genes. PLoS ONE 7, e30158 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Han, J. S., Szak, S. T. & Boeke, J. D. Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes. Nature 429, 268–274 (2004).

    CAS  PubMed  Google Scholar 

  96. Sironi, M. et al. Gene function and expression level influence the insertion/fixation dynamics of distinct transposon families in mammalian introns. Genome Biol. 7, R120 (2006).

    PubMed  PubMed Central  Google Scholar 

  97. Simons, C., Pheasant, M., Makunin, I. V. & Mattick, J. S. Transposon-free regions in mammalian genomes. Genome Res. 16, 164–172 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Kvikstad, E. M. & Makova, K. D. The (r)evolution of SINE versus LINE distributions in primate genomes: sex chromosomes are important. Genome Res. 20, 600–613 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhang, Y., Romanish, M. T. & Mager, D. L. Distributions of transposable elements reveal hazardous zones in mammalian introns. PLoS Comput. Biol. 7, e1002046 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Nellåker, C. et al. The genomic landscape shaped by selection on transposable elements across 18 mouse strains. Genome Biol. 13, R45 (2012).

    PubMed  PubMed Central  Google Scholar 

  101. Campos-Sánchez, R., Cremona, M. A., Pini, A., Chiaromonte, F. & Makova, K. D. Integration and fixation preferences of human and mouse endogenous retroviruses uncovered with functional data analysis. PLoS Comput. Biol. 12, e1004956 (2016).

    PubMed  PubMed Central  Google Scholar 

  102. Ellison, C. E. & Bachtrog, D. Dosage compensation via transposable element mediated rewiring of a regulatory network. Science 342, 846–850 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Lyon, M. F. X-Chromosome inactivation: a repeat hypothesis. Cytogenet. Cell Genet. 80, 133–137 (1998).

    CAS  PubMed  Google Scholar 

  104. Chow, J. C. et al. LINE-1 activity in facultative heterochromatin formation during X chromosome inactivation. Cell 141, 956–969 (2010).

    CAS  PubMed  Google Scholar 

  105. Hancks, D. C. & Kazazian, H. H. Jr. Roles for retrotransposon insertions in human disease. Mob. DNA 7, 9 (2016).

    PubMed  PubMed Central  Google Scholar 

  106. Belancio, V. P., Roy-Engel, A. M. & Deininger, P. L. All y'all need to know 'bout retroelements in cancer. Semin. Cancer Biol. 20, 200–210 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Albert, F. W. & Kruglyak, L. The role of regulatory variation in complex traits and disease. Nat. Rev. Genet. 16, 197–212 (2015).

    CAS  PubMed  Google Scholar 

  108. Sudmant, P. H. et al. An integrated map of structural variation in 2,504 human genomes. Nature 526, 75–81 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Sekar, A. et al. Schizophrenia risk from complex variation of complement component 4. Nature 530, 177–183 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Leboyer, M., Tamouza, R., Charron, D., Faucard, R. & Perron, H. Human endogenous retrovirus type W (HERV-W) in schizophrenia: a new avenue of research at the gene–environment interface. World J. Biol. Psychiatry 14, 80–90 (2013).

    PubMed  Google Scholar 

  111. Rodic´, N. et al. Long interspersed element-1 protein expression is a hallmark of many human cancers. Am. J. Pathol. 184, 1280–1286 (2014).

    PubMed  PubMed Central  Google Scholar 

  112. Kassiotis, G. Endogenous retroviruses and the development of cancer. J. Immunol. 192, 1343–1349 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. van der Kuyl, A. C. HIV infection and HERV expression: a review. Retrovirology 9, 6 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Mourier, T., Nielsen, L. P., Hansen, A. J. & Willerslev, E. Transposable elements in cancer as a by-product of stress-induced evolvability. Front. Genet. 5, 156 (2014).

    PubMed  PubMed Central  Google Scholar 

  115. De Cecco, M. et al. Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues. Aging 5, 867–883 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Van Meter, M. et al. SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age. Nat. Commun. 5, 5011 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Wood, J. G. et al. Chromatin-modifying genetic interventions suppress age-associated transposable element activation and extend life span in Drosophila. Proc. Natl Acad. Sci. USA 113, 11277–11282 (2016).

    CAS  PubMed  Google Scholar 

  118. Rodic´, N. & Burns, K. H. Long interspersed element-1 (LINE-1): passenger or driver in human neoplasms? PLoS Genet. 9, e1003402 (2013).

    PubMed  PubMed Central  Google Scholar 

  119. Magiorkinis, G., Belshaw, R. & Katzourakis, A. 'There and back again': revisiting the pathophysiological roles of human endogenous retroviruses in the post-genomic era. Philos. Trans. R. Soc. B 368, 20120504 (2013).

    Google Scholar 

  120. Lee, E. et al. Landscape of somatic retrotransposition in human cancers. Science 337, 967–971 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Rodic´, N. et al. Retrotransposon insertions in the clonal evolution of pancreatic ductal adenocarcinoma. Nat. Med. 21, 1060–1064 (2015).

    PubMed  PubMed Central  Google Scholar 

  122. Doucet-O'Hare, T. T. et al. LINE-1 expression and retrotransposition in Barrett's esophagus and esophageal carcinoma. Proc. Natl Acad. Sci. USA 112, E4894–E4900 (2015).

    CAS  PubMed  Google Scholar 

  123. Shukla, R. et al. Endogenous retrotransposition activates oncogenic pathways in hepatocellular carcinoma. Cell 153, 101–111 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Scott, E. C. et al. A hot L1 retrotransposon evades somatic repression and initiates human colorectal cancer. Genome Res. 26, 745–755 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Gasior, S. L., Wakeman, T. P., Xu, B. & Deininger, P. L. The human LINE-1 retrotransposon creates DNA double-strand breaks. J. Mol. Biol. 357, 1383–1393 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Li, W. et al. Human endogenous retrovirus-K contributes to motor neuron disease. Sci. Transl Med. 7, 307ra153 (2015).

    PubMed  PubMed Central  Google Scholar 

  127. Duperray, A. et al. Inflammatory response of endothelial cells to a human endogenous retrovirus associated with multiple sclerosis is mediated by TLR4. Int. Immunol. 27, 545–553 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Kremer, D. et al. Human endogenous retrovirus type W envelope protein inhibits oligodendroglial precursor cell differentiation. Ann. Neurol. 74, 721–732 (2013).

    CAS  PubMed  Google Scholar 

  129. Conrad, B. et al. A human endogenous retroviral superantigen as candidate autoimmune gene in type I diabetes. Cell 90, 303–313 (1997).

    CAS  PubMed  Google Scholar 

  130. Yu, P. The potential role of retroviruses in autoimmunity. Immunol. Rev. 269, 85–99 (2015).

    Google Scholar 

  131. Hurst, T. P. & Magiorkinis, G. Activation of the innate immune response by endogenous retroviruses. J. Gen. Virol. 96, 1207–1218 (2015).

    CAS  PubMed  Google Scholar 

  132. Volkman, H. E. & Stetson, D. B. The enemy within: endogenous retroelements and autoimmune disease. Nat. Immunol. 15, 415–422 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Chiappinelli, K. B. et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 164, 1073 (2016).

    CAS  PubMed  Google Scholar 

  134. Lamprecht, B. et al. Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma. Nat. Med. 16, 571–579 (2010).

    CAS  PubMed  Google Scholar 

  135. Lock, F. E. et al. Distinct isoform of FABP7 revealed by screening for retroelement-activated genes in diffuse large B-cell lymphoma. Proc. Natl Acad. Sci. USA 111, E3534–E3543 (2014).

    CAS  PubMed  Google Scholar 

  136. Babaian, A. et al. Onco-exaptation of an endogenous retroviral LTR drives IRF5 expression in Hodgkin lymphoma. Oncogene 35, 2542–2546 (2016). References 134–136 provide clear instances in which the derepression of LTR elements leads to the activation of proto-oncogenes in human lymphoma.

    CAS  PubMed  Google Scholar 

  137. Babaian, A. & Mager, D. L. Endogenous retroviral promoter exaptation in human cancer. Mob. DNA in press.

  138. Kelley, D. & Rinn, J. Transposable elements reveal a stem cell-specific class of long noncoding RNAs. Genome Biol. 13, R107 (2012).

    PubMed  PubMed Central  Google Scholar 

  139. Kapusta, A. et al. Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs. PLoS Genet. 9, e1003470 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Hashimoto, K. et al. CAGE profiling of ncRNAs in hepatocellular carcinoma reveals widespread activation of retroviral LTR promoters in virus-induced tumors. Genome Res. 25, 1812–1824 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Flockhart, R. J. et al. BRAFV600E remodels the melanocyte transcriptome and induces BANCR to regulate melanoma cell migration. Genome Res. 22, 1006–1014 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Gibb, E. A. et al. Activation of an endogenous retrovirus-associated long non-coding RNA in human adenocarcinoma. Genome Med. 7, 22 (2015).

    PubMed  PubMed Central  Google Scholar 

  143. Ong-Abdullah, M. et al. Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm. Nature 525, 533–537 (2015). This is a striking case of epigenetic derepression of a TE associated with a deleterious phenotype that has long plagued the palm oil industry.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Man, S. M. et al. Critical role for the DNA sensor AIM2 in stem cell proliferation and cancer. Cell 162, 45–58 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Man, S. M., Karki, R. & Kanneganti, T.-D. AIM2 inflammasome in infection, cancer, and autoimmunity: role in DNA sensing, inflammation, and innate immunity. Eur. J. Immunol. 46, 269–280 (2016).

    CAS  PubMed  Google Scholar 

  146. Woerner, S. M. et al. The putative tumor suppressor AIM2 is frequently affected by different genetic alterations in microsatellite unstable colon cancers. Genes Chromosomes Cancer 46, 1080–1089 (2007).

    CAS  PubMed  Google Scholar 

  147. Villar, D. et al. Enhancer evolution across 20 mammalian species. Cell 160, 554–566 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Emera, D., Yin, J., Reilly, S. K., Gockley, J. & Noonan, J. P. Origin and evolution of developmental enhancers in the mammalian neocortex. Proc. Natl Acad. Sci. USA 113, E2617–E2626 (2016).

    CAS  PubMed  Google Scholar 

  149. Casacuberta, E. & González, J. The impact of transposable elements in environmental adaptation. Mol. Ecol. 22, 1503–1517 (2013).

    CAS  PubMed  Google Scholar 

  150. Quadrana, L. et al. The Arabidopsis thaliana mobilome and its impact at the species level. eLife 5, e15716 (2016).

    PubMed  PubMed Central  Google Scholar 

  151. Feng, G., Leem, Y.-E. & Levin, H. L. Transposon integration enhances expression of stress response genes. Nucleic Acids Res. 41, 775–789 (2013).

    CAS  PubMed  Google Scholar 

  152. Barroso-Batista, J. et al. The first steps of adaptation of Escherichia coli to the gut are dominated by soft sweeps. PLoS Genet. 10, e1004182 (2014).

    PubMed  PubMed Central  Google Scholar 

  153. Li, W. et al. Activation of transposable elements during aging and neuronal decline in Drosophila. Nat. Neurosci. 16, 529–531 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Reilly, M. T., Faulkner, G. J., Dubnau, J., Ponomarev, I. & Gage, F. H. The role of transposable elements in health and diseases of the central nervous system. J. Neurosci. 33, 17577–17586 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Goke, J. et al. Dynamic transcription of distinct classes of endogenous retroviral elements marks specific populations of early human embryonic cells. Cell Stem Cell 16, 135–141 (2015).

    CAS  PubMed  Google Scholar 

  156. Grow, E. J. et al. Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells. Nature 522, 221–225 (2015). This study reports that the HERV-K family is precisely activated during early human development and expresses proteins promoting the formation of retroviral particles and potentially modulating embryonic gene expression.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Fort, A. et al. Deep transcriptome profiling of mammalian stem cells supports a regulatory role for retrotransposons in pluripotency maintenance. Nat. Genet. 46, 558–566 (2014).

    CAS  PubMed  Google Scholar 

  158. Wang, J. et al. Primate-specific endogenous retrovirus-driven transcription defines naive-like stem cells. Nature 516, 405–409 (2014).

    CAS  PubMed  Google Scholar 

  159. Santoni, F. A., Guerra, J. & Luban, J. HERV-H RNA is abundant in human embryonic stem cells and a precise marker for pluripotency. Retrovirology 9, 111 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Ohnuki, M. et al. Dynamic regulation of human endogenous retroviruses mediates factor-induced reprogramming and differentiation potential. Proc. Natl Acad. Sci. USA 111, 12426–12431 (2014).

    CAS  PubMed  Google Scholar 

  161. Loewer, S. et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat. Genet. 42, 1113–1117 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Wang, Y. et al. Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev. Cell 25, 69–80 (2013).

    CAS  PubMed  Google Scholar 

  163. Lu, X. et al. The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity. Nat. Struct. Mol. Biol. 21, 423–425 (2014).

    CAS  PubMed  Google Scholar 

  164. Durruthy-Durruthy, J. et al. The primate-specific noncoding RNA HPAT5 regulates pluripotency during human preimplantation development and nuclear reprogramming. Nat. Genet. 48, 44–52 (2015).

    PubMed  PubMed Central  Google Scholar 

  165. Izsvák, Z., Wang, J., Singh, M., Mager, D. L. & Hurst, L. D. Pluripotency and the endogenous retrovirus HERVH: conflict or serendipity? Bioessays 38, 109–117 (2016).

    PubMed  Google Scholar 

  166. Casola, C., Hucks, D. & Feschotte, C. Convergent domestication of pogo-like transposases into centromere-binding proteins in fission yeast and mammals. Mol. Biol. Evol. 25, 29–41 (2007).

    PubMed  PubMed Central  Google Scholar 

  167. Cornelis, G. et al. Retroviral envelope gene captures and syncytin exaptation for placentation in marsupials. Proc. Natl Acad. Sci. USA 112, E487–E496 (2015).

    CAS  PubMed  Google Scholar 

  168. Gong, C. & Maquat, L. E. lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3' UTRs via Alu elements. Nature 470, 284–288 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Hu, S.-B. et al. Protein arginine methyltransferase CARM1 attenuates the paraspeckle-mediated nuclear retention of mRNAs containing IRAlus. Genes Dev. 29, 630–645 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Shen, S. et al. Widespread establishment and regulatory impact of Alu exons in human genes. Proc. Natl Acad. Sci. USA 108, 2837–2842 (2011).

    CAS  PubMed  Google Scholar 

  171. Roberts, J. T., Cardin, S. E. & Borchert, G. M. Burgeoning evidence indicates that microRNAs were initially formed from transposable element sequences. Mob. Genet. Elements 4, e29255 (2014).

    PubMed  PubMed Central  Google Scholar 

  172. Zhang, X.-O. et al. Complementary sequence-mediated exon circularization. Cell 159, 134–147 (2014).

    CAS  PubMed  Google Scholar 

  173. Liang, D. & Wilusz, J. E. Short intronic repeat sequences facilitate circular RNA production. Genes Dev. 28, 2233–2247 (2014).

    PubMed  PubMed Central  Google Scholar 

  174. Johnson, R. & Guigó, R. The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs. RNA 20, 959–976 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Spengler, R. M., Oakley, C. K. & Davidson, B. L. Functional microRNAs and target sites are created by lineage-specific transposition. Hum. Mol. Genet. 23, 1783–1793 (2014).

    CAS  PubMed  Google Scholar 

  176. Creasey, K. M. et al. miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis. Nature 508, 411–415 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Kelley, D. R., Hendrickson, D. G., Tenen, D. & Rinn, J. L. Transposable elements modulate human RNA abundance and splicing via specific RNA-protein interactions. Genome Biol. 15, 537 (2014).

    PubMed  PubMed Central  Google Scholar 

  178. González, J., Lenkov, K., Lipatov, M., Michael Macpherson, J. & Petrov, D. A. High rate of recent transposable element-induced adaptation in Drosophila melanogaster. PLoS Biol. 6, e251 (2008).

    PubMed  PubMed Central  Google Scholar 

  179. Ellison, C. E. & Bachtrog, D. Non-allelic gene conversion enables rapid evolutionary change at multiple regulatory sites encoded by transposable elements. eLife 4, e05899 (2015). This study reveals a gene conversion-like process by which cis -regulatory sequences derived from related TE copies may be rapidly ameliorated to fine-tune their binding affinity for a trans -regulatory protein.

    PubMed Central  Google Scholar 

  180. Romanish, M. T., Lock, W. M., van de Lagemaat, L. N., Dunn, C. A. & Mager, D. L. Repeated recruitment of LTR retrotransposons as promoters by the anti-apoptotic locus NAIP during mammalian mvolution. PLoS Genet. 3, e10 (2007).

    PubMed  PubMed Central  Google Scholar 

  181. Tuan, D. & Pi, W. In human β-globin gene locus, ERV-9 LTR retrotransposon interacts with and activates β-but not γ-globin gene. Blood 124, 2686 (2014).

    Google Scholar 

  182. Lunyak, V. V. et al. Developmentally regulated activation of a SINE B2 repeat as a domain boundary in organogenesis. Science 317, 248–251 (2007).

    CAS  PubMed  Google Scholar 

  183. Emera, D. et al. Convergent evolution of endometrial prolactin expression in primates, mice, and elephants through the independent recruitment of transposable elements. Mol. Biol. Evol. 29, 239–247 (2012).

    CAS  PubMed  Google Scholar 

  184. Chung, H. et al. Cis-regulatory elements in the Accord retrotransposon result in tissue-specific expression of the Drosophila melanogaster insecticide resistance gene Cyp6g1. Genetics 175, 1071–1077 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Guio, L., Barrón, M. G. & González, J. The transposable element Bari-Jheh mediates oxidative stress response in Drosophila. Mol. Ecol. 23, 2020–2030 (2014).

    CAS  PubMed  Google Scholar 

  186. Ding, Y. et al. Natural courtship song variation caused by an intronic retroelement in an ion channel gene. Nature 536, 329–332 (2016). This study uses an elegant mix of genetic mapping and genome editing to show that a polymorphic TE insertion within an intron of an ion channel gene is responsible for driving courtship song variation in Drosophila simulans.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors apologize to many colleagues who have produced primary research on the topic but who could not be cited or discussed owing to space limitations. This work was supported by funds from the US National Institutes of Health (GM77582, GM112972, GM059290 to C.F. and GM114514 to N.C.E). E.B.C. was supported by a Howard Hughes Medical Institute postdoctoral fellowship from the Jane Coffin Childs Memorial Fund. N.C.E. was supported by the Biomedical Scholars Program of the Pew Charitable Trusts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cédric Feschotte.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

C-GATE

PowerPoint slides

Glossary

Genetic drift

A process by which mutations become fixed in the population by chance alone.

Cis-regulatory sequences

Segments of DNA that regulate the transcription of adjacent genes.

Long terminal repeat elements

(LTR elements). A class of retrotransposons containing direct LTRs flanking the protein-coding sequence.

Long interspersed nuclear elements

(LINEs). Class of non-long terminal repeat retrotransposons that retrotranspose by target-primed reverse transcription.

Short interspersed nuclear elements

(SINEs). Class of non-autonomous retrotransposons that are copied by the LINE replication machinery.

DNA transposons

Transposable elements that do not generate an RNA intermediate during transposition, which generally occurs through a 'cut-and-paste' mechanism.

RNA sequencing

(RNA-seq). High-throughput sequencing of complementary DNAs derived from RNAs extracted from cells or tissues.

Cap analysis of gene expression followed by sequencing

(CAGE-seq). A method used to precisely map the transcription start sites of capped RNAs genome-wide.

Chromatin immunoprecipitation followed by sequencing

(ChIP-seq). A method for identifying protein–DNA interactions genome-wide. Following crosslinking, a protein of interest is immunoprecipitated and its binding sites in the genome are identified by high-throughput sequencing of the co-purified DNA fragments.

Purifying selection

Selection against mutations that are deleterious to the fitness of the individual.

Reporter assay

A putative cis-regulatory DNA sequence is cloned upstream of a reporter gene (such as luciferase) either in an episomal vector or as a chromosomally integrated construct and tested for its ability to enhance transcription of the reporter gene.

Retrotransposon

A type of transposable element that replicates through an RNA intermediate in a 'copy-and-paste' mechanism.

Structural variation

Genomic variation resulting from large-scale DNA mutations such as deletions, insertions or rearrangements.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuong, E., Elde, N. & Feschotte, C. Regulatory activities of transposable elements: from conflicts to benefits. Nat Rev Genet 18, 71–86 (2017). https://doi.org/10.1038/nrg.2016.139

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg.2016.139

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing