Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment

Key Points

  • Polycystic ovary syndrome (PCOS) is defined by a combination of signs and symptoms of androgen excess and ovarian dysfunction in the absence of other specific diagnoses.

  • Heterogeneity, from aetiology to clinical presentation and long-term prognosis, is intrinsic to PCOS.

  • Mounting evidence suggests that PCOS might be a complex multigenic disorder with strong epigenetic and environmental influences, including diet and other lifestyle issues.

  • The diagnosis of PCOS is uncomplicated, requiring only the careful application of a few well-standardized diagnostic methods.

  • Treatment should be symptom-oriented, long term and dynamic and adapted to the changing circumstances, personal needs and expectations of the individual patient.

  • Therapeutic approaches should target hyperandrogenism, the consequences of ovarian dysfunction and/or the associated metabolic disorders.

Abstract

Polycystic ovary syndrome (PCOS) is one of the most common endocrine and metabolic disorders in premenopausal women. Heterogeneous by nature, PCOS is defined by a combination of signs and symptoms of androgen excess and ovarian dysfunction in the absence of other specific diagnoses. The aetiology of this syndrome remains largely unknown, but mounting evidence suggests that PCOS might be a complex multigenic disorder with strong epigenetic and environmental influences, including diet and lifestyle factors. PCOS is frequently associated with abdominal adiposity, insulin resistance, obesity, metabolic disorders and cardiovascular risk factors. The diagnosis and treatment of PCOS are not complicated, requiring only the judicious application of a few well-standardized diagnostic methods and appropriate therapeutic approaches addressing hyperandrogenism, the consequences of ovarian dysfunction and the associated metabolic disorders. This article aims to provide a balanced review of the latest advances and current limitations in our knowledge about PCOS while also providing a few clear and simple principles, based on current evidence-based clinical guidelines, for the proper diagnosis and long-term clinical management of women with PCOS.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The heterogeneous nature of PCOS.
Figure 2: Environmental factors influencing PCOS.
Figure 3: Abdominal adiposity and PCOS.
Figure 4: Pathophysiological heterogeneity in patients with PCOS.
Figure 5: Algorithm for the aetiological diagnosis of women thought to have PCOS.
Figure 6: Algorithm for the management of clinical hyperandrogenism.

Similar content being viewed by others

Selma Feldman Witchel, Helena J. Teede & Alexia S. Peña

References

  1. Azziz, R. et al. The Androgen Excess and PCOS Society criteria for the polycystic ovary syndrome: the complete task force report. Fertil. Steril. 91, 456–488 (2009).

    PubMed  Google Scholar 

  2. Asuncion, M. et al. A prospective study of the prevalence of the polycystic ovary syndrome in unselected Caucasian women from Spain. J. Clin. Endocrinol. Metab. 85, 2434–2438 (2000).

    CAS  PubMed  Google Scholar 

  3. Azziz, R. et al. The prevalence and features of the polycystic ovary syndrome in an unselected population. J. Clin. Endocrinol. Metab. 89, 2745–2749 (2004).

    CAS  PubMed  Google Scholar 

  4. Diamanti-Kandarakis, E. et al. A survey of the polycystic ovary syndrome in the Greek island of Lesbos: hormonal and metabolic profile. J. Clin. Endocrinol. Metab. 84, 4006–4011 (1999).

    CAS  PubMed  Google Scholar 

  5. Yildiz, B. O., Bozdag, G., Yapici, Z., Esinler, I. & Yarali, H. Prevalence, phenotype and cardiometabolic risk of polycystic ovary syndrome under different diagnostic criteria. Hum. Reprod. 27, 3067–3073 (2012).

    PubMed  Google Scholar 

  6. Carmina, E. & Lobo, R. A. Polycystic ovary syndrome (PCOS): arguably the most common endocrinopathy is associated with significant morbidity in women. J. Clin. Endocrinol. Metab. 84, 1897–1899 (1999).

    CAS  PubMed  Google Scholar 

  7. Conway, G. et al. The polycystic ovary syndrome: a position statement from the European Society of Endocrinology. Eur. J. Endocrinol. 171, 1–29 (2014).

    Google Scholar 

  8. Brakta, S. et al. Perspectives on polycystic ovary syndrome: Is polycystic ovary syndrome research underfunded? J. Clin. Endocrinol. Metab. 102, 4421–4427 (2017).

    PubMed  Google Scholar 

  9. Stein, I. F. & Leventhal, M. L. Amenorrhea associated with bilateral polycystic ovaries. Am. J. Obstet. Gynecol. 29, 181–191 (1935).

    Google Scholar 

  10. World Health Organization. The ICD10 classification of mental and behavioural disorders: Clinical descriptions and diagnostic guidelines. (World Health Organization, Geneva, 1992).

  11. Radosh, L. Drug treatments for polycystic ovary syndrome. Am. Fam. Physician 79, 671–676 (2009).

    PubMed  Google Scholar 

  12. Soriguer, F. et al. Prevalence of diabetes mellitus and impaired glucose regulation in Spain: the Di@bet.es Study. Diabetologia 55, 88–93 (2012).

    CAS  PubMed  Google Scholar 

  13. Dokras, A. et al. Gaps in knowledge among physicians regarding diagnostic criteria and management of polycystic ovary syndrome. Fertil. Steril. 107, 1380–1386.e1 (2017).

    PubMed  Google Scholar 

  14. Padmanabhan, V. Polycystic ovary syndrome — “A riddle wrapped in a mystery inside an enigma”. J. Clin. Endocrinol. Metab. 94, 1883–1885 (2009).

    CAS  PubMed  Google Scholar 

  15. Dewailly, D. et al. Definition and significance of polycystic ovarian morphology: a task force report from the Androgen Excess and Polycystic Ovary Syndrome Society. Hum. Reprod. Update 20, 334–352 (2014).

    CAS  PubMed  Google Scholar 

  16. Teede, H., Gibson-Helm, M., Norman, R. J. & Boyle, J. Polycystic ovary syndrome: perceptions and attitudes of women and primary health care physicians on features of PCOS and renaming the syndrome. J. Clin. Endocrinol. Metab. 99, E107–E111 (2014).

    PubMed  Google Scholar 

  17. Azziz, R. Polycystic ovary syndrome: what's in a name? J. Clin. Endocrinol. Metab. 99, 1142–1145 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Steering Committee of the National Institutes of Health Evidence-Based Methodology Workshop on Polycystic Ovary Syndrome. Evidence-based Methodology Workshop on Polycystic Ovary Syndrome. Final Report. https://prevention.nih.gov/docs/programs/pcos/FinalReport.pdf (National Institute of Health, Bethesda, MD, USA, 2012).

  19. Rosenfield, R. L. & Ehrmann, D. A. The pathogenesis of polycystic ovary syndrome (PCOS): the hypothesis of pcos as functional ovarian hyperandrogenism revisited. Endocr. Rev. 37, 467–520 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lobo, R. A. A disorder without identity: “HCA,” “PCO,” “PCOD,” “PCOS,” “SLS”. what are we to call it?! Fertil. Steril. 63, 1158–1160 (1995).

    CAS  PubMed  Google Scholar 

  21. Escobar-Morreale, H. F., Luque-Ramirez, M. & San Millan, J. L. The molecular-genetic basis of functional hyperandrogenism and the polycystic ovary syndrome. Endocr. Rev. 26, 251–282 (2005).

    CAS  PubMed  Google Scholar 

  22. Behera, M., Price, T. & Walmer, D. Estrogenic ovulatory dysfunction or functional female hyperandrogenism: an argument to discard the term polycystic ovary syndrome. Fertil. Steril. 86, 1292–1295 (2006).

    PubMed  Google Scholar 

  23. Dunaif, A. & Fauser, B. C. Renaming PCOS — a two-state solution. J. Clin. Endocrinol. Metab. 98, 4325–4328 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Sam, S. & Dunaif, A. Polycystic ovary syndrome: syndrome XX? Trends Endocrinol. Metab. 14, 365–370 (2003).

    CAS  PubMed  Google Scholar 

  25. Moghetti, P. et al. Divergences in insulin resistance between the different phenotypes of the polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 98, E628–E637 (2013).

    CAS  PubMed  Google Scholar 

  26. Dewailly, D. in 15th International and 14th European Congress of Endocrinology Debate 3: This house believes that PCOS needs a new name – Con. (BioScientifica, Florence, Italy, 2012).

    Google Scholar 

  27. Idiculla, J. Comment on trends in onomastics-the case of PCOS by Kalra et al. Indian J. Endocrinol. Metab. 18, 245–245 (2014).

    PubMed  PubMed Central  Google Scholar 

  28. The Rotterdam ESHRE/ASRM-sponsored PCOS consensus workshop group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum. Reprod. 19, 41–47 (2004).

  29. Legro, R. S. et al. Diagnosis and treatment of polycystic ovary syndrome: an Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 98, 4565–4592 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Jean Hailes for Women's Health. Evidence-based guidelines for the assessment and management of polycystic ovary syndrome. Jean Hailes for Women's Health https://jeanhailes.org.au/contents/documents/Resources/Tools/PCOS_evidence-based_guideline_for_assessment_and_management_pcos.pdf (2015).

  31. National Institute for Health and Care Excellence (NICE). Polycystic ovary syndrome. Clinical Knowledge Summaries https://cks.nice.org.uk/polycystic-ovary-syndrome (2013).

  32. Azziz, R. et al. Position statement: criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: an Androgen Excess Society guideline. J. Clin. Endocrinol. Metab. 91, 4237–4245 (2006).

    CAS  PubMed  Google Scholar 

  33. Zawadzki, J. K. & Dunaif, A. in Polycystic Ovary Syndrome (eds Dunaif, A., Givens, J. R., Haseltine, F. P. & Merriam, G. R.) 377–384 (Blackwell Scientific Publications, Boston, MA, USA, 1992).

    Google Scholar 

  34. Azziz, R. Controversy in clinical endocrinology: diagnosis of polycystic ovarian syndrome: the Rotterdam criteria are premature. J. Clin. Endocrinol. Metab. 91, 781–785 (2006).

    CAS  PubMed  Google Scholar 

  35. Franks, S. Controversy in clinical endocrinology: diagnosis of polycystic ovarian syndrome: in defense of the Rotterdam criteria. J. Clin. Endocrinol. Metab. 91, 786–789 (2006).

    CAS  PubMed  Google Scholar 

  36. Escobar-Morreale, H. F. & San Millan, J. L. Abdominal adiposity and the polycystic ovary syndrome. Trends Endocrinol. Metab. 18, 266–272 (2007).

    CAS  PubMed  Google Scholar 

  37. Jayaprakasan, K. et al. Prediction of in vitro fertilization outcome at different antral follicle count thresholds in a prospective cohort of 1,012 women. Fertil. Steril 98, 657–663 (2012).

    PubMed  Google Scholar 

  38. Escobar-Morreale, H. F. Reproductive endocrinology: Menstrual dysfunction — a proxy for insulin resistance in PCOS? Nat. Rev. Endocrinol. 10, 10–11 (2014).

    PubMed  Google Scholar 

  39. Carmina, E., Napoli, N., Longo, R. A., Rini, G. B. & Lobo, R. A. Metabolic syndrome in polycystic ovary syndrome (PCOS): lower prevalence in southern Italy than in the USA and the influence of criteria for the diagnosis of PCOS. Eur. J. Endocrinol. 154, 141–145 (2006).

    CAS  PubMed  Google Scholar 

  40. Brower, M., Brennan, K., Pall, M. & Azziz, R. The severity of menstrual dysfunction as a predictor of insulin resistance in PCOS. J. Clin. Endocrinol. Metab. 98, E1967–E1971 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Moran, L. & Teede, H. Metabolic features of the reproductive phenotypes of polycystic ovary syndrome. Hum. Reprod. Update 15, 477–488 (2009).

    CAS  PubMed  Google Scholar 

  42. Barber, T. M., Wass, J. A., McCarthy, M. I. & Franks, S. Metabolic characteristics of women with polycystic ovaries and oligo-amenorrhoea but normal androgen levels: implications for the management of polycystic ovary syndrome. Clin. Endocrinol. 66, 513–517 (2007).

    CAS  Google Scholar 

  43. Fernandez-Real, J. M. & Ricart, W. Insulin resistance and inflammation in an evolutionary perspective: the contribution of cytokine genotype/phenotype to thriftiness. Diabetologia 42, 1367–1374 (1999).

    CAS  PubMed  Google Scholar 

  44. Neel, J. V. Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? Am. J. Hum. Genet. 14, 353–362 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Montagu, A. Obesity and the evolution of man. JAMA 195, 105–107 (1966).

    CAS  PubMed  Google Scholar 

  46. Witchel, S. F., Lee, P. A., Suda-Hartman, M., Trucco, M. & Hoffman, E. P. Evidence for a heterozygote advantage in congenital adrenal hyperplasia due to 21hydroxylase deficiency. J. Clin. Endocrinol. Metab. 82, 2097–2101 (1997).

    CAS  PubMed  Google Scholar 

  47. Parsons, P. Success in mating: a coordinated approach to fitness through genotypes incorporating genes for stress resistance and heterozygous advantage under stress. Behav. Genet. 27, 75–81 (1997).

    CAS  PubMed  Google Scholar 

  48. Stearns, S. C., Ackermann, M., Doebeli, M. & Kaiser, M. Experimental evolution of aging, growth, and reproduction in fruitflies. Proc. Natl Acad. Sci. USA 97, 3309–3313 (2000).

    CAS  PubMed  Google Scholar 

  49. Cooper, H. E., Spellacy, W. N., Prem, K. A. & Cohen, W. D. Hereditary factors in the Stein-Leventhal syndrome. Am. J. Obstet. Gynecol. 100, 371–387 (1968).

    CAS  PubMed  Google Scholar 

  50. Wilroy, R. S. Jr et al. Hyperthecosis: an inheritable form of polycystic ovarian disease. Birth Defects Orig. Art. Ser. 11, 81–85 (1975).

    CAS  PubMed  Google Scholar 

  51. Givens, J. R. Ovarian hyperthecosis. N. Engl. J. Med. 285, 691 (1971).

    CAS  PubMed  Google Scholar 

  52. Givens, J. R. Familial polycystic ovarian disease. Endocrinol. Metab. Clin. North Am. 17, 771–783 (1988).

    CAS  PubMed  Google Scholar 

  53. Ferriman, D. & Purdie, A. W. The inheritance of polycystic ovarian disease and a possible relationship to premature balding. Clin. Endocrinol. 11, 291–300 (1979).

    CAS  Google Scholar 

  54. Hague, W. M., Adams, J., Reeders, S. T., Peto, T. E. & Jacobs, H. S. Familial polycystic ovaries: a genetic disease? Clin. Endocrinol. 29, 593–605 (1988).

    CAS  Google Scholar 

  55. Legro, R. S., Driscoll, D., Strauss, J. F., Fox, J. & Dunaif, A. Evidence for a genetic basis for hyperandrogenemia in polycystic ovary syndrome. Proc. Natl Acad. Sci. USA 95, 14956–14960 (1998).

    CAS  PubMed  Google Scholar 

  56. Lunde, O., Magnus, P., Sandvik, L. & Hoglo, S. Familial clustering in the polycystic ovarian syndrome. Gynecol. Obstet. Invest. 28, 23–30 (1989).

    CAS  PubMed  Google Scholar 

  57. Jahanfar, S., Eden, J. A., Warren, P., Seppala, M. & Nguyen, T. V. A twin study of polycystic ovary syndrome. Fertil. Steril. 63, 478–486 (1995).

    CAS  PubMed  Google Scholar 

  58. Azziz, R. & Kashar-Miller, M. D. Family history as a risk factor for the polycystic ovary syndrome. J. Pediatr. Endocrinol. Metab. 13 (Suppl. 5), 1303–1306 (2000).

    PubMed  Google Scholar 

  59. Kahsar-Miller, M. D., Nixon, C., Boots, L. R., Go, R. C. & Azziz, R. Prevalence of polycystic ovary syndrome (PCOS) in first-degree relatives of patients with PCOS. Fertil. Steril. 75, 53–58 (2001).

    CAS  PubMed  Google Scholar 

  60. Vink, J. M., Sadrzadeh, S., Lambalk, C. B. & Boomsma, D. I. Heritability of polycystic ovary syndrome in a Dutch twin-family study. J. Clin. Endocrinol. Metab. 91, 2100–2104 (2006).

    CAS  PubMed  Google Scholar 

  61. Simoni, M., Tempfer, C. B., Destenaves, B. & Fauser, B. C. Functional genetic polymorphisms and female reproductive disorders: part I: polycystic ovary syndrome and ovarian response. Hum. Reprod. Update 14, 459–484 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Chen, Z. J. et al. Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Nat. Genet. 43, 55–59 (2011).

    PubMed  Google Scholar 

  63. Shi, Y. et al. Genome-wide association study identifies eight new risk loci for polycystic ovary syndrome. Nat. Genet. 44, 1020–1025 (2012).

    CAS  PubMed  Google Scholar 

  64. Hayes, M. G. et al. Genome-wide association of polycystic ovary syndrome implicates alterations in gonadotropin secretion in European ancestry populations. Nat. Commun. 6, 7502 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Day, F. R. et al. Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome. Nat. Commun. 6, 8464 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Azziz, R. PCOS in 2015: New insights into the genetics of polycystic ovary syndrome. Nat. Rev. Endocrinol. 12, 74–75 (2016).

    CAS  PubMed  Google Scholar 

  67. Froguel, P. & Velho, G. Genetic determinants of type 2 diabetes. Recent Prog. Horm. Res. 56, 91–105 (2001).

    CAS  PubMed  Google Scholar 

  68. Berger, S. L., Kouzarides, T., Shiekhattar, R. & Shilatifard, A. An operational definition of epigenetics. Genes Dev. 23, 781–783 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ibanez, L., Ong, K., Dunger, D. B. & de Zegher, F. Early development of adiposity and insulin resistance after catchup weight gain in small-for-gestational-age children. J. Clin. Endocrinol. Metab. 91, 2153–2158 (2006).

    CAS  PubMed  Google Scholar 

  70. Ibanez, L., Valls, C., Potau, N., Marcos, M. V. & de Zegher, F. Polycystic ovary syndrome after precocious pubarche: ontogeny of the low-birthweight effect. Clin. Endocrinol. 55, 667–672 (2001).

    CAS  Google Scholar 

  71. Cresswell, J. L. et al. Fetal growth, length of gestation, and polycystic ovaries in adult life. Lancet 350, 1131–1135 (1997).

    CAS  PubMed  Google Scholar 

  72. Edozien, L. Length of gestation and polycystic ovaries in adulthood. Lancet 351, 295–296 (1998).

    CAS  PubMed  Google Scholar 

  73. van Hooff, M. H. & Lambalk, C. B. Length of gestation and polycystic ovaries in adulthood. Lancet 351, 296 (1998).

    CAS  PubMed  Google Scholar 

  74. Dumesic, D. A., Abbott, D. H. & Padmanabhan, V. Polycystic ovary syndrome and its developmental origins. Rev. Endocr. Metab. Disord. 8, 127–141 (2007).

    PubMed  PubMed Central  Google Scholar 

  75. Filippou, P. & Homburg, R. Is foetal hyperexposure to androgens a cause of PCOS? Hum. Reprod. Update 23, 421–432 (2017).

    CAS  PubMed  Google Scholar 

  76. Markopoulos, M. C., Kassi, E., Alexandraki, K. I., Mastorakos, G. & Kaltsas, G. Hyperandrogenism after menopause. Eur. J. Endocrinol. 172, R79–91 (2015).

    CAS  PubMed  Google Scholar 

  77. Welt, C. K. & Carmina, E. Clinical review: Lifecycle of polycystic ovary syndrome (PCOS): from in utero to menopause. J. Clin. Endocrinol. Metab. 98, 4629–4638 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Puurunen, J. et al. Unfavorable hormonal, metabolic, and inflammatory alterations persist after menopause in women with PCOS. J. Clin. Endocrinol. Metab. 96, 1827–1834 (2011).

    CAS  PubMed  Google Scholar 

  79. Markopoulos, M. C. et al. Study of carbohydrate metabolism indices and adipocytokine profile and their relationship with androgens in polycystic ovary syndrome after menopause. Eur. J. Endocrinol. 168, 83–90 (2013).

    CAS  PubMed  Google Scholar 

  80. Markopoulos, M. C. et al. Hyperandrogenism in women with polycystic ovary syndrome persists after menopause. J. Clin. Endocrinol. Metab. 96, 623–631 (2011).

    CAS  PubMed  Google Scholar 

  81. Rutkowska, A. Z. & Diamanti-Kandarakis, E. Polycystic ovary syndrome and environmental toxins. Fertil. Steril. 106, 948–958 (2016).

    CAS  PubMed  Google Scholar 

  82. Isojarvi, J. I., Laatikainen, T. J., Pakarinen, A. J., Juntunen, K. T. & Myllyla, V. V. Polycystic ovaries and hyperandrogenism in women taking valproate for epilepsy. N. Engl. J. Med. 329, 1383–1388 (1993).

    CAS  PubMed  Google Scholar 

  83. Nelson-DeGrave, V. L. et al. Valproate potentiates androgen biosynthesis in human ovarian theca cells. Endocrinology 145, 799–808 (2004).

    CAS  PubMed  Google Scholar 

  84. Wood, J. R. et al. Valproate-induced alterations in human theca cell gene expression: clues to the association between valproate use and metabolic side effects. Physiol. Genom. 20, 233–243 (2005).

    CAS  Google Scholar 

  85. Nestler, J. E. et al. Insulin stimulates testosterone biosynthesis by human thecal cells from women with polycystic ovary syndrome by activating its own receptor and using inositolglycan mediators as the signal transduction system. J. Clin. Endocrinol. Metab. 83, 2001–2005 (1998).

    CAS  PubMed  Google Scholar 

  86. Munir, I. et al. Insulin augmentation of 17alpha-hydroxylase activity is mediated by phosphatidyl inositol 3-kinase but not extracellular signal-regulated kinase1/2 in human ovarian theca cells. Endocrinology 145, 175–183 (2004).

    CAS  PubMed  Google Scholar 

  87. Carmina, E. et al. The contributions of oestrogen and growth factors to increased adrenal androgen secretion in polycystic ovary syndrome. Hum. Reprod. 14, 307–311 (1999).

    CAS  PubMed  Google Scholar 

  88. Tosi, F. et al. Insulin enhances ACTH-stimulated androgen and glucocorticoid metabolism in hyperandrogenic women. Eur. J. Endocrinol. 164, 197–203 (2011).

    CAS  PubMed  Google Scholar 

  89. Adashi, E. Y., Hsueh, A. J. & Yen, S. S. Insulin enhancement of luteinizing hormone and follicle-stimulating hormone release by cultured pituitary cells. Endocrinology 108, 1441–1449 (1981).

    CAS  PubMed  Google Scholar 

  90. Diamanti-Kandarakis, E. & Dunaif, A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr. Rev. 33, 981–1030 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Alvarez-Blasco, F., Botella-Carretero, J. I., San Millan, J. L. & Escobar-Morreale, H. F. Prevalence and characteristics of the polycystic ovary syndrome in overweight and obese women. Arch. Intern. Med. 166, 2081–2086 (2006).

    PubMed  Google Scholar 

  92. Lo, J. C. et al. Increased prevalence of gestational diabetes mellitus among women with diagnosed polycystic ovary syndrome: a population-based study. Diabetes Care 29, 1915–1917 (2006).

    PubMed  Google Scholar 

  93. Conn, J. J., Jacobs, H. S. & Conway, G. S. The prevalence of polycystic ovaries in women with type 2 diabetes mellitus. Clin. Endocrinol. 52, 81–86 (2000).

    CAS  Google Scholar 

  94. Peppard, H. R., Marfori, J., Iuorno, M. J. & Nestler, J. E. Prevalence of polycystic ovary syndrome among premenopausal women with type 2 diabetes. Diabetes Care 24, 1050–1052 (2001).

    CAS  PubMed  Google Scholar 

  95. Musso, C. et al. Clinical course of genetic diseases of the insulin receptor (type A and Rabson-Mendenhall syndromes): a 30-year prospective. Medicine 83, 209–222 (2004).

    CAS  PubMed  Google Scholar 

  96. Taylor, S. I., Dons, R. F., Hernandez, E., Roth, J. & Gorden, P. Insulin resistance associated with androgen excess in women with autoantibodies to the insulin receptor. Ann. Intern. Med. 97, 851–855 (1982).

    CAS  PubMed  Google Scholar 

  97. Satoh, M. et al. Two hyperandrogenic adolescent girls with congenital portosystemic shunt. Eur. J. Pediatr. 160, 307–311 (2001).

    CAS  PubMed  Google Scholar 

  98. Murray, R. D., Davison, R. M., Russell, R. C. & Conway, G. S. Clinical presentation of PCOS following development of an insulinoma: Case Report. Hum. Reprod. 15, 86–88 (2000).

    CAS  PubMed  Google Scholar 

  99. Stanciu, I. N. et al. Insulinoma presenting with hyperandrogenism: a case report and a literature review. J. Intern. Med. 253, 484–489 (2003).

    CAS  PubMed  Google Scholar 

  100. Escobar-Morreale, H. F. & Roldán-Martín, M. B. Type 1 diabetes and polycystic ovary syndrome: systematic review and meta-analysis. Diabetes Care 39, 639–648 (2016).

    CAS  PubMed  Google Scholar 

  101. DeUgarte, C. M., Bartolucci, A. A. & Azziz, R. Prevalence of insulin resistance in the polycystic ovary syndrome using the homeostasis model assessment. Fertil. Steril. 83, 1454–1460 (2005).

    CAS  PubMed  Google Scholar 

  102. Wickenheisser, J. K., Nelson-DeGrave, V. L. & McAllister, J. M. Human ovarian theca cells in culture. Trends Endocrinol. Metab. 17, 65–71 (2006).

    PubMed  Google Scholar 

  103. Borruel, S. et al. Global adiposity and thickness of intraperitoneal and mesenteric adipose tissue depots are increased in women with polycystic ovary syndrome (PCOS). J. Clin. Endocrinol. Metab. 98, 1254–1263 (2013).

    CAS  PubMed  Google Scholar 

  104. Dumesic, D. A. et al. Hyperandrogenism accompanies increased intra-abdominal fat storage in normal weight polycystic ovary syndrome women. J. Clin. Endocrinol. Metab. 101, 4178–4188 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Martinez-Garcia, M. A. et al. Evidence for masculinization of adipokine gene expression in visceral and subcutaneous adipose tissue of obese women with polycystic ovary syndrome (PCOS). J. Clin. Endocrinol. Metab. 98, E388–E396 (2013).

    CAS  PubMed  Google Scholar 

  106. Montes-Nieto, R., Insenser, M., Martinez-Garcia, M. A. & Escobar-Morreale, H. F. A nontargeted proteomic study of the influence of androgen excess on human visceral and subcutaneous adipose tissue proteomes. J. Clin. Endocrinol. Metab. 98, E576–E585 (2013).

    CAS  PubMed  Google Scholar 

  107. Corton, M. et al. Differential gene expression profile in omental adipose tissue in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 92, 328–337 (2007).

    CAS  PubMed  Google Scholar 

  108. Panidis, D. et al. Insulin resistance and endocrine characteristics of the different phenotypes of polycystic ovary syndrome: a prospective study. Hum. Reprod. 27, 541–549 (2012).

    CAS  PubMed  Google Scholar 

  109. Shroff, R., Syrop, C. H., Davis, W., Van Voorhis, B. J. & Dokras, A. Risk of metabolic complications in the new PCOS phenotypes based on the Rotterdam criteria. Fertil. Steril. 88, 1389–1395 (2007).

    CAS  PubMed  Google Scholar 

  110. Guastella, E., Longo, R. A. & Carmina, E. Clinical and endocrine characteristics of the main polycystic ovary syndrome phenotypes. Fertil. Steril. 94, 2197–2201 (2010).

    CAS  PubMed  Google Scholar 

  111. Welt, C. K. et al. Characterizing discrete subsets of polycystic ovary syndrome as defined by the Rotterdam criteria: the impact of weight on phenotype and metabolic features. J. Clin. Endocrinol. Metab. 91, 4842–4848 (2006).

    CAS  PubMed  Google Scholar 

  112. Escobar-Morreale, H. F. et al. Metabolic heterogeneity in polycystic ovary syndrome is determined by obesity: plasma metabolomic approach using GCMS. Clin. Chem. 58, 999–1009 (2012).

    CAS  PubMed  Google Scholar 

  113. Pasquali, R., Diamanti-Kandarakis, E. & Gambineri, A. Secondary polycystic ovary syndrome: theoretical and practical aspects. Eur. J. Endocrinol. 175, R157–R169 (2016).

    CAS  PubMed  Google Scholar 

  114. Escobar-Morreale, H. F., Santacruz, E., Luque-Ramirez, M. & Botella Carretero, J. I. Prevalence of 'obesity-associated gonadal dysfunction' in severely obese men and women and its resolution after bariatric surgery: a systematic review and meta-analysis. Hum. Reprod. Update 23, 390–408 (2017).

    CAS  PubMed  Google Scholar 

  115. Escobar-Morreale, H. F. et al. Epidemiology, diagnosis and management of hirsutism: a consensus statement by the Androgen Excess and Polycystic Ovary Syndrome Society. Hum. Reprod. Update 18, 146–170 (2012).

    CAS  PubMed  Google Scholar 

  116. Sanchon, R. et al. Prevalence of functional disorders of androgen excess in unselected premenopausal women: a study in blood donors. Hum. Reprod. 27, 1209–1216 (2012).

    PubMed  Google Scholar 

  117. Schmidt, T. H. et al. Cutaneous findings and systemic associations in women with polycystic ovary syndrome. JAMA Dermatol. 152, 391–398 (2016).

    PubMed  Google Scholar 

  118. Yildiz, B. O., Bolour, S., Woods, K., Moore, A. & Azziz, R. Visually scoring hirsutism. Hum. Reprod. Update 16, 51–64 (2010).

    PubMed  Google Scholar 

  119. Rosner, W., Auchus, R. J., Azziz, R., Sluss, P. M. & Raff, H. Position statement: Utility, limitations, and pitfalls in measuring testosterone: an Endocrine Society position statement. J. Clin. Endocrinol. Metab. 92, 405–413 (2007).

    CAS  PubMed  Google Scholar 

  120. Rosner, W. An extraordinarily inaccurate assay for free testosterone is still with us. J. Clin. Endocrinol. Metab. 86, 2903 (2001).

    CAS  PubMed  Google Scholar 

  121. Vermeulen, A., Verdonck, L. & Kaufman, J. M. A critical evaluation of simple methods for the estimation of free testosterone in serum. J. Clin. Endocrinol. Metab. 84, 3666–3672 (1999).

    CAS  PubMed  Google Scholar 

  122. Ankarberg-Lindgren, C. & Norjavaara, E. Sensitive RIA measures testosterone concentrations in prepubertal and pubertal children comparable to tandem mass spectrometry. Scand. J. Clin. Lab. Invest. 75, 341–344 (2015).

    CAS  PubMed  Google Scholar 

  123. Centers for Disease Control and Prevention. HoSt testosterone certified procedures. CDC https://www.cdc.gov/labstandards/pdf/hs/CDC_Certified_Testosterone_Procedures.pdf (2017).

  124. Pasquali, R. et al. Defining hyperandrogenism in women with polycystic ovary syndrome: a challenging perspective. J. Clin. Endocrinol. Metab. 101, 2013–2022 (2016).

    CAS  PubMed  Google Scholar 

  125. Jayagopal, V., Kilpatrick, E. S., Jennings, P. E., Hepburn, D. A. & Atkin, S. L. The biological variation of testosterone and sex hormone-binding globulin (SHBG) in polycystic ovarian syndrome: implications for SHBG as a surrogate marker of insulin resistance. J. Clin. Endocrinol. Metab. 88, 1528–1533 (2003).

    CAS  PubMed  Google Scholar 

  126. Gordon, C. M. et al. Functional hypothalamic amenorrhea: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 102, 1413–1439 (2017).

    PubMed  Google Scholar 

  127. Escobar-Morreale, H. F. Diagnosis and management of hirsutism. Ann. NY Acad. Sci. 1205, 166–174 (2010).

    CAS  PubMed  Google Scholar 

  128. Copp, T. et al. Influence of the disease label 'polycystic ovary syndrome' on intention to have an ultrasound and psychosocial outcomes: a randomised online study in young women. Hum. Reprod. 32, 876–884 (2017).

    PubMed  Google Scholar 

  129. Balen, A. H., Laven, J. S., Tan, S. L. & Dewailly, D. Ultrasound assessment of the polycystic ovary: international consensus definitions. Hum. Reprod. Update 9, 505–514 (2003).

    PubMed  Google Scholar 

  130. Casadei, L. et al. The role of serum anti-Mullerian hormone (AMH) in the hormonal diagnosis of polycystic ovary syndrome. Gynecol. Endocrinol. 29, 545–550 (2013).

    CAS  PubMed  Google Scholar 

  131. Christiansen, S. C., Eilertsen, T. B., Vanky, E. & Carlsen, S. M. Does AMH reflect follicle number similarly in women with and without PCOS? PLOS ONE 11, e0146739 (2016).

    PubMed  PubMed Central  Google Scholar 

  132. Carmina, E. et al. Non-classic congenital adrenal hyperplasia due to 21-hydroxylase deficiency revisited: an update with a special focus on adolescent and adult women. Hum. Reprod. Update 3, 580–599 (2017).

    Google Scholar 

  133. Wild, R. A. et al. Assessment of cardiovascular risk and prevention of cardiovascular disease in women with the polycystic ovary syndrome: a consensus statement by the Androgen Excess and Polycystic Ovary Syndrome (AEPCOS) Society. J. Clin. Endocrinol. Metab. 95, 2038–2049 (2010).

    CAS  PubMed  Google Scholar 

  134. Luque-Ramirez, M., Alvarez-Blasco, F., Mendieta-Azcona, C., Botella-Carretero, J. I. & Escobar-Morreale, H. F. Obesity is the major determinant of the abnormalities in blood pressure found in young women with the polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 92, 2141–2148 (2007).

    CAS  PubMed  Google Scholar 

  135. Matsuda, M. & DeFronzo, R. A. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 22, 1462–1470 (1999).

    CAS  PubMed  Google Scholar 

  136. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 31, S55–S60 (2008).

  137. Orio, F. Jr et al. The increase of leukocytes as a new putative marker of low-grade chronic inflammation and early cardiovascular risk in polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 90, 2–5 (2005).

    CAS  PubMed  Google Scholar 

  138. Escobar-Morreale, H. F., Luque-Ramirez, M. & Gonzalez, F. Circulating inflammatory markers in polycystic ovary syndrome: a systematic review and metaanalysis. Fertil. Steril. 95, 1048–1058.e2 (2011).

    CAS  PubMed  Google Scholar 

  139. Diamanti-Kandarakis, E. et al. Inflammatory and endothelial markers in women with polycystic ovary syndrome. Eur. J. Clin. Invest. 36, 691–697 (2006).

    CAS  PubMed  Google Scholar 

  140. Diamanti-Kandarakis, E., Piperi, C., Kalofoutis, A. & Creatsas, G. Increased levels of serum advanced glycation end-products in women with polycystic ovary syndrome. Clin. Endocrinol. 62, 37–43 (2005).

    CAS  Google Scholar 

  141. Carmina, E. et al. Endothelial dysfunction in PCOS: role of obesity and adipose hormones. Am. J. Med. 119, 356.e1–356.e6 (2006).

    CAS  Google Scholar 

  142. Luque-Ramirez, M., Mendieta-Azcona, C., Alvarez-Blasco, F. & Escobar-Morreale, H. F. Androgen excess is associated with the increased carotid intima-media thickness observed in young women with polycystic ovary syndrome. Hum. Reprod. 22, 3197–3203 (2007).

    CAS  PubMed  Google Scholar 

  143. Orio, F. Jr et al. Early impairment of endothelial structure and function in young normal-weight women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 89, 4588–4593 (2004).

    CAS  PubMed  Google Scholar 

  144. Orio, F. Jr et al. The cardiovascular risk of young women with polycystic ovary syndrome: an observational, analytical, prospective case-control study. J. Clin. Endocrinol. Metab. 89, 3696–3701 (2004).

    CAS  PubMed  Google Scholar 

  145. Li, Y. et al. Polycystic ovary syndrome is associated with negatively variable impacts on domains of health-related quality of life: evidence from a meta-analysis. Fertil. Steril. 96, 452–458 (2011).

    PubMed  Google Scholar 

  146. Jones, G. L., Hall, J. M., Balen, A. H. & Ledger, W. L. Health-related quality of life measurement in women with polycystic ovary syndrome: a systematic review. Hum. Reprod. Update 14, 15–25 (2008).

    CAS  PubMed  Google Scholar 

  147. Kaczmarek, C., Haller, D. M. & Yaron, M. Health-related quality of life in adolescents and young adults with polycystic ovary syndrome: a systematic review. J. Pediatr. Adolesc. Gynecol. 29, 551–557 (2016).

    PubMed  Google Scholar 

  148. Cronin, L. et al. Development of a health-related quality-oflife questionnaire (PCOSQ) for women with polycystic ovary syndrome (PCOS). J. Clin. Endocrinol. Metab. 83, 1976–1987 (1998).

    CAS  PubMed  Google Scholar 

  149. Araviiskaia, E. & Dreno, B. The role of topical dermocosmetics in acne vulgaris. J. Eur. Acad. Dermatol. Venereol. 30, 926–935 (2016).

    CAS  PubMed  Google Scholar 

  150. Kempiak, S. J. & Uebelhoer, N. Superficial chemical peels and microdermabrasion for acne vulgaris. Semin. Cutan. Med. Surg. 27, 212–220 (2008).

    CAS  PubMed  Google Scholar 

  151. Gold, M. H., Goldberg, D. J. & Nestor, M. S. Current treatments of acne: Medications, lights, lasers, and a novel 650mus 1064nm Nd: YAG laser. J. Cosmet. Dermatol. 16, 303–318 (2017).

    PubMed  Google Scholar 

  152. Dinh, Q. Q. & Sinclair, R. Female pattern hair loss: Current treatment concepts. Clin. Interv. Aging 2, 189–199 (2007).

    PubMed  PubMed Central  Google Scholar 

  153. Garg, S. & Manchanda, S. Platelet-rich plasmaan 'Elixir' for treatment of alopecia: personal experience on 117 patients with review of literature. Stem Cell. Investig. 4, 64 (2017).

    PubMed  PubMed Central  Google Scholar 

  154. Anitua, E., Pino, A., Martinez, N., Orive, G. & Berridi, D. The effect of plasma rich in growth factors on pattern hair loss: a pilot study. Dermatol. Surg. 43, 658–670 (2017).

    CAS  PubMed  Google Scholar 

  155. Gentile, P., Scioli, M. G., Bielli, A., Orlandi, A. & Cervelli, V. Stem cells from human hair follicles: first mechanical isolation for immediate autologous clinical use in androgenetic alopecia and hair loss. Stem Cell. Invest. 4, 58 (2017).

    Google Scholar 

  156. Purdy, S. & Deberker, D. Acne vulgaris. BMJ Clin. Evid. 2011, 1714 (2008).

    Google Scholar 

  157. Abdel Hay, R. et al. Interventions for acne scars. Cochrane Database Syst. Rev. 4, CD011946 (2016).

    PubMed  Google Scholar 

  158. Barbaric, J. et al. Light therapies for acne: abridged Cochrane systematic review including GRADE assessments. Br. J. Dermatol. 178, 61–75 (2018).

    CAS  PubMed  Google Scholar 

  159. van Zuuren, E. J., Fedorowicz, Z. & Schoones, J. Interventions for female pattern hair loss. Cochrane Database Syst. Rev. 5, CD007628 (2016).

    Google Scholar 

  160. Bristol-Myers Squibb. Bristol-Myers Squibb Labeling VANIQA. U.S. Food & Drug Administration https://www.accessdata.fda.gov/drugsatfda_docs/label/2000/21145lbl.pdf (2000).

  161. Leyden, J., Stein-Gold, L. & Weiss, J. Why topical retinoids are mainstay of therapy for acne. Dermatol. Ther. 7, 293–304 (2017).

    Google Scholar 

  162. Gambineri, A. et al. Treatment with flutamide, metformin, and their combination added to a hypocaloric diet in overweight-obese women with polycystic ovary syndrome: a randomized, 12-month, placebo-controlled study. J. Clin. Endocrinol. Metab. 91, 3970–3980 (2006).

    CAS  PubMed  Google Scholar 

  163. Alpanes, M., Alvarez-Blasco, F., Fernandez-Duran, E., Luque-Ramirez, M. & Escobar-Morreale, H. F. Combined oral contraceptives plus spironolactone compared with metformin in women with polycystic ovary syndrome: a one-year randomized clinical trial. Eur. J. Endocrinol. 177, 399–408 (2017).

    CAS  PubMed  Google Scholar 

  164. Diamanti-Kandarakis, E., Baillargeon, J.P., Iuorno, M. J., Jakubowicz, D. J. & Nestler, J. E. A modern medical quandary: polycystic ovary syndrome, insulin resistance, and oral contraceptive pills. J. Clin. Endocrinol. Metab. 88, 1927–1932 (2003).

    CAS  PubMed  Google Scholar 

  165. Cinar, N., Harmanci, A., Demir, B. & Yildiz, B. O. Effect of an oral contraceptive on emotional distress, anxiety and depression of women with polycystic ovary syndrome: a prospective study. Hum. Reprod. 27, 1840–1845 (2012).

    CAS  PubMed  Google Scholar 

  166. Moran, L. J., Hutchison, S. K., Norman, R. J. & Teede, H. J. Lifestyle changes in women with polycystic ovary syndrome. Cochrane Database Syst. Rev. 2, CD007506 (2011).

    Google Scholar 

  167. Thomson, R. L. et al. Lifestyle management improves quality of life and depression in overweight and obese women with polycystic ovary syndrome. Fertil. Steril. 94, 1812–1816 (2010).

    PubMed  Google Scholar 

  168. Moran, L. J. et al. Dietary composition in the treatment of polycystic ovary syndrome: a systematic review to inform evidence-based guidelines. Hum. Reprod. Update 19, 432 (2013).

    PubMed  Google Scholar 

  169. Cho, L., Kilpatrick, E., Keevil, B., Coady, A. & Atkin, S. Effect of metformin, orlistat and pioglitazone treatment on mean insulin resistance and its biological variability in polycystic ovary syndrome. Clin. Endocrinol. 70, 233–237 (2008).

    Google Scholar 

  170. Jayagopal, V. et al. Orlistat is as beneficial as metformin in the treatment of polycystic ovarian syndrome. J. Clin. Endocrinol. Metab. 90, 729–733 (2005).

    CAS  PubMed  Google Scholar 

  171. Sathyapalan, T., Cho, L., Kilpatrick, E. S., Coady, A. M. & Atkin, S. L. A comparison between rimonabant and metformin in reducing biochemical hyperandrogenaemia and insulin resistance in patients with polycystic ovary syndrome: a randomised open labelled parallel study. Clin. Endocrinol. 69, 931–935 (2008).

    CAS  Google Scholar 

  172. Sabuncu, T., Harma, M., Nazligul, Y. & Kilic, F. Sibutramine has a positive effect on clinical and metabolic parameters in obese patients with polycystic ovary syndrome. Fertil. Steril. 80, 1199–1204 (2003).

    PubMed  Google Scholar 

  173. Panidis, D. et al. Lifestyle intervention and anti-obesity therapies in the polycystic ovary syndrome: impact on metabolism and fertility. Endocrine 44, 583–590 (2013).

    CAS  PubMed  Google Scholar 

  174. Cheung, B. M., Cheung, T. T. & Samaranayake, N. R. Safety of antiobesity drugs. Ther. Adv. Drug Saf. 4, 171–181 (2013).

    PubMed  PubMed Central  Google Scholar 

  175. Colquitt, J. L., Pickett, K., Loveman, E. & Frampton, G. K. Surgery for weight loss in adults. Cochrane Database Syst. Rev. 8, CD003641 (2014).

    Google Scholar 

  176. Fried, M. et al. Interdisciplinary European guidelines on metabolic and bariatric surgery. Obes. Surg. 24, 42–55 (2014).

    CAS  PubMed  Google Scholar 

  177. Naderpoor, N. et al. Metformin and lifestyle modification in polycystic ovary syndrome: systematic review and meta-analysis. Hum. Reprod. Update 21, 560–574 (2015).

    CAS  PubMed  Google Scholar 

  178. Glintborg, D. et al. Body composition is improved during 12 months' treatment with metformin alone or combined with oral contraceptives compared with treatment with oral contraceptives in polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 99, 2584–2591 (2014).

    CAS  PubMed  Google Scholar 

  179. Du, Q. et al. Effects of thiazolidinediones on polycystic ovary syndrome: a meta-analysis of randomized placebo-controlled trials. Adv. Ther. 29, 763–774 (2012).

    CAS  PubMed  Google Scholar 

  180. Wei, W. et al. A clinical study on the short-term effect of berberine in comparison to metformin on the metabolic characteristics of women with polycystic ovary syndrome. Eur. J. Endocrinol. 166, 99–105 (2012).

    CAS  PubMed  Google Scholar 

  181. Bevilacqua, A. & Bizzarri, M. Physiological role and clinical utility of inositols in polycystic ovary syndrome. Best Pract. Res. Clin. Obstet. Gynaecol. 37, 129–139 (2016).

    PubMed  Google Scholar 

  182. Niafar, M., Pourafkari, L., Porhomayon, J. & Nader, N. A systematic review of GLP-1 agonists on the metabolic syndrome in women with polycystic ovaries. Arch. Gynecol. Obstet. 293, 509–515 (2016).

    CAS  PubMed  Google Scholar 

  183. Magee, L. A. & Abdullah, S. The safety of antihypertensives for treatment of pregnancy hypertension. Expert Opin. Drug. Saf. 3, 25–38 (2004).

    CAS  PubMed  Google Scholar 

  184. Youngblom, E., Pariani, M. & Knowles, J. W. Familial Hypercholesterolemia. GeneReviews https://www.ncbi.nlm.nih.gov/books/NBK174884/ (updated 8 Dec 2016).

    Google Scholar 

  185. Ledger, W. L. & Atkin, S. Long-term consequences of polycystic ovary syndrome: RCOG Green-top Guideline No. 33. Royal College of Obstetricians and Gynaecologists https://www.rcog.org.uk/en/guidelines-research-services/guidelines/gtg33. (2014).

    Google Scholar 

  186. Azziz, R. et al. Polycystic ovary syndrome. Nat. Rev. Dis. Primers 2, 16057 (2016).

    PubMed  Google Scholar 

  187. Andersson, K. The levonorgestrel intrauterine system: more than a contraceptive. Eur. J. Contracept. Reprod. Health Care 6 (Suppl. 1), 15–22 (2001).

    CAS  PubMed  Google Scholar 

  188. Balen, A. H. et al. The management of anovulatory infertility in women with polycystic ovary syndrome: an analysis of the evidence to support the development of global WHO guidance. Hum. Reprod. Update 22, 687–708 (2016).

    PubMed  Google Scholar 

  189. Tang, T., Lord, J. M., Norman, R. J., Yasmin, E. & Balen, A. H. Insulin-sensitising drugs (metformin, rosiglitazone, pioglitazone, Dchiro-inositol) for women with polycystic ovary syndrome, oligo amenorrhoea and subfertility. Cochrane Database Syst. Rev. 5, CD003053 (2010).

    Google Scholar 

  190. Vahratian, A. & Smith, Y. R. Should access to fertility-related services be conditional on body mass index? Hum. Reprod. 24, 1532–1537 (2009).

    PubMed  PubMed Central  Google Scholar 

  191. Koning, A. M. et al. Complications and outcome of assisted reproduction technologies in overweight and obese women. Hum. Reprod. 27, 457–467 (2012).

    CAS  PubMed  Google Scholar 

  192. Milone, M. et al. Incidence of successful pregnancy after weight loss interventions in infertile women: a systematic review and meta-analysis of the literature. Obes. Surg. 26, 443–451 (2016).

    PubMed  Google Scholar 

  193. Guelinckx, I., Devlieger, R. & Vansant, G. Reproductive outcome after bariatric surgery: a critical review. Hum. Reprod. Update 15, 189–201 (2009).

    PubMed  Google Scholar 

Download references

Acknowledgements

This paper was supported by grants PI1501686 and PIE1600050 from the Instituto de Salud Carlos III, Spanish Ministry of Economy and Competitiveness. CIBERDEM and IRYCIS are also initiatives of the Instituto de Salud Carlos III, supported in part by Fondo Europeo de Desarrollo Regional FEDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héctor F. Escobar-Morreale.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escobar-Morreale, H. Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nat Rev Endocrinol 14, 270–284 (2018). https://doi.org/10.1038/nrendo.2018.24

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2018.24

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing