Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

'Omics' and endocrine-disrupting chemicals — new paths forward

Abstract

The emerging field of omics — large-scale data-rich biological measurements of the genome — provides new opportunities to advance and strengthen research into endocrine-disrupting chemicals (EDCs). Although some EDCs have been associated with adverse health effects in humans, our understanding of their impact remains incomplete. Progress in the field has been primarily limited by our inability to adequately estimate and characterize exposure and identify sensitive and measurable outcomes during windows of vulnerability. Evolving omics technologies in genomics, epigenomics and mitochondriomics have the potential to generate data that enhance exposure assessment to include the exposome — the totality of the lifetime exposure burden — and provide biology-based estimates of individual risks. Applying omics technologies to expand our knowledge of individual risk and susceptibility will augment biological data in the prediction of variability and response to disease, thereby further advancing EDC research. Together, refined exposure characterization and enhanced disease-risk prediction will help to bridge crucial gaps in EDC research and create opportunities to move the field towards a new vision — precision public health.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Challenges and opportunities of using omics in EDC research.
Figure 2: Role of omics in identifying molecular fingerprints in EDC research.

Similar content being viewed by others

References

  1. Nature Publishing Group. OmicsGateway. Nature http://www.nature.com/omics/about/index.html (2016).

  2. Attene-Ramos, M. S. et al. Profiling of the Tox21 chemical collection for mitochondrial function to identify compounds that acutely decrease mitochondrial membrane potential. Environ. Health Perspect. 123, 49–56 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Casati, L., Sendra, R., Sibilia, V. & Celotti, F. Endocrine disrupters: the new players able to affect the epigenome. Front. Cell Dev. Biol. 3, 37 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Baccarelli, A., Pesatori, A. C. & Bertazzi, P. A. Occupational and environmental agents as endocrine disruptors: experimental and human evidence. J. Endocrinol. Invest. 23, 771–781 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Diamanti-Kandarakis, E. et al. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr. Rev. 30, 293–342 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. National Institute of Environmental Health Sciences. Endocrine disruptors. NIH https://www.niehs.nih.gov/health/topics/agents/endocrine/ (2017).

  7. US Department of Health and Human Services. National Toxicology Program. NIH https://ntp.niehs.nih.gov/go/about (2016).

  8. Gore, A. C. et al. EDC-2: the Endocrine Society's second scientific statement on endocrine-disrupting chemicals. Endocr. Rev. 36, E1–E150 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Attina, T. M. et al. Exposure to endocrine-disrupting chemicals in the USA: a population-based disease burden and cost analysis. Lancet Diabetes Endocrinol. 4, 996–1003 (2016).

    Article  PubMed  Google Scholar 

  10. The White House. Fact sheet: President Obama's precision medicine initiative. Obama White House https://obamawhitehouse.archives.gov/the-press-office/2015/01/30/fact-sheet-president-obama-s-precision-medicine-initiative (2015).

  11. Centers for Disease Control and Prevention. Exposome and exposomics. CDC https://www.cdc.gov/niosh/topics/exposome/ (2014).

  12. National Institutes of Health. About the All of Us Research Program. NIH https://allofus.nih.gov/about/about-all-us-research-program (2016).

  13. Schug, T. T., Janesick, A., Blumberg, B. & Heindel, J. J. Endocrine disrupting chemicals and disease susceptibility. J. Steroid Biochem. Mol. Biol. 127, 204–215 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Kumar, V. et al. CYP 1A1 polymorphism and organochlorine pesticides levels in the etiology of prostate cancer. Chemosphere 81, 464–468 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Yoshida, R. et al. Association of cryptorchidism with a specific haplotype of the estrogen receptor alpha gene: implication for the susceptibility to estrogenic environmental endocrine disruptors. J. Clin. Endocrinol. Metab. 90, 4716–4721 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Bi, Y. et al. Diabetes genetic risk score modifies effect of bisphenol A exposure on deterioration in glucose metabolism. J. Clin. Endocrinol. Metab. 101, 143–150 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Martinez-Nava, G. A. et al. PPARγ and PPARGC1B polymorphisms modify the association between phthalate metabolites and breast cancer risk. Biomarkers 18, 493–501 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Hung, W. T., Lambert, G. H., Huang, P. W., Patterson, D. G. Jr & Guo, Y. L. Genetic susceptibility to dioxin-like chemicals' induction of cytochrome P4501A2 in the human adult linked to specific AhRR polymorphism. Chemosphere 90, 2358–2364 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Belinsky, S. A. et al. Aberrant promoter methylation in bronchial epithelium and sputum from current and former smokers. Cancer Res. 62, 2370–2377 (2002).

    CAS  PubMed  Google Scholar 

  20. Yauk, C. et al. Germ-line mutations, DNA damage, and global hypermethylation in mice exposed to particulate air pollution in an urban/industrial location. Proc. Natl Acad. Sci. USA 105, 605–610 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Christensen, B. C. et al. Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet. 5, e1000602 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Prins, G. S., Birch, L., Tang, W.-Y. & Ho, S.-M. Developmental estrogen exposures predispose to prostate carcinogenesis with aging. Reprod. Toxicol. 23, 374–382 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Anway, M. D., Cupp, A. S., Uzumcu, M. & Skinner, M. K. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308, 1466–1469 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Richards, E. Inherited epigenetic variation — revisiting soft inheritance. Nat. Rev. Genet. 7, 395–401 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Dolinoy, D. C., Weidman, J. R. & Jirtle, R. L. Epigenetic gene regulation: linking early developmental environment to adult disease. Reprod. Toxicol. 23, 297–307 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. US National Library of Medicine. Help me understand genetics. NIH https://ghr.nlm.nih.gov/primer (2017).

  27. Wu, M. C. et al. Powerful SNP-set analysis for case–control genome-wide association studies. Am. J. Hum. Genet. 86, 929–942 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Baccarelli, A. & Bollati, V. Epigenetics and environmental chemicals. Curr. Opin. Pediatr. 21, 243–251 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Brokken, L. J. & Giwercman, Y. L. Gene–environment interactions in male reproductive health: special reference to the aryl hydrocarbon receptor signaling pathway. Asian J. Androl. 16, 89–96 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Ottman, R. Gene–environment interaction: definitions and study designs. Prev. Med. 25, 764–770 (1996).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Dunaway, K. W. et al. Cumulative impact of polychlorinated biphenyl and large chromosomal duplications on DNA methylation, chromatin, and expression of autism candidate genes. Cell Rep. 17, 3035–3048 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Olden, K. & Wilson, S. Environmental health and genomics: visions and implications. Nat. Rev. Genet. 1, 149–153 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Alam, G. & Jones, B. C. Toxicogenetics: in search of host susceptibility to environmental toxicants. Front. Genet. 5, 327 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Lundberg Giwercman, Y. Androgen receptor genotype in humans and susceptibility to endocrine disruptors. Horm. Res. Paediatr. 86, 264–270 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Schwartz, D. A. Environmental genomics and human health. G. Ital. Med. Lav. Ergon. 33, 31–34 (2011).

    CAS  PubMed  Google Scholar 

  36. Baccarelli, A. Epigenetics glossary. Columbia.edu https://www.mailman.columbia.edu/research/laboratory-precision-environmental-biosciences/epigenetics-glossary (2016).

    Google Scholar 

  37. Rivera, C. M. & Ren, B. Mapping human epigenomes. Cell 155, 39–55 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Stirzaker, C., Taberlay, P. C., Statham, A. L. & Clark, S. J. Mining cancer methylomes: prospects and challenges. Trends Genet. 30, 75–84 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Illumina. Introduction to methylation array analysis. Illumina https://www.illumina.com/techniques/microarrays/methylation-arrays.html (2016).

  40. Dao, T., Hong, X., Wang, X. & Tang, W. Y. Aberrant 5′-CpG methylation of cord blood TNFα associated with maternal exposure to polybrominated diphenyl ethers. PLoS ONE 10, e0138815 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Lövkvist, C., Dodd, I. B., Sneppen, K. & Haerter, J. O. DNA methylation in human epigenomes depends on local topology of CpG sites. Nucleic Acids Res. 44, 5124–5132 (2016).

    Article  CAS  Google Scholar 

  42. Gorber, S. C., Schofield-Hurwitz, S., Hardt, J., Levasseur, G. & Tremblay, M. The accuracy of self-reported smoking: a systematic review of the relationship between self-reported and cotinine-assessed smoking status. Nicotine Tob. Res. 11, 12–24 (2009).

    Article  Google Scholar 

  43. Joubert, B. R. et al. 450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ. Health Perspect. 120, 1425–1431 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Joubert, B. R. et al. DNA methylation in newborns and maternal smoking in pregnancy: genome-wide consortium meta-analysis. Am. J. Hum. Genet. 98, 680–696 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Joehanes, R. et al. Epigenetic signatures of cigarette smoking. Circ. Cardiovasc. Genet. 9, 436–447 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Philibert, R. A., Beach, S. R. & Brody, G. H. Demethylation of the aryl hydrocarbon receptor repressor as a biomarker for nascent smokers. Epigenetics 7, 1331–1338 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Skinner, M. K., Bhandari, R. K., Haque, M. M. & Nilsson, E. E. Environmentally induced epigenetic transgenerational inheritance of altered SRY genomic binding during gonadal sex determination. Environ. Epigenet. 1, dvv004 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Skinner, M. K. Endocrine disruptors in 2015: epigenetic transgenerational inheritance. Nat. Rev. Endocrinol. 12, 68–70 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Heard, E. & Martienssen, R. A. Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157, 95–109 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Blake, G. E. & Watson, E. D. Unravelling the complex mechanisms of transgenerational epigenetic inheritance. Curr. Opin. Chem. Biol. 33, 101–107 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Guerrero-Bosagna, C. in The Epigenome and Developmental Origins of Health and Disease (ed. Rosenfeld, C. S.) 425–437 (Academic Press, 2016).

    Book  Google Scholar 

  52. Chen, J. et al. The mechanism of environmental endocrine disruptors (DEHP) induces epigenetic transgenerational inheritance of cryptorchidism. PLoS ONE 10, e0126403 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Manikkam, M., Haque, M. M., Guerrero-Bosagna, C., Nilsson, E. E. & Skinner, M. K. Pesticide methoxychlor promotes the epigenetic transgenerational inheritance of adult-onset disease through the female germline. PLoS ONE 9, e102091 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Guerrero-Bosagna, C. et al. Epigenetic transgenerational inheritance of vinclozolin induced mouse adult onset disease and associated sperm epigenome biomarkers. Reprod. Toxicol. 34, 694–707 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Adams, J. U. Essentials of Cell Biology (ed. O'Connor, C. M.) (NPG Education, 2010).

    Google Scholar 

  56. Yakes, F. M. & Van Houten, B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc. Natl Acad. Sci. USA 94, 514–519 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Guarnieri, M. & Balmes, J. R. Outdoor air pollution and asthma. Lancet 383, 1581–1592 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Pant, N. et al. Correlation of phthalate exposures with semen quality. Toxicol. Appl. Pharmacol. 231, 112–116 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Meyer, J. N. et al. Mitochondria as a target of environmental toxicants. Toxicol. Sci. 134, 1–17 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Gopalkrishnan, K., Padwal, V., D'Souza, S. & Shah, R. Severe asthenozoospermia: a structural and functional study. Int. J. Androl. 18 (Suppl. 1), 67–74 (1995).

    Article  PubMed  Google Scholar 

  61. Piasecka, M. & Kawiak, J. Sperm mitochondria of patients with normal sperm motility and with asthenozoospermia: morphological and functional study. Folia Histochem. Cytobiol. 41, 125–139 (2003).

    PubMed  Google Scholar 

  62. Byun, H. M. & Baccarelli, A. A. Environmental exposure and mitochondrial epigenetics: study design and analytical challenges. Hum. Genet. 133, 247–257 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Chen, S. C., Liao, T. L., Wei, Y. H., Tzeng, C. R. & Kao, S. H. Endocrine disruptor, dioxin (TCDD)-induced mitochondrial dysfunction and apoptosis in human trophoblast-like JAR cells. Mol. Hum. Reprod. 16, 361–372 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Kaur, K., Chauhan, V., Gu, F. & Chauhan, A. Bisphenol A induces oxidative stress and mitochondrial dysfunction in lymphoblasts from children with autism and unaffected siblings. Free Radic. Biol. Med. 76, 25–33 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Liu, B. et al. CpG methylation patterns of human mitochondrial DNA. Sci. Rep. 6, 23421 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Dawid, I. B. 5-Methylcytidylic acid: absence from mitochondrial DNA of frogs and HeLa cells. Science 184, 80–81 (1974).

    Article  CAS  PubMed  Google Scholar 

  67. Shock, L. S., Thakkar, P. V., Peterson, E. J., Moran, R. G. & Taylor, S. M. DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria. Proc. Natl Acad. Sci. USA 108, 3630–3635 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Byun, H. M. et al. Epigenetic effects of low perinatal doses of flame retardant BDE-47 on mitochondrial and nuclear genes in rat offspring. Toxicology 328, 152–159 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Crick, F. H. On protein synthesis. Symp. Soc. Exp. Biol. 12, 138–163 (1958).

    CAS  PubMed  Google Scholar 

  70. Sheehan, D. The potential of proteomics for providing new insights into environmental impacts on human health. Rev. Environ. Health 22, 175–194 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Vidyasagar, M. Identifying predictive features in drug response using machine learning: opportunities and challenges. Annu. Rev. Pharmacol. Toxicol. 55, 15–34 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115–R115 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Chen, B. H. et al. DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging (Albany NY) 8, 1844–1865 (2016).

    Article  CAS  Google Scholar 

  74. Kourou, K., Exarchos, T. P., Exarchos, K. P., Karamouzis, M. V. & Fotiadis, D. I. Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J. 13, 8–17 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Ornostay, A., Cowie, A. M., Hindle, M., Baker, C. J. & Martyniuk, C. J. Classifying chemical mode of action using gene networks and machine learning: a case study with the herbicide linuron. Comp. Biochem. Physiol. Part D Genomics Proteomics 8, 263–274 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Zhang, J. et al. In silico approach to identify potential thyroid hormone disruptors among currently known dust contaminants and their metabolites. Environ. Sci. Technol. 49, 10099–10107 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Kaye, J., Boddington, P., de Vries, J., Hawkins, N. & Melham, K. Ethical implications of the use of whole genome methods in medical research. Eur. J. Hum. Genet. 18, 398–403 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Strong, A. L. et al. Effects of the endocrine-disrupting chemical DDT on self-renewal and differentiation of human mesenchymal stem cells. Environ. Health Perspect. 123, 42–48 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Guyot, R., Chatonnet, F., Gillet, B., Hughes, S. & Flamant, F. Toxicogenomic analysis of the ability of brominated flame retardants TBBPA and BDE-209 to disrupt thyroid hormone signaling in neural cells. Toxicology 325, 125–132 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Pidsley, R. et al. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol. 17, 208 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Kurdyukov, S. & Bullock, M. DNA methylation analysis: choosing the right method. Biology (Basel) 5, E3 (2016).

    Google Scholar 

  83. Bannister, A. J. & Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 21, 381–395 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Wang, L., Jin, Q., Lee, J. E., Su, I. H. & Ge, K. Histone H3K27 methyltransferase Ezh2 represses Wnt genes to facilitate adipogenesis. Proc. Natl Acad. Sci. USA 107, 7317–7322 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Doherty, L. F., Bromer, J. G., Zhou, Y., Aldad, T. S. & Taylor, H. S. In utero exposure to diethylstilbestrol (DES) or bisphenol-A (BPA) increases EZH2 expression in the mammary gland: an epigenetic mechanism linking endocrine disruptors to breast cancer. Horm. Cancer 1, 146–155 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Bhan, A. et al. Histone methyltransferase EZH2 is transcriptionally induced by estradiol as well as estrogenic endocrine disruptors bisphenol-A and diethylstilbestrol. J. Mol. Biol. 426, 3426–3441 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Stel, J. & Legler, J. The role of epigenetics in the latent effects of early life exposure to obesogenic endocrine disrupting chemicals. Endocrinology 156, 3466–3472 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Wang, G. G., Allis, C. D. & Chi, P. Chromatin remodeling and cancer, part I: covalent histone modifications. Trends Mol. Med. 13, 363–372 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Rooney, J. P. et al. PCR based determination of mitochondrial DNA copy number in multiple species. Methods Mol. Biol. 1241, 23–38 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Furda, A., Santos, J. H., Meyer, J. N. & Van Houten, B. Quantitative PCR-based measurement of nuclear and mitochondrial DNA damage and repair in mammalian cells. Methods Mol. Biol. 1105, 419–437 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Kapoor, V., DeBry, R. W., Boccelli, D. L. & Wendell, D. Sequencing human mitochondrial hypervariable region II as a molecular fingerprint for environmental waters. Environ. Sci. Technol. 48, 10648–10655 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Cui, H. et al. Comprehensive next-generation sequence analyses of the entire mitochondrial genome reveal new insights into the molecular diagnosis of mitochondrial DNA disorders. Genet. Med. 15, 388–394 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the National Institute of Environmental Health Sciences (NIEHS) (NIEHS Center Grants ES000002 to C.M. and R.H., and P30ES009089 to A.A.B.; NIEHS Grants R01ES021733, R01ES021357, R21ES024841 and R21ES027087 to A.A.B., and R01ES009718 to R.H.), the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK; Grant R01DK100790 to A.A.B.) and the Centers for Disease Control and Prevention (CDC)/National Institute for Occupational Safety and Health (NIOSH) (CDC/NIOSH Training Grant T42OH008416 to R.M.M.).

Author information

Authors and Affiliations

Authors

Contributions

C.M. and R.M.M. researched data for the article and made substantial contributions to discussions of the content. C.M., R.M.M. and A.A.B. wrote the article. C.M., R.M.M., R.H. and A.A.B reviewed and/or edited the manuscript before submission. C.M. and R.M.M. contributed equally to all aspects of the manuscript.

Corresponding author

Correspondence to Andrea A. Baccarelli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

DNA methylome

The set of methylation modifications in an organism's genome in a particular cell.

DNA methyltransferases

A family of enzymes that catalyse the transfer of a methyl group to DNA.

Epigenomics

The study of heritable changes in gene expression that do not result from changes in actual gene sequences.

Exposome

An individual's lifetime exposure burden.

Gene–environment interactions

(GxEs). The biological interactions between the environment and the human genome.

Genomics

The study of an organism's genome or complete set of DNA, including all its genes.

Histone modifications

Post-translational modifications to histones — referred to as marks — that regulate gene expression.

Metabolomics

The study of the set of metabolites present within an organism, cell or tissue.

Mitochondrial membrane potential

(MMP). The total force driving protons into the mitochondria.

Mitochondriomics

The study of the properties of mitochondrial DNA.

Proteomics

The large-scale study of proteins.

Transcriptomics

The study of transcriptomes and their functions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Messerlian, C., Martinez, R., Hauser, R. et al. 'Omics' and endocrine-disrupting chemicals — new paths forward. Nat Rev Endocrinol 13, 740–748 (2017). https://doi.org/10.1038/nrendo.2017.81

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2017.81

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research