Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Making sense of genomic islands of differentiation in light of speciation

Key Points

  • The genomic landscape of differentiation between diverging lineages is often heterogeneous, with 'islands' of elevated differentiation previously interpreted as 'speciation islands' under a model of speciation with gene flow.

  • Alternative processes can generate heterogeneous differentiation landscapes; notable processes include linked selection, variable recombination rates and/or density of targets of selection.

  • Genome scans for regions of elevated differentiation should be based on whole-genome re-sequencing of individually tagged samples with reads mapped to a reference genome assembly.

  • When designing speciation genomic studies, attention should be paid to the possibility of sampling across the speciation continuum and from replicate population pairs, and to the demography of the studied population, including potential gene flow.

  • Analyses of sequence data in speciation genomic studies should incorporate a suite of summary statistics.

  • The field is likely to move forward as a result of an increased use of long-read sequencing technology, the identification of structural variation, the inclusion of recombination rate data and, ultimately, functional studies.

Abstract

As populations diverge, genetic differences accumulate across the genome. Spurred by rapid developments in sequencing technology, genome-wide population surveys of natural populations promise insights into the evolutionary processes and the genetic basis underlying speciation. Although genomic regions of elevated differentiation are the focus of searches for 'speciation genes', there is an increasing realization that such genomic signatures can also arise by alternative processes that are not related to population divergence, such as linked selection. In this Review, we explore methodological trends in speciation genomic studies, highlight the difficulty in separating processes related to speciation from those emerging from genome-wide properties that are not related to reproductive isolation, and provide a set of suggestions for future work in this area.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic of alternative processes that generate regional genomic islands of elevated differentiation.
Figure 2: A summary of central aspects of our literature survey on speciation genomic studies.

Similar content being viewed by others

References

  1. Darwin, C. & Wallace, A. On the tendency of species to form varieties; and on the perpetuation of varieties and species by natural means of selection. J. Proc. Linn. Soc. Zool. 3, 45–62 (1858).

    Google Scholar 

  2. Dobzhansky, T. G. Genetics and the Origin of Species (Columbia Univ. Press, 1937).

    Google Scholar 

  3. Mayr, E. & Provine, W. B. The Evolutionary Synthesis: Perspectives on the Unification of Biology (Harvard Univ. Press, 1998).

    Google Scholar 

  4. Coyne, J. A. & Orr, H. A. Speciation (Sinauer Associates, 2004).

    Google Scholar 

  5. Presgraves, D. C. The molecular evolutionary basis of species formation. Nat. Rev. Genet. 11, 175–180 (2010).

    CAS  PubMed  Google Scholar 

  6. Mackay, T. F. C. et al. The Drosophila melanogaster genetic reference panel. Nature 482, 173–178 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wolf, J. B. W., Lindell, J. & Backstrom, N. Speciation genetics: current status and evolving approaches. Phil. Trans. R. Soc. B Biol. Sci. 365, 1717–1733 (2010).

    Google Scholar 

  8. Seehausen, O. et al. Genomics and the origin of species. Nat. Rev. Genet. 15, 176–192 (2014). This Review resulted from a workshop and discusses genomic approaches in speciation at an advanced level.

    CAS  PubMed  Google Scholar 

  9. Foote, A. et al. Genome-culture coevolution promotes rapid divergence in the killer whale. Nat. Commun. 7, 11693 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Nadachowska-Brzyska, K., Burri, R., Smeds, L. & Ellegren, H. PSMC analysis of effective population sizes in molecular ecology and its application to black-and-white Ficedula flycatchers. Mol. Ecol. 25, 1058–1072 (2016).

    PubMed  PubMed Central  Google Scholar 

  11. Lawrie, D. S. & Petrov, D. A. Comparative population genomics: power and principles for the inference of functionality. Trends Genet. 30, 133–139 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Comeron, J. M., Ratnappan, R. & Bailin, S. The many landscapes of recombination in Drosophila melanogaster. PLoS Genet. 8, e1002905 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Singhal, S. et al. Stable recombination hotspots in birds. Science 350, 928–932 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Mugal, C. F., Weber, C. C. & Ellegren, H. GC-biased gene conversion links the recombination landscape and demography to genomic base composition. BioEssays 37, 1317–1326 (2015).

    CAS  PubMed  Google Scholar 

  15. Romiguier, J. et al. Comparative population genomics in animals uncovers the determinants of genetic diversity. Nature 515, 261–263 (2014).

    CAS  PubMed  Google Scholar 

  16. Corbett-Detig, R. B., Hartl, D. L. & Sackton, T. B. Natural selection constrains neutral diversity across a wide range of species. PLoS Biol. 13, e1002112 (2015).

    PubMed  PubMed Central  Google Scholar 

  17. Noor, M. A. F. & Bennett, S. M. Islands of speciation or mirages in the desert? Examining the role of restricted recombination in maintaining species. Heredity 103, 439–444 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Cutter, A. D. & Payseur, B. A. Genomic signatures of selection at linked sites: unifying the disparity among species. Nat. Rev. Genet. 14, 262–274 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Cruickshank, T. E. & Hahn, M. W. Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Mol. Ecol. 23, 3133–3157 (2014). This paper provides a good introduction to the processes by which genetic differentiation can be locally elevated.

    PubMed  Google Scholar 

  20. Haasl, R. J. & Payseur, B. A. Fifteen years of genomewide scans for selection: trends, lessons and unaddressed genetic sources of complication. Mol. Ecol. 25, 5–23 (2016).

    CAS  PubMed  Google Scholar 

  21. Wu, C. I. The genic view of the process of speciation. J. Evol. Biol. 14, 851–865 (2001). This influential paper provides a conceptual link between (Darwinian) selection acting on single loci and Mayr's concept of cohesive, genome-wide reproductive isolation under the biological speciation concept.

    Google Scholar 

  22. Feder, J. L., Egan, S. P. & Nosil, P. The genomics of speciation-with-gene-flow. Trends Genet. 28, 342–350 (2012).

    CAS  PubMed  Google Scholar 

  23. Nosil, P. & Feder, J. L. Genome evolution and speciation: toward quantitative descriptions of pattern and process. Evolution 67, 2461–2467 (2013).

    PubMed  Google Scholar 

  24. Barton, N. & Bengtsson, B. O. The barrier to genetic exchange between hybridising populations. Heredity 57, 357–376 (1986).

    PubMed  Google Scholar 

  25. McDermott, S. R. & Noor, M. A. F. The role of meiotic drive in hybrid male sterility. Phil. Trans. R. Soc. B 365, 1265–1272 (2010).

    PubMed  Google Scholar 

  26. Zanders, S. E. et al. Genome rearrangements and pervasive meiotic drive cause hybrid infertility in fission yeast. eLife 3, e02630 (2014).

    PubMed  PubMed Central  Google Scholar 

  27. Harr, B. Genomic islands of differentiation between house mouse subspecies. Genome Res. 16, 730–737 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Turner, T. L., Hahn, M. W. & Nuzhdin, S. V. Genomic islands of speciation in Anopheles gambiae. PLoS Biol. 3, 1572–1578 (2005). This influential paper was the first to interpret islands of differentiation as 'speciation islands'.

    CAS  Google Scholar 

  29. Pennisi, E. Disputed islands. Science 345, 611–613 (2014). This editorial piece provides a historical perspective on the interpretation of genomic regions with elevated differentiation and includes illustrative examples.

    CAS  PubMed  Google Scholar 

  30. Yeaman, S. Genomic rearrangements and the evolution of clusters of locally adaptive loci. Proc. Natl Acad. Sci. USA 110, E1743–E1751 (2013).

    CAS  PubMed  Google Scholar 

  31. Feder, J. L., Flaxman, S. M., Egan, S. P., Comeault, A. A. & Nosil, P. Geographic mode of speciation and genomic divergence. Annu. Rev. Ecol. Evol. Syst. 44, 73–97 (2013).

    Google Scholar 

  32. Ellegren, H. et al. The genomic landscape of species divergence in Ficedula flycatchers. Nature 491, 756–760 (2012). This is one of the first genome-wide re-sequencing studies to demonstrate marked heterogeneity in the level of differentiation with few clear peaks per chromosome.

    CAS  PubMed  Google Scholar 

  33. Renaut, S. et al. Genomic islands of divergence are not affected by geography of speciation in sunflowers. Nat. Commun. 4, 1827 (2013). This study provides an important empirical demonstration that genomic islands of elevated differentiation emerge between populations in a similar way across a variety of geographical contexts that differ in the presumed amount of gene flow.

    CAS  PubMed  Google Scholar 

  34. Martin, S. H. et al. Genome-wide evidence for speciation with gene flow in Heliconius butterflies. Genome Res. 23, 1817–1828 (2013). This study quantifies the level of gene flow during species divergence.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Poelstra, J. W. et al. The genomic landscape underlying phenotypic integrity in the face of gene flow in crows. Science 344, 1410–1414 (2014). This empirical study provides evidence for highly localized genomic selection against introgression and includes functional analyses.

    CAS  PubMed  Google Scholar 

  36. Soria-Carrasco, V. et al. Stick insect genomes reveal natural selection's role in parallel speciation. Science 344, 738–742 (2014).

    CAS  PubMed  Google Scholar 

  37. Marques, D. A. et al. Genomics of rapid incipient speciation in sympatric threespine stickleback. PLoS Genet. 12, e1005887 (2016).

    PubMed  PubMed Central  Google Scholar 

  38. Via, S. Divergence hitchhiking and the spread of genomic isolation during ecological speciation-with-gene-flow. Phil. Trans. R. Soc. B 367, 451–460 (2012).

    PubMed  Google Scholar 

  39. Nachman, M. W. & Payseur, B. A. Recombination rate variation and speciation: theoretical predictions and empirical results from rabbits and mice. Phil. Trans. R. Soc. B 367, 409–421 (2012). This empirical study has a solid conceptual introduction and highlights the importance of linked selection in genomic regions of low recombination.

    PubMed  Google Scholar 

  40. Smith, J. M. & Haigh, J. The hitch-hiking effect of a favourable gene. Genet. Res. 23, 23–35 (1974).

    CAS  PubMed  Google Scholar 

  41. Gillespie, J. H. Genetic drift in an infinite population: the pseudohitchhiking model. Genetics 155, 909–919 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Charlesworth, B., Morgan, M. T. & Charlesworth, D. The effect of deleterious mutations on neutral molecular variation. Genetics 134, 1289–1303 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Charlesworth, B. Background selection 20 years on: the Wilhelmine E. Key 2012 invitational lecture. J. Hered. 104, 161–171 (2013).

    PubMed  Google Scholar 

  44. Stukenbrock, E. H. in Advances in Botanical Research (ed. Martin, F.) 70, 397–423 (Academic Press, 2014).

    Google Scholar 

  45. Dettman, J. R., Sirjusingh, C., Kohn, L. M. & Anderson, J. B. Incipient speciation by divergent adaptation and antagonistic epistasis in yeast. Nature 447, 585–588 (2007).

    CAS  PubMed  Google Scholar 

  46. Shaw, K. L. & Mullen, S. P. Speciation continuum. J. Hered. 105, 741–742 (2014).

    PubMed  Google Scholar 

  47. Burri, R. et al. Linked selection and recombination rate variation drive the evolution of the genomic landscape of differentiation across the speciation continuum of Ficedula flycatchers. Genome Res. 25, 1656–1665 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Andrew, R. L. & Rieseberg, L. H. Divergence is focused on few genomic regions early in speciation: incipient speciation of sunflower ecotypes. Evolution 67, 2468–2482 (2013).

    PubMed  Google Scholar 

  49. Vijay, N. et al. Evolution of heterogeneous genome differentiation across multiple contact zones in a crow species complex. Nat. Commun. (in the press).

  50. Feulner, P. G. D. et al. Genomics of divergence along a continuum of parapatric population differentiation. PLoS Genet. 11, e1004966 (2015).

    PubMed  PubMed Central  Google Scholar 

  51. Malinsky, M. et al. Genomic islands of speciation separate cichlid ecomorphs in an East African crater lake. Science 350, 1493–1498 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Via, S. & West, J. The genetic mosaic suggests a new role for hitchhiking in ecological speciation. Mol. Ecol. 17, 4334–4345 (2008).

    PubMed  Google Scholar 

  53. Via, S. Natural selection in action during speciation. Proc. Natl Acad. Sci. USA 106, 9939–9946 (2009).

    CAS  PubMed  Google Scholar 

  54. Nadeau, N. J. et al. Genome-wide patterns of divergence and gene flow across a butterfly radiation. Mol. Ecol. 22, 814–826 (2013). This empirical study demonstrates the power of study design in the interpretation of outlier genomic regions.

    CAS  PubMed  Google Scholar 

  55. Kronforst, M. R. et al. Hybridization reveals the evolving genomic architecture of speciation. Cell Rep. 5, 666–677 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Nadeau, N. J. et al. Population genomics of parallel hybrid zones in the mimetic butterflies. H. melpomene and H. erato. Genome Res. 24, 1316–1333 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Chan, Y. F. et al. Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer. Science 327, 302–305 (2009).

    PubMed  PubMed Central  Google Scholar 

  58. Jones, F. C. et al. The genomic basis of adaptive evolution in threespine sticklebacks. Nature 484, 55–61 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Roesti, M., Kueng, B., Moser, D. & Berner, D. The genomics of ecological vicariance in threespine stickleback fish. Nat. Commun. 6, 8767 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Savolainen, O., Lascoux, M. & Merilä, J. Ecological genomics of local adaptation. Nat. Rev. Genet. 14, 807–820 (2013).

    CAS  PubMed  Google Scholar 

  61. Mossman, J. A., Biancani, L. M. & Rand, D. M. Mitonuclear epistasis for development time and its modification by diet in Drosophila. Genetics 203, 463–484 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Slatkin, M. Inbreeding coefficients and coalescence times. Genet. Res. 58, 167–175 (1991).

    CAS  PubMed  Google Scholar 

  63. Kulathinal, R. J., Stevison, L. S. & Noor, M. A. F. The genomics of speciation in Drosophila: diversity, divergence, and introgression estimated using low-coverage genome sequencing. PLoS Genet. 5, e1000550 (2009).

    PubMed  PubMed Central  Google Scholar 

  64. McGaugh, S. E. & Noor, M. A. F. Genomic impacts of chromosomal inversions in parapatric Drosophila species. Phil. Trans. R. Soc. B 367, 422–429 (2012).

    PubMed  Google Scholar 

  65. Shafer, A. B. A. & Wolf, J. B. W. Widespread evidence for incipient ecological speciation: a meta-analysis of isolation-by-ecology. Ecol. Lett. 16, 940–950 (2013).

    PubMed  Google Scholar 

  66. Shafer, A. B. A., Northrup, J. M., Wikelski, M., Wittemyer, G. & Wolf, J. B. W. Forecasting ecological genomics: high-tech animal instrumentation meets high-throughput sequencing. PLoS Biol. 14, e1002350 (2016).

    PubMed  PubMed Central  Google Scholar 

  67. Payseur, B. A. & Rieseberg, L. H. A genomic perspective on hybridization and speciation. Mol. Ecol. 25, 2337–2360 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Hein, J., Schierup, M. H. & Wiuf, C. Gene Genealogies, Variation and Evolution: a Primer in Coalescent Theory (Oxford Univ. Press, 2005).

    Google Scholar 

  69. Gattepaille, L. M., Jakobsson, M. & Blum, M. G. Inferring population size changes with sequence and SNP data: lessons from human bottlenecks. Heredity 110, 409–419 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Pool, J. E. & Nielsen, R. Population size changes reshape genomic patterns of diversity. Evolution 61, 3001–3006 (2007).

    PubMed  PubMed Central  Google Scholar 

  71. Smeds, L. et al. Evolutionary analysis of the female-specific avian W chromosome. Nat. Commun. 6, 7330 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Presgraves, D. C. Sex chromosomes and speciation in Drosophila. Trends Genet. 24, 336–343 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Qvarnström, A. & Bailey, R. I. Speciation through evolution of sex-linked genes. Heredity 102, 4–15 (2009).

    PubMed  Google Scholar 

  74. Bank, C., Ewing, G. B., Ferrer-Admettla, A., Foll, M. & Jensen, J. D. Thinking too positive? Revisiting current methods of population genetic selection inference. Trends Genet. 30, 540–546 (2014).

    CAS  PubMed  Google Scholar 

  75. Schiffels, S. & Durbin, R. Inferring human population size and separation history from multiple genome sequences. Nat. Genet. 46, 919–925 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Liu, X. & Fu, Y.-X. Exploring population size changes using SNP frequency spectra. Nat. Genet. 47, 555–559 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. The Heliconius Genome Consortium. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487, 94–98 (2012).

  78. Gompert, Z. et al. Experimental evidence for ecological selection on genome variation in the wild. Ecol. Lett. 17, 369–379 (2014).

    PubMed  Google Scholar 

  79. Chaisson, M. J. P., Wilson, R. K. & Eichler, E. E. Genetic variation and the de novo assembly of human genomes. Nat. Rev. Genet. 16, 627–640 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Schlötterer, C., Tobler, R., Kofler, R. & Nolte, V. Sequencing pools of individuals — mining genome-wide polymorphism data without big funding. Nat. Rev. Genet. 15, 749–763 (2014).

    PubMed  Google Scholar 

  81. Bed'hom, B. et al. The lavender plumage colour in Japanese quail is associated with a complex mutation in the region of MLPH that is related to differences in growth, feed consumption and body temperature. BMC Genomics 13, 442 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Avelar, A. T., Perfeito, L., Gordo, I. & Ferreira, M. G. Genome architecture is a selectable trait that can be maintained by antagonistic pleiotropy. Nat. Commun. 4, 2235 (2013).

    PubMed  Google Scholar 

  83. Schwander, T., Libbrecht, R. & Keller, L. Supergenes and complex phenotypes. Curr. Biol. 24, R288–R294 (2014).

    CAS  PubMed  Google Scholar 

  84. Küpper, C. et al. A supergene determines highly divergent male reproductive morphs in the ruff. Nat. Genet. 48, 79–83 (2016).

    PubMed  Google Scholar 

  85. Lamichhaney, S. et al. Structural genomic changes underlie alternative reproductive strategies in the ruff (Philomachus pugnax). Nat. Genet. 48, 84–88 (2016).

    CAS  PubMed  Google Scholar 

  86. Kirubakaran, T. G. et al. Two adjacent inversions maintain genomic differentiation between migratory and stationary ecotypes of Atlantic cod. Mol. Ecol. 25, 2130–2143 (2016).

    CAS  PubMed  Google Scholar 

  87. Saenko, S. V. et al. Amelanism in the corn snake is associated with the insertion of an LTR-retrotransposon in the OCA2 gene. Sci. Rep. 5, 17118 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Hoffmann, A. A. & Rieseberg, L. H. Revisiting the impact of inversions in evolution: from population genetic markers to drivers of adaptive shifts and speciation? Annu. Rev. Ecol. Evol. Syst. 39, 21–42 (2008).

    PubMed  PubMed Central  Google Scholar 

  89. Rieseberg, L. H. Chromosomal rearrangements and speciation. Trends Ecol. Evol. 16, 351–358 (2001).

    PubMed  Google Scholar 

  90. Kirkpatrick, M. & Barton, N. Chromosome inversions, local adaptation and speciation. Genetics 173, 419–434 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Faria, R. & Navarro, A. Chromosomal speciation revisited: rearranging theory with pieces of evidence. Trends Ecol. Evol. 25, 660–669 (2010).

    PubMed  Google Scholar 

  92. Navarro, A. & Barton, N. H. Chromosomal speciation and molecular divergence-accelerated evolution in rearranged chromosomes. Science 300, 321–324 (2003).

    CAS  PubMed  Google Scholar 

  93. Lohse, K., Clarke, M., Ritchie, M. G. & Etges, W. J. Genome-wide tests for introgression between cactophilic Drosophila implicate a role of inversions during speciation. Evolution 69, 1178–1190 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Huang, Y., Wright, S. I. & Agrawal, A. F. Genome-wide patterns of genetic variation within and among alternative selective regimes. PLoS Genet. 10, e1004527 (2014).

    PubMed  PubMed Central  Google Scholar 

  95. Tuttle, E. M. et al. Divergence and functional degradation of a sex chromosome-like supergene. Curr. Biol. 26, 344–350 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Guerrero, R. F., Rousset, F. & Kirkpatrick, M. Coalescent patterns for chromosomal inversions in divergent populations. Phil. Trans. R. Soc. B Biol. Sci. 367, 430–438 (2012).

    Google Scholar 

  97. Feder, J. L., Nosil, P. & Flaxman, S. M. Assessing when chromosomal rearrangements affect the dynamics of speciation: implications from computer simulations. Front. Genet. 5, 295 (2014).

    PubMed  PubMed Central  Google Scholar 

  98. Gordon, D. et al. Long-read sequence assembly of the gorilla genome. Science 352, aae0344 (2016).

    PubMed  PubMed Central  Google Scholar 

  99. Felsenstein, J. Skepticism towards Santa Rosalia, or why are there so few kinds of animals. Evolution 35, 124–138 (1981). This seminal paper illustrates the antagonism between selection and recombination for coupling loci that convey reproductive isolation in a two-allele model with gene flow.

    PubMed  Google Scholar 

  100. Auton, A. et al. A fine-scale chimpanzee genetic map from population sequencing. Science 336, 193–198 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Gossmann, T. I., Woolfit, M. & Eyre-Walker, A. Quantifying the variation in the effective population size within a genome. Genetics 189, 1389–1402 (2011).

    PubMed  PubMed Central  Google Scholar 

  102. Charlesworth, B. Measures of divergence between populations and the effect of forces that reduce variability. Mol. Biol. Evol. 15, 538–543 (1998).

    CAS  PubMed  Google Scholar 

  103. Roesti, M., Moser, D. & Berner, D. Recombination in the threespine stickleback genome — patterns and consequences. Mol. Ecol. 22, 3014–3027 (2013). This empirical study highlights the dependence of allele frequency shifts between populations on the genome-wide distribution of broad-scale recombination rates and chromosomal features such as centromeres.

    CAS  PubMed  Google Scholar 

  104. Coop, G. Does linked selection explain the narrow range of genetic diversity across species? Preprint at bioRxivhttp://dx.doi.org/10.1101/042598 (2016).

  105. Reed, F. A., Akey, J. M. & Aquadro, C. F. Fitting background-selection predictions to levels of nucleotide variation and divergence along the human autosomes. Genome Res. 15, 1211–1221 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Rockman, M. V. The QTN program and the alleles that matter for evolution: all that's gold does not glitter. Evolution 66, 1–17 (2012).

    PubMed  Google Scholar 

  107. Le Corre, V. & Kremer, A. The genetic differentiation at quantitative trait loci under local adaptation. Mol. Ecol. 21, 1548–1566 (2012). This meta-analyses reviews expectations for allelic differentiation at QTLs and highlights the limitations of F ST -based genome scans.

    PubMed  Google Scholar 

  108. Beaumont, M. A. Adaptation and speciation: what can F st tell us? Trends Ecol. Evol. 20, 435–440 (2005).

    PubMed  Google Scholar 

  109. Foll, M. & Gaggiotti, O. A. Genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180, 977–993 (2008).

    PubMed  PubMed Central  Google Scholar 

  110. Beaumont, M. A. & Nichols, R. A. Evaluating loci for use in the genetic analysis of population structure. Proc. R. Soc. Lond. B Biol. Sci. 263, 1619–1626 (1996).

    Google Scholar 

  111. Roesti, M., Hendry, A. P., Salzburger, W. & Berner, D. Genome divergence during evolutionary diversification as revealed in replicate lake–stream stickleback population pairs. Mol. Ecol. 21, 2852–2862 (2012).

    PubMed  Google Scholar 

  112. Zeng, K. A coalescent model of background selection with recombination, demography and variation in selection coefficients. Heredity 110, 363–371 (2013).

    CAS  PubMed  Google Scholar 

  113. Roesti, M., Gavrilets, S., Hendry, A. P., Salzburger, W. & Berner, D. The genomic signature of parallel adaptation from shared genetic variation. Mol. Ecol. 23, 3944–3956 (2014).

    PubMed  PubMed Central  Google Scholar 

  114. Berner, D. & Salzburger, W. The genomics of organismal diversification illuminated by adaptive radiations. Trends Genet. 31, 491–499 (2015).

    CAS  PubMed  Google Scholar 

  115. Poelstra, J. W., Vijay, N., Hoeppner, M. P. & Wolf, J. B. W. Transcriptomics of colour patterning and coloration shifts in crows. Mol. Ecol. 24, 4617–4628 (2015).

    CAS  PubMed  Google Scholar 

  116. Laporte, M. et al. RAD-QTL mapping reveals both genome-level parallelism and different genetic architecture underlying the evolution of body shape in lake whitefish (Coregonus clupeaformis) species pairs. G3 (Bethesda) 5, 1481–1491 (2015).

    Google Scholar 

  117. Winkler, C. A., Nelson, G. W. & Smith, M. W. Admixture mapping comes of age. Annu. Rev. Genom. Hum. Genet. 11, 65–89 (2010).

    CAS  Google Scholar 

  118. Gompert, Z. & Buerkle, C. A. A powerful regression-based method for admixture mapping of isolation across genome hybrids. Mol. Ecol. 18, 1207–1224 (2009).

    PubMed  Google Scholar 

  119. Bono, J. M., Olesnicky, E. C. & Matzkin, L. M. Connecting genotypes, phenotypes and fitness: harnessing the power of CRISPR/Cas9 genome editing. Mol. Ecol. 24, 3810–3822 (2015).

    CAS  PubMed  Google Scholar 

  120. Hall, A. B. et al. A male-determining factor in the mosquito Aedes aegypti. Science 348, 1268–1270 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Markert, M. J. et al. Genomic access to Monarch migration using TALEN and CRISPR/Cas9-mediated targeted mutagenesis. G3 (Bethesda) 6, 905–915 (2016).

    CAS  Google Scholar 

  122. Strasburg, J. L. et al. What can patterns of differentiation across plant genomes tell us about adaptation and speciation? Phil. Trans. R. Soc. B 367, 364–373 (2012).

    PubMed  Google Scholar 

  123. Earl, D. et al. Assemblathon 1: a competitive assessment of de novo short read assembly methods. Genome Res. 21, 2224–2241 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Darwin, C. On the Origin of Species by Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life (John Murray, 1859).

    Google Scholar 

  125. Kohn, D. in The Cambridge Companion to the “Origin of Species” (eds Ruse, M. & Richards, R. J.) 87–108 (Cambridge Univ. Press, 2008).

    Google Scholar 

  126. Mallet, J. Mayr's view of Darwin: was Darwin wrong about speciation? Biol. J. Linn. Soc. 95, 3–16 (2008).

    Google Scholar 

  127. Mayr, E. Systematics and the Origin of Species (Columbia Univ. Press, 1942).

    Google Scholar 

  128. Orr, H. A. The population genetics of speciation: the evolution of hybrid incompatibilities. Genetics 139, 1805–1813 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Muller, H. J. Isolating mechanisms, evolution and temperature. Biol. Symp. 6, 71–125 (1942).

    Google Scholar 

  130. Bateson, W. in Darwin and Modern Science (ed. Seward, A. C.) 85–101 (Cambridge Univ. Press, 1909).

    Google Scholar 

  131. Oka, H.-I. Genic analysis for the sterility of hybrids between distantly related varieties of cultivated rice. J. Genet. 55, 397–409 (1957).

    Google Scholar 

  132. Smadja, C. M. & Butlin, R. K. A framework for comparing processes of speciation in the presence of gene flow. Mol. Ecol. 20, 5123–5140 (2011).

    PubMed  Google Scholar 

  133. Dieckmann, U. & Doebeli, M. On the origin of species by sympatric speciation. Nature 400, 354–357 (1999).

    CAS  PubMed  Google Scholar 

  134. Barluenga, M., Stolting, K. N., Salzburger, W., Muschick, M. & Meyer, A. Sympatric speciation in Nicaraguan crater lake cichlid fish. Nature 439, 719–723 (2006).

    CAS  PubMed  Google Scholar 

  135. Papadopulos, A. S. T. et al. Speciation with gene flow on Lord Howe Island. Proc. Natl Acad. Sci. USA 108, 13188–13193 (2011).

    CAS  PubMed  Google Scholar 

  136. Roux, C. et al. Shedding light on the grey zone of speciation along a continuum of genomic divergence. Preprint at bioRxivhttp://dx.doi.org/10.1101/059790 (2016).

  137. Doebeli, M. & Dieckmann, U. Speciation along environmental gradients. Nature 421, 259–264 (2003).

    CAS  PubMed  Google Scholar 

  138. Flaxman, S. M., Wacholder, A. C., Feder, J. L. & Nosil, P. Theoretical models of the influence of genomic architecture on the dynamics of speciation. Mol. Ecol. 4074–4088 (2014).

  139. Gavrilets, S. Models of speciation: where are we now? J. Hered. 105, 743–755 (2014).

    PubMed  Google Scholar 

  140. Abbott, R. et al. Hybridization and speciation. J. Evol. Biol. 26, 229–246 (2013). This perspective article summarizes important aspects of speciation with gene flow.

    CAS  PubMed  Google Scholar 

  141. Flaxman, S. M., Feder, J. L. & Nosil, P. Genetic hitchhiking and the dynamic buildup of genomic divergence during speciation with gene flow. Evolution 67, 2577–2591 (2013).

    PubMed  Google Scholar 

  142. van Doorn, G. S., Edelaar, P. & Weissing, F. J. On the origin of species by natural and sexual selection. Science 326, 1704–1707 (2009).

    CAS  PubMed  Google Scholar 

  143. Servedio, M. R., Doorn, G. S. V., Kopp, M., Frame, A. M. & Nosil, P. Magic traits in speciation: 'magic' but not rare? Trends Ecol. Evol. 26, 389–397 (2011).

    PubMed  Google Scholar 

  144. Thompson, M. J. & Jiggins, C. D. Supergenes and their role in evolution. Heredity 113, 1–8 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Wright, S. Evolution in Mendelian populations. Genetics 16, 97–159 (1931).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Wright, S. The genetical structure of populations. Ann. Eugen. 15, 323–354 (1951).

    CAS  PubMed  Google Scholar 

  147. Holsinger, K. E. & Weir, B. S. Genetics in geographically structured populations: defining, estimating and interpreting FST . Nat. Rev. Genet. 10, 639–650 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Nei, M. Analysis of gene diversity in subdivided populations. Proc. Natl Acad. Sci. USA 70, 3321–3323 (1973).

    CAS  PubMed  Google Scholar 

  149. Hedrick, P. W. A standardized genetic differentiation measure. Evolution 59, 1633–1638 (2005).

    CAS  PubMed  Google Scholar 

  150. Jost, L. GST and its relatives do not measure differentiation. Mol. Ecol. 17, 4015–4026 (2008).

    PubMed  Google Scholar 

  151. Bhatia, G., Patterson, N., Sankararaman, S. & Price, A. L. Estimating and interpreting Fst: the impact of rare variants. Genome Res. 23, 1514–1521 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Jakobsson, M., Edge, M. D. & Rosenberg, N. A. The relationship between FST and the frequency of the most frequent allele. Genetics 193, 515–528 (2013).

    PubMed  PubMed Central  Google Scholar 

  153. Lamichhaney, S. et al. Evolution of Darwin's finches and their beaks revealed by genome sequencing. Nature 518, 371–375 (2015).

    CAS  PubMed  Google Scholar 

  154. Yi, X. et al. Sequencing of fifty human exomes reveals adaptation to high altitude. Science 329, 75–78 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Nei, M. Molecular Evolutionary Genetics. (Columbia Univ. Press, 1987).

    Google Scholar 

  156. Nei, M. & Li, W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl Acad. Sci. USA 76, 5269–5273 (1979).

    CAS  PubMed  Google Scholar 

  157. Hey, J. The structure of genealogies and the distribution of fixed differences between DNA sequence samples from natural populations. Genetics 128, 831–840 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Watterson, G. A. On the number of segregating sites in genetical models without recombination. Theor. Popul. Biol. 7, 256–276 (1975).

    CAS  PubMed  Google Scholar 

  159. Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Fu, Y. X. & Li, W. H. Statistical tests of neutrality of mutations. Genetics 133, 693–709 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Kemppainen, P. et al. Linkage disequilibrium network analysis (LDna) gives a global view of chromosomal inversions, local adaptation and geographic structure. Mol. Ecol. Resour. 15, 1031–1045 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Sabeti, P. C. et al. Detecting recent positive selection in the human genome from haplotype structure. Nature 419, 832–837 (2002).

    CAS  PubMed  Google Scholar 

  163. Sabeti, P. C. et al. Genome-wide detection and characterization of positive selection in human populations. Nature 449, 913–918 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Mailund, T., Dutheil, J. Y., Hobolth, A., Lunter, G. & Schierup, M. H. Estimating divergence time and ancestral effective population size of Bornean and Sumatran orangutan subspecies using a coalescent hidden Markov model. PLoS Genet. 7, e1001319 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Zamani, N. et al. Unsupervised genome-wide recognition of local relationship patterns. BMC Genomics 14, 347 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to members of their laboratory groups and to many external visitors for years of stimulating discussions on the subject. Their research is supported by the European Research Council, the Swedish Research Council, and the Knut and Alice Wallenberg Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jochen B. W. Wolf or Hans Ellegren.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

A Compilation of a literature survey including 67 studies drawn from searching the ISI Web of Knowledge database for terms 'speciation genomics', 'islands of differentiation', 'islands of speciation' and 'speciation with gene flow', and complemented with other references. (XLSX 29 kb)

PowerPoint slides

Glossary

Postzygotic intrinsic isolation

Lowered hybrid fitness in the form of sterility or reduced viability of zygotes that are produced in a cross between two groups of individuals, often two species.

Gene flow

Movement of chromosomes (or chromosomal regions) across genetically structured populations, resulting in a change of allele frequencies.

Reproductive isolation

Any mechanism or process that reduces the probability of mating, survival or reproduction between members of different groups and their offspring.

Genetic drift

Random change in allele frequencies between generations as a consequence of stochastic sampling in a finite population.

Background selection

Change in allele frequencies and reduction in diversity at neutral loci as a result of selection against deleterious alleles at linked loci.

Genetic draft

Also known as genetic hitch-hiking. Pervasive reduction of genetic diversity owing to recurrent selective sweeps.

Divergent selection

Natural selection for different trait values in diverging lineages.

Disruptive selection

A special case of divergent selection in which natural selection favours two extreme values of a phenotypic distribution.

Meiotic drive

A mechanism of segregation distortion during female meiosis in which one allele at a locus is transmitted to the offspring (gametes) more often than are other alleles, even in the absence of a selective advantage of that allele.

Centromeric drive

A special case of meiotic drive involving centromeres that are in evolutionary conflict to increase their odds of transmission during asymmetric (female) meiosis.

Introgression

The transfer of genetic information (gene flow) between divergent populations or species as a result of hybridization and repeated backcrossing.

Good species

Well-separated lineages that clearly form distinct species and no longer interbreed.

Magic traits

Traits that are subjected to divergent selection and contribute to non-random mating; they facilitate speciation with gene flow.

Supergenes

Clusters of tightly linked loci where two or more haplotypes give distinctly different phenotypes.

F ST

A common statistical measure of genetic differentiation between populations that compares the variance in allele frequencies between populations to the variance within populations. It is sensitive to genetic drift, demographic change, mutation, migration and genetic variation of each population.

Linked selection

Selection that changes allele frequencies, often leading to reduced diversity, at loci genetically linked to the focal locus.

Effective population sizes

(Ne). A somewhat abstract population genetic measure of the size of an idealized population in which the strength of genetic drift is the same as that in the population of interest.

Time to the most recent common ancestor

In genetic genealogy, the time, in years or generations, to the most recent individual from whom all individuals in the sample under consideration descended.

Hybrid zones

Narrow geographical regions where two species or divergent populations are found in close proximity and hybridize.

Epistatic interactions

The interaction between two or more genes that causes a phenotype to be dependent on the particular combination of alleles at these loci.

Coalescent times

The most recent time-point in the past at which two gene copies share a common ancestor.

Structural genetic variation

Polymorphisms involving differences in the length, orientation, order, copy number or chromosomal organization of DNA sequences.

Quantitative trait loci

(QTLs). Genomic regions that are statistically associated with non-discrete variation in a phenotypic trait.

Isolation-by-ecology

Genome-wide differentiation between groups of individuals according to environmental or phenotypic contrasts between populations (rather than, for example, according to geographical distance).

Spatial autocorrelation

Genetic similarities that are attributable to geographical proximity between populations.

Lineage sorting

The process by which alleles segregating in the common ancestor converge to the overall phylogeny of diverging lineages.

Backcrosses

Crosses between hybrids and one of the parents or a genetically similar individual from the parental population.

ABBA-BABA tests

A type of statistical test for introgression.

Admixture analyses

Tests for introgression of alleles between hybridizing populations to establish individual ancestries of individuals and/or genomic regions.

Isolation-with-migration

The process of population divergence in the presence of gene flow.

Population bottlenecks

Sharp reductions in the size of a population.

Reduced-representation data

Genetic data from a defined subset of the genome.

Linkage disequilibrium

The non-random, statistical association between alleles at different loci.

Underdominance

Fitness reduction of heterozygous genotypes at a bi-allelic locus.

Long-read technology

Sequencing technologies that generate relatively long stretches of DNA sequence per read. The recent development of long-single-molecule sequencing (>20 kb) blurs the initial dichotomy of short reads (from sequencing-by-synthesis technology) versus long reads (1 kb Sanger reads).

Optical mapping

A technique for constructing high-resolution restriction maps from single molecules.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolf, J., Ellegren, H. Making sense of genomic islands of differentiation in light of speciation. Nat Rev Genet 18, 87–100 (2017). https://doi.org/10.1038/nrg.2016.133

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg.2016.133

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing