Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Comparative analysis of nutritional guidelines for vitamin D

Key Points

  • Modern humans can expect to live a long life and therefore need to make a balanced choice between exposure to carcinogenic UVB radiation and maintaining an optimal vitamin D status

  • Most countries and many scientific societies have prepared or updated guidelines for vitamin D supplementation, with recommended dosages higher than before

  • All infants need a daily supplement of vitamin D (preferably 400 international units (IU) per day) during at least their first year of life; however, full implementation of this guideline is problematic in many countries around the world

  • A large consensus exists that nearly all elderly individuals need a vitamin D supplement; however, disagreement endures with regard to dosage or optimal concentration of 25-hydroxyvitamin D, and implementation is problematic

  • All children or adults lacking sufficient exposure to sunlight need a vitamin D supplement; however, no agreement has been reached regarding dosage, and implementation is poor

  • The WHO, supported by its member states, should implement a strategy to eradicate vitamin D (and calcium) deficiency-associated rickets

Abstract

Vitamin D is essential for calcium and bone homeostasis. Humans are largely dependent on UVB-radiation-induced photosynthesis of vitamin D, as few foods contain vitamin D. However, the same radiation that produces vitamin D is also carcinogenic, albeit with a long lag time, and causes DNA damage. In view of the increasing life expectancy, avoiding excessive sun exposure is prudent. Several groups of people have a shortfall between their requirements for vitamin D and their combined endogenous synthesis and intake from natural foods, and therefore need vitamin D supplementation. Governments and scientific societies are regularly updating their recommendations for intake of vitamin D, especially for groups that should (infants) or prefer to (especially elderly individuals) avoid direct sunlight. An overview of such guidelines is presented in this Review. A fairly large consensus exists that all infants should receive 400 international units (IU) (10 μg) daily during their first year of life and that elderly individuals should have access to vitamin D supplementation (at recommended dosages varying from 400 IU to 800 IU daily in most governmental guidelines but at higher dosages in other guidelines). All guidelines unanimously agree that serum levels of 25-hydroxyvitamin D (25OHD) <25 nmol/l (10 ng/ml) should be avoided at all ages. Children and adults who have limited sun exposure should receive vitamin D supplementation, but the recommended doses vary widely (from 200 IU to 2,000 IU daily), in line with disagreement regarding the minimal desirable serum concentration of 25OHD (which varies from 25 nmol/l to >100 nmol/l).

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Recommended daily dose of vitamin D supplementation in children.
Figure 2: Recommended daily dose of vitamin D supplementation in adults.
Figure 3: Recommendations for interpreting serum levels of 25OHD.

References

  1. Bouillon, R. & Suda, T. Vitamin D: calcium and bone homeostasis during evolution. Bonekey Rep. 3, 480 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Bouillon, R. et al. Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr. Rev. 29, 726–776 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Rosen, C. J. et al. The nonskeletal effects of vitamin D: an Endocrine Society scientific statement. Endocr. Rev. 33, 456–492 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Bouillon, R. in Endocrinology: Adult and Pediatric (eds Jameson, J. L. & De Groot, L. J.) 1018–1037.e7 (Elsevier, 2016).

    Book  Google Scholar 

  5. Holick, M. F. Vitamin D: a millenium perspective. J. Cell. Biochem. 88, 296–307 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. O'Riordan, J. & Bijvoet, O. Rickets before the discovery of vitamin D. Bonekey Rep. 3, 478 (2014).

    PubMed  PubMed Central  Google Scholar 

  7. Whistler, D. De morbo puerili Anglorum, quem patrio idiomate indigenae vocant the Rickets (in Latin) (Lugduni Batavorum, 1645).

    Google Scholar 

  8. Hess, A. F. & Unger, L. J. Prophylactic therapy for rickets in a Negro community. JAMA 69, 1583 (1917).

    Article  Google Scholar 

  9. Gibbs, D. Rickets and the crippled child: an historical perspective. J. R. Soc. Med. 87, 729–732 (1994).

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Parsons, L. G. Some recent advances in our knowledge on rickets an allied diseases. Lancet 212, 485–489 (1928).

    Article  Google Scholar 

  11. Prentice, A. Vitamin D deficiency: a global perspective. Nutr. Rev. 66, S153–S164 (2008).

    Article  PubMed  Google Scholar 

  12. Schoenmakers, I. et al. Prevention and consequences of vitamin D deficiency in pregnant and lactating women and children: a symposium to prioritise vitamin D on the global agenda. J. Steroid Biochem. Mol. Biol. 164, 156–160 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Craig, T. A. et al. Research resource: whole transcriptome RNA sequencing detects multiple 1α, 25-dihydroxyvitamin D3-sensitive metabolic pathways in developing zebrafish. Mol. Endocrinol. 26, 1630–1642 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Pierens, S. L. & Fraser, D. R. The origin and metabolism of vitamin D in rainbow trout. J. Steroid Biochem. Mol. Biol. 145, 58–64 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Fell, G. L., Robinson, K. C., Mao, J., Woolf, C. J. & Fisher, D. E. Skin β-endorphin mediates addiction to UV light. Cell 157, 1527–1534 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Spiro, A. & Buttriss, J. L. Vitamin D: an overview of vitamin D status and intake in Europe. Nutr. Bull. 39, 322–350 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Holick, M. F. Resurrection of vitamin D deficiency and rickets. J. Clin. Invest. 116, 2062–2072 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Ala-Houhala, M. J. et al. Comparison of narrowband ultraviolet B exposure and oral vitamin D substitution on serum 25-hydroxyvitamin D concentration. Br. J. Dermatol. 167, 160–164 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Petersen, B. et al. Sun and ski holidays improve vitamin D status, but are associated with high levels of DNA damage. J. Invest. Dermatol. 134, 2806–2813 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Nordic Council of Ministers. Nordic nutrition recommendations 2012: integrating nutrition and physical activity. Norden.org https://www.norden.org/en/theme/nordic-nutrition-recommendation/nordic-nutrition-recommendations-2012 (2014).

  21. German Nutrition Society. New reference values for vitamin D. Ann. Nutr. Metab. 60, 241–246 (2012).

  22. Health Council of the Netherlands. Evaluation of the dietary refence values for vitamin D. Gezondheidsraad.nl https://www.gezondheidsraad.nl/en/task-and-procedure/areas-of-activity/healthy-nutrition/evaluation-of-the-dietary-reference-values (2012).

  23. Paxton, G. A. et al. Vitamin D and health in pregnancy, infants, children and adolescents in Australia and New Zealand: a position statement. Med. J. Aust. 198, 142–143 (2013).

    Article  PubMed  Google Scholar 

  24. Clemens, T. L., Adams, J. S., Henderson, S. L. & Holick, M. F. Increased skin pigment reduces the capacity of skin to synthesise vitamin D3 . Lancet 1, 74–76 (1982).

    Article  CAS  PubMed  Google Scholar 

  25. US Department of Health and Human Services. The Surgeon General's call to action to prevent skin cancer. Surgeongeneral.gov https://www.surgeongeneral.gov/library/calls/prevent-skin-cancer/ (2014).

  26. Wang, T. J. et al. Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet 376, 180–188 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Bouillon, R. Genetic and environmental determinants of vitamin D status. Lancet 376, 148–149 (2010).

    Article  PubMed  Google Scholar 

  28. Public Health England. SACN vitamin D and health. gov.uk https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/537616/SACN_Vitamin_D_and_Health_report.pdf(2016).

  29. Institute of Medicine. Dietary Reference Intakes for Calcium and Vitamin D (eds Ross, A. C., Taylor, C. L., Yaktine, A. L. & Del Valle, H. B.) (National Academies Press, 2011).

  30. Gallagher, J. C., Sai, A., Templin, T. II & Smith, L. Dose response to vitamin D supplementation in postmenopausal women: a randomized trial. Ann. Intern. Med. 156, 425–437 (2012).

    Article  PubMed  Google Scholar 

  31. Lips, P. et al. The effect of vitamin D supplementation on vitamin D status and parathyroid function in elderly subjects. J. Clin. Endocrinol. Metab. 67, 644–650 (1988).

    Article  CAS  PubMed  Google Scholar 

  32. Schmorl, G. Die pathologische Anatomie der rachitischen Knochenerkrankung mit Besonder Berücksichtingung iher Histologie und Pathogenes. Erg. Inn. Med. 4, 403 (in German) (1909).

    Google Scholar 

  33. Follis, R. H. Jr, Park, E. A. & Jackson, D. The prevalence of rickets at autopsy during the first two years of age. Bull. Johns Hopkins Hosp. 91, 480–497 (1952).

    PubMed  Google Scholar 

  34. Ward, L. M., Gaboury, I., Ladhani, M. & Zlotkin, S. Vitamin D-deficiency rickets among children in Canada. CMAJ 177, 161–166 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wheeler, B. J., Dickson, N. P., Houghton, L. A., Ward, L. M. & Taylor, B. J. Incidence and characteristics of vitamin D deficiency rickets in New Zealand children: a New Zealand Paediatric Surveillance Unit study. Aust. N. Z. J. Public Health 39, 380–383 (2015).

    Article  PubMed  Google Scholar 

  36. WHO Unit of Radiation and Environmental Health (RAD). Protecting children from ultraviolet radiation. WHO http://www.who.int/uv/resources/fact/en/fs261protectchild.pdf (2001).

  37. Paller, A. S. et al. New insights about infant and toddler skin: implications for sun protection. Pediatrics 128, 92–102 (2011).

    Article  PubMed  Google Scholar 

  38. Slusher, T. M. et al. Safety and efficacy of filtered sunlight in treatment of jaundice in African neonates. Pediatrics 133, e1568–e1574 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bouillon, R. Why modest but widespread improvement of the vitamin D status is the best strategy? Best Pract. Res. Clin. Endocrinol. Metab. 25, 693–702 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Bouillon, R., Vanassche, F. A., Vanbaelen, H., Heyns, W. & Demoor, P. Influence of the vitamin D-binding protein on the serum concentration of 1,25-dihydroxyvitamin D3 — significance of the free 1,25-dihydroxyvitamin D3 concentration. J. Clin. Invest. 67, 589–596 (1981).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Hollis, B. W. et al. Maternal versus infant vitamin D supplementation during lactation: a randomized controlled trial. Pediatrics 136, 625–634 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kovacs, C. S. Maternal mineral and bone metabolism during pregnancy, lactation, and post-weaning recovery. Physiol. Rev. 96, 449–547 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Beser, E. & Cakmakci, T. Factors affecting the morbidity of vitamin D deficiency rickets and primary protection. East Afr. Med. J. 71, 358–362 (1994).

    CAS  PubMed  Google Scholar 

  44. Park, E. A. The therapy of rickets. JAMA 115, 370–379 (1940).

    Article  Google Scholar 

  45. Lightwood, R. Idiopathic hypercalcaemia with failure to thrive: nephrocalcinosis. Proc. R. Soc. Med. 45, 401–401 (1952).

    Google Scholar 

  46. Schlingmann, K. P. et al. Mutations in CYP24A1 and idiopathic infantile hypercalcemia. N. Engl. J. Med. 365, 410–421 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Vidailhet, M. et al. Vitamin D: still a topical matter in children and adolescents. A position paper by the Committee on Nutrition of the French Society of Paediatrics. Arch. Pediatr. 19, 316–328 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Cools, M. et al. Calcium and bone homeostasis in heterozygous carriers of CYP24A1 mutations: a cross-sectional study. Bone 81, 89–96 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Abrams, S. A. & Committee on Nutrition. Calcium and vitamin d requirements of enterally fed preterm infants. Pediatrics 131, e1676–e1683 (2013).

    Article  PubMed  Google Scholar 

  50. Agostoni, C. et al. Enteral nutrient supply for preterm infants: commentary from the European Society of Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 50, 85–91 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Misra, M. et al. Vitamin D deficiency in children and its management: review of current knowledge and recommendations. Pediatrics 122, 398–417 (2008).

    Article  PubMed  Google Scholar 

  52. Tergestina, M., Rebekah, G., Job, V., Simon, A. & Thomas, N. A randomized double-blind controlled trial comparing two regimens of vitamin D supplementation in preterm neonates. J. Perinatol. 36, 763–767 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Winzenberg, T., Powell, S., Shaw, K. A. & Jones, G. Effects of vitamin D supplementation on bone density in healthy children: systematic review and meta-analysis. BMJ 342, c7254 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lee, Y. A. et al. Adequate vitamin D status and adiposity contribute to bone health in peripubertal nonobese children. J. Bone Miner. Metab. 31, 337–345 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Wagner, C. L. & Greer, F. R. Prevention of rickets and vitamin D deficiency in infants, children, and adolescents. Pediatrics 122, 1142–1152 (2008).

    Article  PubMed  Google Scholar 

  56. American Academy of Pediatrics Committee on Nutrition. The prophylactic requirement and the toxicity of vitamin D. Pediatrics 31, 512–525 (1963).

  57. Braegger, C. et al. Vitamin D in the healthy European paediatric population. J. Pediatr. Gastroenterol. Nutr. 56, 692–701 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Munns, C. F. et al. Global consensus recommendations on prevention and management of nutritional rickets. J. Clin. Endocrinol. Metab. 101, 394–415 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Munns, C. F. et al. Global consensus recommendations on prevention and management of nutritional rickets. Horm. Res. Paediatr. 85, 83–106 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Saggese, G. et al. Vitamin D in childhood and adolescence: an expert position statement. Eur. J. Pediatr. 174, 565–576 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. European Food Safety Authority. Draft scientific opinion. Scientific opinion on dietary reference values for vitamin D. EFSA https://www.efsa.europa.eu/sites/default/files/consultation/160321.pdf (2016).

  62. Bouillon, R. et al. Optimal vitamin D status: a critical analysis on the basis of evidence-based medicine. J. Clin. Endocrinol. Metab. 98, E1283–E1304 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Need, A. G. et al. Vitamin D metabolites and calcium absorption in severe vitamin D deficiency. J. Bone Miner. Res. 23, 1859–1863 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Binkley, N., Sempos, C. T. & Vitamin D Standardization Program (VDSP). Standardizing vitamin D assays: the way forward. J. Bone Miner. Res. 29, 1709–1714 (2014).

    Article  PubMed  CAS  Google Scholar 

  65. Gallo, S. et al. Effect of different dosages of oral vitamin D supplementation on vitamin D status in healthy, breastfed infants: a randomized trial. JAMA 309, 1785–1792 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Jeans, P. C. & Stearns, G. Effect of vitamin D on linear growth in infancy: II. Effect of intakes above 1,800 U.S.P. units daily. J. Pediatr. 13, 730–740 (1938).

    Article  CAS  Google Scholar 

  67. Mittal, H. et al. 300,000 IU or 600,000 IU of oral vitamin D3 for treatment of nutritional rickets: a randomized controlled trial. Indian Pediatr. 51, 265–272 (2014).

    Article  PubMed  Google Scholar 

  68. Markestad, T. et al. Intermittent high-dose vitamin D prophylaxis during infancy: effect on vitamin D metabolites, calcium, and phosphorus. Am. J. Clin. Nutr. 46, 652–658 (1987).

    Article  CAS  PubMed  Google Scholar 

  69. Holick, M. F. et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 96, 1911–1930 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Chawes, B. L. et al. Effect of vitamin D3 supplementation during pregnancy on risk of persistent wheeze in the offspring: a randomized clinical trial. JAMA 315, 353–361 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Litonjua, A. A. et al. Effect of prenatal supplementation with vitamin D on asthma or recurrent wheezing in offspring by age 3 years: the VDAART randomized clinical trial. JAMA 315, 362–370 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Munger, K. L. et al. Vitamin D status during pregnancy and risk of multiple sclerosis in offspring of women in the Finnish maternity cohort. JAMA Neurol. 73, 515–519 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  73. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific opinion on the tolerable upper intake level of vitamin D. EFSA J. 10, 2813 (2012).

  74. Hoge Gezondheidsraad. Voedingsaanbevelingen voor België. VIGEZ http://www.vigez.be/files/voedingenbeweging/publicatie_hoge_gezondheidsraad_2009.pdf (in Dutch) (2009).

  75. Ceccaldi, P. F. et al. French prenatal vitamin D recommended supplementation: enough or not? J. Gynecol. Obstet. Biol. Reprod. (Paris) 46, 35–41 (2017).

    Article  Google Scholar 

  76. Dijkstra, S. H. et al. High prevalence of vitamin D deficiency in newborn infants of high-risk mothers. Arch. Dis. Child. 92, 750–753 (2007).

    PubMed  PubMed Central  CAS  Google Scholar 

  77. Abbasian, M. et al. Vitamin D deficiency in pregnant women and their neonates. Glob. J. Health Sci. 8, 54008 (2016).

    Article  PubMed  Google Scholar 

  78. Tabesh, M., Salehi-Abargouei, A., Tabesh, M. & Esmaillzadeh, A. Maternal vitamin D status and risk of pre-eclampsia: a systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 98, 3165–3173 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Cooper, C. et al. Maternal gestational vitamin D supplementation and offspring bone health (MAVIDOS): a multicentre, double-blind, randomised placebo-controlled trial. Lancet Diabetes Endocrinol. 4, 393–402 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. De-Regil, L. M., Palacios, C., Lombardo, L. K. & Pena-Rosas, J. P. Vitamin D supplementation for women during pregnancy. Cochrane Database Syst. Rev. 1, CD008873 (2016).

    Google Scholar 

  81. Hollis, B. W. & Wagner, C. L. Vitamin D and pregnancy: skeletal effects, nonskeletal effects, and birth outcomes. Calcif. Tissue Int. 92, 128–139 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Wagner, C. L. et al. Post-hoc analysis of vitamin D status and reduced risk of preterm birth in two vitamin D pregnancy cohorts compared with South Carolina March of Dimes 2009–2011 rates. J. Steroid Biochem. Mol. Biol. 155, 245–251 (2016).

    Article  CAS  PubMed  Google Scholar 

  83. von Mutius, E. & Martinez, F. D. Inconclusive results of randomized trials of prenatal vitamin D for asthma prevention in offspring: curbing the enthusiasm. JAMA 315, 347–348 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. World Health Organization. Guideline: vitamin D supplementation in pregnant women. WHO http://apps.who.int/iris/bitstream/10665/85313/1/9789241504935_eng.pdf (2012).

  85. Hilger, J. et al. A systematic review of vitamin D status in populations worldwide. Br. J. Nutr. 111, 23–45 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Mithal, A. et al. Global vitamin D status and determinants of hypovitaminosis D. Osteoporos. Int. 20, 1807–1820 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Orwoll, E. et al. Vitamin D deficiency in older men. J. Clin. Endocrinol. Metab. 94, 1214–1222 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Lee, D. M. et al. Association between 25-hydroxyvitamin D levels and cognitive performance in middle-aged and older European men. J. Neurol. Neurosurg. Psychiatry 80, 722–729 (2009).

    Article  PubMed  Google Scholar 

  89. Arabi, A., El Rassi, R. & El-Hajj Fuleihan, G. Hypovitaminosis D in developing countries—prevalence, risk factors and outcomes. Nat. Rev. Endocrinol. 6, 550–561 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Schleicher, R. L. et al. National estimates of serum total 25-hydroxyvitamin D and metabolite concentrations measured by liquid chromatography–tandem mass spectrometry in the US population during 2007–2010. J. Nutr. 146, 1051–1061 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Luxwolda, M. F. et al. Vitamin D status indicators in indigenous populations in East Africa. Eur. J. Nutr. 52, 1115–1125 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Durazo-Arvizu, R. A. et al. 25-hydroxyvitamin D in African-origin populations at varying latitudes challenges the construct of a physiologic norm. Am. J. Clin. Nutr. 100, 908–914 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Holick, M. F. et al. Guidelines for preventing and treating vitamin D deficiency and insufficiency revisited. J. Clin. Endocrinol. Metab. 97, 1153–1158 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Baggerly, C. A. et al. Sunlight and vitamin D: necessary for public health. J. Am. Coll. Nutr. 34, 359–365 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Holick, M. F. Biological effects of sunlight, ultraviolet radiation, visible light, infrared radiation and vitamin D for health. Anticancer Res. 36, 1345–1356 (2016).

    CAS  PubMed  Google Scholar 

  96. Bhan, A., Rao, A. D. & Rao, D. S. Osteomalacia as a result of vitamin D deficiency. Endocrinol. Metab. Clin. North Am. 39, 321–331 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Compston, J. E., Vedi, S. & Croucher, P. I. Low prevalence of osteomalacia in elderly patients with hip fracture. Age Ageing 20, 132–134 (1991).

    Article  CAS  PubMed  Google Scholar 

  98. Herm, F. B., Killguss, H. & Stewart, A. G. Osteomalacia in Hazara District, Pakistan. Trop. Doct. 35, 8–10 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Priemel, M. et al. Bone mineralization defects and vitamin D deficiency: histomorphometric analysis of iliac crest bone biopsies and circulating 25-hydroxyvitamin D in 675 patients. J. Bone Miner. Res. 25, 305–312 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Rosen, C. J. et al. IOM committee members respond to Endocrine Society vitamin D guideline. J. Clin. Endocrinol. Metab. 97, 1146–1152 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Cosman, F. et al. Clinician's guide to prevention and treatment of osteoporosis. Osteoporos. Int. 25, 2359–2381 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. van der Wielen, R. P. et al. Serum vitamin D concentrations among elderly people in Europe. Lancet 346, 207–210 (1995).

    Article  CAS  PubMed  Google Scholar 

  103. Cashman, K. D. et al. Vitamin D deficiency in Europe: pandemic? Am. J. Clin. Nutr. 103, 1033–1044 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Hill, T. R. et al. Serum 25-hydroxyvitamin D concentration and its determinants in the very old: the Newcastle 85+ Study. Osteoporos. Int. 27, 1199–1208 (2016).

    Article  CAS  PubMed  Google Scholar 

  105. Quesada, J. M., Jans, I., Benito, P., Jimenez, J. A. & Bouillon, R. Vitamin D status of elderly people in Spain. Age Ageing 18, 392–397 (1989).

    Article  CAS  PubMed  Google Scholar 

  106. Clemens, T. L., Zhou, X. Y., Myles, M., Endres, D. & Lindsay, R. Serum vitamin D2 and vitamin D3 metabolite concentrations and absorption of vitamin D2 in elderly subjects. J. Clin. Endocrinol. Metab. 63, 656–660 (1986).

    Article  CAS  PubMed  Google Scholar 

  107. MacLaughlin, J. & Holick, M. F. Aging decreases the capacity of human skin to produce vitamin D3 . J. Clin. Invest. 76, 1536–1538 (1985).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Bischoff-Ferrari, H. A. et al. A pooled analysis of vitamin D dose requirements for fracture prevention. N. Engl. J. Med. 367, 40–49 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Boonen, S. et al. Need for additional calcium to reduce the risk of hip fracture with vitamin D supplementation: evidence from a comparative meta-analysis of randomized controlled trials. J. Clin. Endocrinol. Metab. 92, 1415–1423 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Weaver, C. M. et al. Calcium plus vitamin D supplementation and risk of fractures: an updated meta-analysis from the National Osteoporosis Foundation. Osteoporos. Int. 27, 367–376 (2016).

    Article  CAS  PubMed  Google Scholar 

  111. Bolland, M. J., Grey, A., Gamble, G. D. & Reid, I. R. The effect of vitamin D supplementation on skeletal, vascular, or cancer outcomes: a trial sequential meta-analysis. Lancet Diabetes Endocrinol. 2, 307–320 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Sanders, K. M. et al. Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. JAMA 303, 1815–1822 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Sanders, K. M. & Seibel, M. J. Therapy: new findings on vitamin D3 supplementation and falls — when more is perhaps not better. Nat. Rev. Endocrinol. 12, 190–191 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Smith, H. et al. Effect of annual intramuscular vitamin D on fracture risk in elderly men and women — a population-based, randomized, double-blind, placebo-controlled trial. Rheumatology (Oxford) 46, 1852–1857 (2007).

    Article  CAS  Google Scholar 

  115. Bischoff-Ferrari, H. A. et al. Fall prevention with supplemental and active forms of vitamin D: a meta-analysis of randomised controlled trials. BMJ 339, b3692 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Bischoff-Ferrari, H. A. et al. Monthly high-dose vitamin D treatment for the prevention of functional decline: a randomized clinical trial. JAMA Intern. Med. 176, 175–183 (2016).

    Article  PubMed  Google Scholar 

  117. Rosen, C. J. & Taylor, C. L. Common misconceptions about vitamin D — implications for clinicians. Nat. Rev. Endocrinol. 9, 434–438 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Abrams, S. A., Coss-Bu, J. A. & Tiosano, D. Vitamin D: effects on childhood health and disease. Nat. Rev. Endocrinol. 9, 162–170 (2013).

    Article  CAS  PubMed  Google Scholar 

  119. Pradhan, A. D. & Manson, J. E. Update on the Vitamin D and OmegA-3 trial (VITAL). J. Steroid Biochem. Mol. Biol. 155, 252–256 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Rautiainen, S., Manson, J. E., Lichtenstein, A. H. & Sesso, H. D. Dietary supplements and disease prevention — a global overview. Nat. Rev. Endocrinol. 12, 407–420 (2016).

    Article  CAS  PubMed  Google Scholar 

  121. Fuleihan Gel, H. et al. Serum 25-hydroxyvitamin D levels: variability, knowledge gaps, and the concept of a desirable range. J. Bone Miner. Res. 30, 1119–1133 (2015).

    Article  CAS  Google Scholar 

  122. Norman, A. W., Bouillon, R., Whiting, S. J., Vieth, R. & Lips, P. 13th Workshop consensus for vitamin D nutritional guidelines. J. Steroid Biochem. Mol. Biol. 103, 204–205 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Standing Committee of European Doctors. Vitamin D nutritional policy in Europe. CPME http://doc.cpme.eu:591/adopted/2009/CPME_AD_Brd_241009_179_final_EN.pdf (2009).

  124. Dawson-Hughes, B. et al. IOF position statement: vitamin D recommendations for older adults. Osteoporos. Int. 21, 1151–1154 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Rizzoli, R. et al. The role of dietary protein and vitamin D in maintaining musculoskeletal health in postmenopausal women: a consensus statement from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Maturitas 79, 122–132 (2014).

    Article  CAS  PubMed  Google Scholar 

  126. Perez-Lopez, F. R. et al. EMAS position statement: vitamin D and postmenopausal health. Maturitas 71, 83–88 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. American Geriatrics Society Workgroup on Vitamin D Supplementation for Older Adults. Recommendations abstracted from the American Geriatrics Society Consensus Statement on vitamin D for prevention of falls and their consequences. J. Am. Geriatr. Soc. 62, 147–152 (2014).

  128. Gallagher, J. C., Peacock, M., Yalamanchili, V. & Smith, L. M. Effects of vitamin D supplementation in older African American women. J. Clin. Endocrinol. Metab. 98, 1137–1146 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Ng, K. et al. Dose response to vitamin D supplementation in African Americans: results of a 4-arm, randomized, placebo-controlled trial. Am. J. Clin. Nutr. 99, 587–598 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Laurent, M. R., Gielen, E., Pauwels, S., Vanderschueren, D. & Bouillon, R. Hypervitaminosis D associated with tanning bed use: a case report. Ann. Intern. Med. 166, 155–156 (2017).

    Article  PubMed  Google Scholar 

  131. Fraser, D. The relation between infantile hypercalcemia and vitamin D — public health implications in North America. Pediatrics 40, 1050–1061 (1967).

    CAS  PubMed  Google Scholar 

  132. Fraser, D., Kidd, B. S., Kooh, S. W. & Paunier, L. A new look at infantile hypercalcemia. Pediatr. Clin. North Am. 13, 503–525 (1966).

    Article  Google Scholar 

  133. Skversky, A. L., Kumar, J., Abramowitz, M. K., Kaskel, F. J. & Melamed, M. L. Association of glucocorticoid use and low 25-hydroxyvitamin D levels: results from the National Health and Nutrition Examination Survey (NHANES): 2001–2006. J. Clin. Endocrinol. Metab. 96, 3838–3845 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Schleicher, R. L. et al. The vitamin D status of the US population from 1988 to 2010 using standardized serum concentrations of 25-hydroxyvitamin D shows recent modest increases. Am. J. Clin. Nutr. 104, 454–461 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Manson, J. E., Brannon, P. M., Rosen, C. J. & Taylor, C. L. Vitamin D deficiency — is there really a pandemic? N. Engl. J. Med. 375, 1817–1820 (2016).

    Article  CAS  PubMed  Google Scholar 

  136. National Institute of Nutrition. Dietary guidelines for Indians — a manual. Ninindia.org http://ninindia.org/dietaryguidelinesforninwebsite.pdf (2011).

  137. Tsuboyama-Kasaoka, N. et al. Dietary intake of nutrients with adequate intake values in the dietary reference intakes for Japanese. J. Nutr. Sci. Vitaminol. 59, 584–595 (2013).

    Article  CAS  PubMed  Google Scholar 

  138. Okazaki, R. et al. Assessment criteria for vitamin D deficiency/insufficiency in Japan: proposal by an expert panel supported by the Research Program of Intractable Diseases, Ministry of Health, Labour and Welfare, Japan, the Japanese Society for Bone and Mineral Research and the Japan Endocrine Society [Opinion]. J. Bone Miner. Metab. 35, 1–5 (2017).

    Article  CAS  PubMed  Google Scholar 

  139. Colditz, G. A. Overview of the epidemiology methods and applications: strengths and limitations of observational study designs. Crit. Rev. Food Sci. Nutr. 50 (Suppl. 1), 10–12 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Giovannucci, E. Epidemiology of vitamin D and colorectal cancer: casual or causal link? J. Steroid Biochem. Mol. Biol. 121, 349–354 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Martinez, M. E., Marshall, J. R. & Giovannucci, E. Diet and cancer prevention: the roles of observation and experimentation. Nat. Rev. Cancer 8, 694–703 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. Perrine, C. G., Sharma, A. J., Jefferds, M. E., Serdula, M. K. & Scanlon, K. S. Adherence to vitamin D recommendations among US infants. Pediatrics 125, 627–632 (2010).

    Article  PubMed  Google Scholar 

  143. Cavelaars, A. E. et al. Nutri-RecQuest: a web-based search engine on current micronutrient recommendations. Eur. J. Clin. Nutr. 64 (Suppl. 2), S43–S47 (2010).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks E. Van Herck for expert assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Bouillon.

Ethics declarations

Competing interests

The author has received small lectures fees from Amgen, Chugai, NovoNordisk and Teijin, and is co-inventor and co-owner of the Katholieke Universiteit (KU) Leuven (Belgium) patent on vitamin D analogues, which is licensed to Hybrigenix (France).

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouillon, R. Comparative analysis of nutritional guidelines for vitamin D. Nat Rev Endocrinol 13, 466–479 (2017). https://doi.org/10.1038/nrendo.2017.31

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2017.31

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing