Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular profiling of thyroid nodule fine-needle aspiration cytology

Key Points

  • Thyroid fine-needle aspiration cytology has the inherent limitation of yielding 20–30% indeterminate results, and thyroid surgery is required for a definitive diagnosis in these cases; however, this limitation could be overcome through molecular diagnostics

  • 'Rule-out' malignancy approaches aim to identify benign nodules that have an indeterminate cytology and to reduce the overtreatment of benign nodules

  • 'Rule-in' malignancy approaches aim to identify malignant nodules that have an indeterminate cytology and to optimize surgical planning

  • MicroRNA classifiers are expected to enable the classification of malignancy in mutation-negative malignant nodules as part of the rule-in approach and could provide additional markers as part of a two-step diagnostic approach

Abstract

The differential diagnosis and malignancy risk stratification of thyroid nodules requires multidisciplinary expertise and knowledge of both local ultrasonography practices and the local malignancy rates for a given fine-needle aspiration (FNA) result. Even in such a multidisciplinary setting, FNA cytology has the inherent limitation that indeterminate cytology results cannot distinguish between follicular adenomas, follicular thyroid carcinomas or follicular variant papillary thyroid carcinomas. Accumulating evidence suggests that this limitation can be overcome by using molecular diagnostic approaches. In this Review, we present the advantages and disadvantages of the different molecular diagnostic methodologies, which can be divided into two approaches: those that 'rule out' malignancy (to reduce the overtreatment of benign nodules) and those that 'rule in' malignancy (to optimize surgical planning). We identify microRNA classifiers as potential additional markers for use in a two-step diagnostic approach, consider the potential implications of the reclassification of noninvasive encapsulated follicular variant papillary thyroid carcinomas to noninvasive follicular thyroid neoplasms with papillary-like nuclear features and discuss the cost-effectiveness of molecular testing. Molecular FNA diagnostics is an important complementary addition to FNA cytology that could substantially reduce unnecessary surgery and better define the need for appropriate surgery in patients who have thyroid nodules with indeterminate FNA cytology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ruling in and ruling out malignancy.

Similar content being viewed by others

References

  1. Gharib, H. et al. American Association of Clinical Endocrinologists, American College of Endocrinology, and Associazione Medici Endocrinologi medical guidelines for clinical practice for the diagnosis and management of thyroid nodules. Endocr. Pract. 22, 622–639 (2016).

    Article  PubMed  Google Scholar 

  2. Haugen, B. R. et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 26, 1–133 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Russ, G. et al. Prospective evaluation of thyroid imaging reporting and data system on 4550 nodules with and without elastography. Eur. J. Endocrinol. 168, 649–655 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Cibas, E. S. & Ali, S. Z. The Bethesda System for Reporting Thyroid Cytopathology. Am. J. Clin. Pathol. 132, 658–665 (2009).

    Article  PubMed  Google Scholar 

  5. Bongiovanni, M., Spitale, A., Faquin, W. C., Mazzucchelli, L. & Baloch, Z. W. The Bethesda System for Reporting Thyroid Cytopathology: a meta-analysis. Acta Cytol. 56, 333–339 (2012).

    Article  PubMed  Google Scholar 

  6. Lewis, C. M., Chang, K. P., Pitman, M., Faquin, W. C. & Randolph, G. W. Thyroid fine-needle aspiration biopsy: variability in reporting. Thyroid 19, 717–723 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, C. C. et al. A large multicenter correlation study of thyroid nodule cytopathology and histopathology. Thyroid 21, 243–251 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cibas, E. S. et al. A prospective assessment defining the limitations of thyroid nodule pathologic evaluation. Ann. Intern. Med. 159, 325–332 (2013).

    Article  PubMed  Google Scholar 

  9. Wienhold, R., Scholz, M., Adler, J. R., Nster, G. & Paschke, R. The management of thyroid nodules: a retrospective analysis of health insurance data. Dtsch. Arztebl. Int. 110, 827–834 (2013).

    PubMed  PubMed Central  Google Scholar 

  10. van den Bruel, A. et al. Regional variation in thyroid cancer incidence in Belgium is associated with variation in thyroid imaging and thyroid disease management. J. Clin. Endocrinol. Metab. 98, 4063–4071 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. l'Assurance Maladie — Caisse Nationale. Pertinence des soins: une analyse de la pratique des thyroidectomies chez l'adulte. Ameli http://www.ameli.fr/fileadmin/user_upload/documents/23102013_DP_thyroidectomies.pdf (in French) (2013).

  12. Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell 159, 676–690 (2014).

  13. Yoo, S. K. et al. Comprehensive analysis of the transcriptional and mutational landscape of follicular and papillary thyroid cancers. PLoS Genet. 12, e1006239 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Aragon, H. P. et al. The impact of molecular testing on the surgical management of patients with thyroid nodules. Ann. Surg. Oncol. 21, 1862–1869 (2014).

    Article  Google Scholar 

  15. Nikiforov, Y. E. et al. Highly accurate diagnosis of cancer in thyroid nodules with follicular neoplasm/suspicious for a follicular neoplasm cytology by ThyroSeq v2 next-generation sequencing assay. Cancer 120, 3627–3634 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Nikiforov, Y. E. et al. Impact of the multi-gene ThyroSeq next-generation sequencing assay on cancer diagnosis in thyroid nodules with atypia of undetermined significance/follicular lesion of undetermined significance cytology. Thyroid 25, 1217–1223 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Walsh, P. S. et al. Analytical performance verification of a molecular diagnostic for cytology-indeterminate thyroid nodules. J. Clin. Endocrinol. Metab. 97, E2297–E2306 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Chudova, D. et al. Molecular classification of thyroid nodules using high-dimensionality genomic data. J. Clin. Endocrinol. Metab. 95, 5296–5304 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Alexander, E. K. et al. Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N. Engl. J. Med. 367, 705–715 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Marti, J. L. et al. Wide inter-institutional variation in performance of a molecular classifier for indeterminate thyroid nodules. Ann. Surg. Oncol. 22, 3996–4001 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  21. McIver, B. et al. An independent study of a gene expression classifier (Afirma) in the evaluation of cytologically indeterminate thyroid nodules. J. Clin. Endocrinol. Metab. 99, 4069–4077 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Alexander, E. K. et al. Multicenter clinical experience with the Afirma gene expression classifier. J. Clin. Endocrinol. Metab. 99, 119–125 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Li, H., Robinson, K. A., Anton, B., Saldanha, I. J. & Ladenson, P. W. Cost-effectiveness of a novel molecular test for cytologically indeterminate thyroid nodules. J. Clin. Endocrinol. Metab. 96, E1719–E1726 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Najafzadeh, M., Marra, C. A., Lynd, L. D. & Wiseman, S. M. Cost-effectiveness of using a molecular diagnostic test to improve preoperative diagnosis of thyroid cancer. Value Health 15, 1005–1013 (2012).

    Article  PubMed  Google Scholar 

  25. McIver, B. Evaluation of the thyroid nodule. Oral Oncol. 49, 645–653 (2013).

    Article  PubMed  Google Scholar 

  26. Vanderlaan, P. A., Krane, J. F. & Cibas, E. S. The frequency of 'atypia of undetermined significance' interpretations for thyroid fine-needle aspirations is negatively correlated with histologically proven malignant outcomes. Acta Cytol. 55, 512–517 (2011).

    Article  PubMed  Google Scholar 

  27. Tuttle, R. M. et al. Thyroid carcinoma. J. Natl Compr. Canc. Netw. 8, 1228–1274 (2010).

    Article  PubMed  Google Scholar 

  28. Oertel, Y. C., Miyahara-Felipe, L., Mendoza, M. G. & Yu, K. Value of repeated fine needle aspirations of the thyroid: an analysis of over ten thousand FNAs. Thyroid 17, 1061–1066 (2007).

    Article  PubMed  Google Scholar 

  29. Kuma, K. et al. Outcome of long standing solitary thyroid nodules. World J. Surg. 16, 583–587 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Lim, D. J. et al. Natural course of cytologically benign thyroid nodules: observation of ultrasonographic changes. Endocrinol. Metab. (Seoul.) 28, 110–118 (2013).

    Article  Google Scholar 

  31. Nou, E. et al. Determination of the optimal time interval for repeat evaluation after a benign thyroid nodule aspiration. J. Clin. Endocrinol. Metab. 99, 510–516 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Cantara, S. et al. Impact of proto-oncogene mutation detection in cytological specimens from thyroid nodules improves the diagnostic accuracy of cytology. J. Clin. Endocrinol. Metab. 95, 1365–1369 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Moses, W. et al. Molecular testing for somatic mutations improves the accuracy of thyroid fine-needle aspiration biopsy. World J. Surg. 34, 2589–2594 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Nikiforov, Y. E. et al. Molecular testing for mutations in improving the fine needle aspiration diagnosis of thyroid nodules. J. Clin. Endocrinol. Metab. 94, 2092–2098 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Ohori, N. P. et al. Contribution of molecular testing to thyroid fine-needle aspiration cytology of “follicular lesion of undetermined significance/atypia of undetermined significance”. Cancer Cytopathol. 118, 17–23 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Ferraz, C., Eszlinger, M. & Paschke, R. Current state and future perspective of molecular diagnosis of fine-needle aspiration biopsy of thyroid nodules. J. Clin. Endocrinol. Metab. 96, 2016–2026 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Nishino, M. Molecular cytopathology for thyroid nodules: a review of methodology and test performance. Cancer Cytopathol. 124, 14–27 (2016).

    Article  PubMed  Google Scholar 

  38. Nikiforov, Y. E. et al. Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: a prospective analysis of 1056 FNA samples. J. Clin. Endocrinol. Metab. 96, 3390–3397 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Beaudenon–Huibregtse, S. et al. Centralized molecular testing for oncogenic gene mutations complements the local cytopathologic diagnosis of thyroid nodules. Thyroid 24, 1479–1487 (2014).

    Article  PubMed  CAS  Google Scholar 

  40. Labourier, E. et al. Molecular testing for miRNA, mRNA and DNA on fine needle aspiration improves the preoperative diagnosis of thyroid nodules with indeterminate cytology. J. Clin. Endocrinol. Metab. 100, 2743–2750 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fassina, A. S., Montesco, M. C., Ninfo, V., Denti, P. & Masarotto, G. Histological evaluation of thyroid carcinomas: reproducibility of the “WHO” classification. Tumori 79, 314–320 (1993).

    Article  CAS  PubMed  Google Scholar 

  42. Franc, B. et al. Interobserver and intraobserver reproducibility in the histopathology of follicular thyroid carcinoma. Hum. Pathol. 34, 1092–1100 (2003).

    Article  PubMed  Google Scholar 

  43. Ho, A. S. et al. Malignancy rate in thyroid nodules classified as Bethesda category III (AUS/FLUS). Thyroid 24, 832–839 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ferraz, C. et al. Detection of PAX8/PPARG and RET/PTC rearrangements is feasible in routine air-dried fine needle aspiration smears. Thyroid 22, 1025–1030 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Eszlinger, M. et al. Impact of molecular screening for point mutations and rearrangements in routine air-dried fine-needle aspiration samples of thyroid nodules. Thyroid 24, 305–313 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Eszlinger, M. et al. Molecular testing of thyroid fine needle aspirations (FNA) improves pre-surgical diagnosis and supports the histological identification of minimally invasive follicular thyroid carcinomas. Thyroid 25, 401–409 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Krane, J. F., Cibas, E. S., Alexander, E. K., Paschke, R. & Eszlinger, M. Molecular analysis of residual ThinPrep material from thyroid FNAs increases diagnostic sensitivity. Cancer Cytopathol. 123, 356–361 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Eszlinger, M. et al. Evaluation of a two-year routine application of molecular testing of thyroid fine needle aspirations (FNA) using a 7-gene-panel in a primary referral setting in Germany. Thyroid 27, 402–411 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Nikiforova, M. N., Wald, A. I., Roy, S., Durso, M. B. & Nikiforov, Y. E. Targeted next-generation sequencing panel (ThyroSeq) for detection of mutations in thyroid cancer. J. Clin. Endocrinol. Metab. 98, E1852–E1860 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tuttle, R. M. et al. Thyroid carcinoma, version 2.2014. J. Natl Compr. Canc. Netw. 12, 1671–1680 (2014).

    Article  PubMed  Google Scholar 

  51. Pagan, M. et al. The diagnostic application of RNA sequencing in patients with thyroid cancer: an analysis of 851 variants and 133 fusions in 524 genes. BMC Bioinformatics 17 (Suppl. 1), 6 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Lang, W., Georgii, A., Stauch, G. & Kienzle, E. The differentiation of atypical adenomas and encapsulated follicular carcinomas in the thyroid gland. Virchows Arch. A Pathol. Anat. Histol. 385, 125–141 (1980).

    Article  CAS  PubMed  Google Scholar 

  53. Cheung, L. et al. Detection of the PAX8–PPARγ fusion oncogene in both follicular thyroid carcinomas and adenomas. J. Clin. Endocrinol. Metab. 88, 354–357 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Marques, A. R. et al. Expression of PAX8–PPARγ1 rearrangements in both follicular thyroid carcinomas and adenomas. J. Clin. Endocrinol. Metab. 87, 3947–3952 (2002).

    CAS  PubMed  Google Scholar 

  55. Nikiforova, M. N., Biddinger, P. W., Caudill, C. M., Kroll, T. G. & Nikiforov, Y. E. PAX8–PPARγ rearrangement in thyroid tumors: RT-PCR and immunohistochemical analyses. Am. J. Surg. Pathol. 26, 1016–1023 (2002).

    Article  PubMed  Google Scholar 

  56. Armstrong, M. J. et al. PAX8/PPAR γ rearrangement in thyroid nodules predicts follicular-pattern carcinomas, in particular the encapsulated follicular variant of papillary carcinoma. Thyroid 24, 1369–1374 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Basolo, F. et al. N-Ras mutation in poorly differentiated thyroid carcinomas: correlation with bone metastases and inverse correlation to thyroglobulin expression. Thyroid 10, 19–23 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Fukahori, M. et al. The associations between RAS mutations and clinical characteristics in follicular thyroid tumors: new insights from a single center and a large patient cohort. Thyroid 22, 683–689 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Garcia-Rostan, G. et al. ras mutations are associated with aggressive tumor phenotypes and poor prognosis in thyroid cancer. J. Clin. Oncol. 21, 3226–3235 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Zhu, Z., Gandhi, M., Nikiforova, M. N., Fischer, A. H. & Nikiforov, Y. E. Molecular profile and clinical-pathologic features of the follicular variant of papillary thyroid carcinoma. An unusually high prevalence of ras mutations. Am. J. Clin. Pathol. 120, 71–77 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Fagin, J. A. Minireview: branded from the start — distinct oncogenic initiating events may determine tumor fate in the thyroid. Mol. Endocrinol. 16, 903–911 (2002).

    CAS  PubMed  Google Scholar 

  62. Saavedra, H. I. et al. The RAS oncogene induces genomic instability in thyroid PCCL3 cells via the MAPK pathway. Oncogene 19, 3948–3954 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Kim, C. S. & Zhu, X. Lessons from mouse models of thyroid cancer. Thyroid 19, 1317–1331 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rochefort, P. et al. Thyroid pathologies in transgenic mice expressing a human activated Ras gene driven by a thyroglobulin promoter. Oncogene 12, 111–118 (1996).

    CAS  PubMed  Google Scholar 

  65. Sapio, M. R. et al. High growth rate of benign thyroid nodules bearing RET/PTC rearrangements. J. Clin. Endocrinol. Metab. 96, E916–E919 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Lu, J. et al. MicroRNA expression profiles classify human cancers. Nature 435, 834–838 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Rossing, M. Classification of follicular cell-derived thyroid cancer by global RNA profiling. J. Mol. Endocrinol. 50, R39–R51 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Eszlinger, M. & Paschke, R. Molecular fine-needle aspiration biopsy diagnosis of thyroid nodules by tumor specific mutations and gene expression patterns. Mol. Cell. Endocrinol. 322, 29–37 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Lodewijk, L. et al. The value of miRNA in diagnosing thyroid cancer: a systematic review. Cancer Biomark. 11, 229–238 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Stokowy, T. et al. miRNAs with the potential to distinguish follicular thyroid carcinomas from benign follicular thyroid tumors — results of a meta-analysis. Horm. Metab. Res. 46, 171–180 (2013).

    Google Scholar 

  71. Stokowy, T. et al. A two miRNA classifier differentiates follicular thyroid carcinomas from follicular thyroid adenomas. Mol. Cell. Endocrinol. 399, 43–49 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Stokowy, T. et al. Two-miRNA-classifiers differentiate mutation-negative follicular thyroid carcinomas and follicular thyroid adenomas in fine needle aspirations with high specificity. Endocrine 54, 440–447 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Nikiforov, Y. E. et al. Nomenclature revision for encapsulated follicular variant of papillary thyroid carcinoma: a paradigm shift to reduce overtreatment of indolent tumors. JAMA Oncol. 2, 1023–1029 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Faquin, W. C. et al. Impact of reclassifying noninvasive follicular variant of papillary thyroid carcinoma on the risk of malignancy in the Bethesda System for Reporting Thyroid Cytopathology. Cancer Cytopathol. 124, 181–187 (2016).

    Article  PubMed  Google Scholar 

  75. Strickland, K. C. et al. The impact of noninvasive follicular variant of papillary thyroid carcinoma on rates of malignancy for fine-needle aspiration diagnostic categories. Thyroid 25, 987–992 (2015).

    Article  PubMed  Google Scholar 

  76. Baloch, Z. W. et al. Noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP): a changing paradigm in thyroid surgical pathology and implications for thyroid cytopathology. Cancer Cytopathol. 124, 616–620 (2016).

    Article  PubMed  Google Scholar 

  77. Howitt, B. E., Jia, Y., Sholl, L. M. & Barletta, J. A. Molecular alterations in partially-encapsulated or well-circumscribed follicular variant of papillary thyroid carcinoma. Thyroid 23, 1256–1262 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Rivera, M. et al. Molecular genotyping of papillary thyroid carcinoma follicular variant according to its histological subtypes (encapsulated vs infiltrative) reveals distinct BRAF and RAS mutation patterns. Mod. Pathol. 23, 1191–1200 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bryson, P. C. et al. Immunohistochemical distinction of follicular thyroid adenomas and follicular carcinomas. Arch. Otolaryngol. Head Neck Surg. 134, 581–586 (2008).

    Article  PubMed  Google Scholar 

  80. Maneck, M. et al. Complications after thyroid gland operations in Germany: a routine data analysis of 66, 902 AOK patients. Chirurg 88, 50–57 (in German) (2016).

    Article  Google Scholar 

  81. Labourier, E. Utility and cost-effectiveness of molecular testing in thyroid nodules with indeterminate cytology. Clin. Endocrinol. (Oxf.) 85, 624–631 (2016).

    Article  Google Scholar 

  82. Lee, L., How, J., Tabah, R. J. & Mitmaker, E. J. Cost-effectiveness of molecular testing for thyroid nodules with atypia of undetermined significance cytology. J. Clin. Endocrinol. Metab. 99, 2674–2682 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Lubitz, C. C. Editorial: is molecular testing cost effective? It depends. Surgery 159, 130–131 (2016).

    Article  PubMed  Google Scholar 

  84. Wu, J. X. et al. Effect of malignancy rates on cost-effectiveness of routine gene expression classifier testing for indeterminate thyroid nodules. Surgery 159, 118–126 (2016).

    Article  PubMed  Google Scholar 

  85. Yip, L. et al. Cost impact of molecular testing for indeterminate thyroid nodule fine-needle aspiration biopsies. J. Clin. Endocrinol. Metab. 97, 1905–1912 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yip, L. & Ferris, R. L. Clinical application of molecular testing of fine-needle aspiration specimens in thyroid nodules. Otolaryngol. Clin. North Am. 47, 557–571 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

R.P., M.E. and L.L. researched the data for the article. R.P. and M.E. wrote and revised the article. All authors made a substantial contribution to discussion of the content of the article.

Corresponding author

Correspondence to Ralf Paschke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eszlinger, M., Lau, L., Ghaznavi, S. et al. Molecular profiling of thyroid nodule fine-needle aspiration cytology. Nat Rev Endocrinol 13, 415–424 (2017). https://doi.org/10.1038/nrendo.2017.24

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2017.24

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing