Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Osteocalcin in the brain: from embryonic development to age-related decline in cognition

Key Points

  • Undercarboxylated osteocalcin regulates anxiety and cognition in adult mice

  • Osteocalcin is necessary and sufficient to correct age-related decline in cognitive function in mice

  • Mouse maternal osteocalcin contributes to brain development and the acquisition of cognitive function in the fetus starting at embryonic day (E) 14.5

  • Probable G protein-coupled receptor 158 (GPR158) regulates the role of osteocalcin in anxiety and cognition in the mouse brain

Abstract

A remarkable, unexpected aspect of the bone-derived hormone osteocalcin is that it is necessary for both brain development and brain function in the mouse, as its absence results in a profound deficit in spatial learning and memory and an exacerbation of anxiety-like behaviour. The regulation of cognitive function by osteocalcin, together with the fact that its circulating levels decrease in midlife compared with adolescence in all species tested, raised the prospect that osteocalcin might be an anti-geronic hormone that could prevent age-related cognitive decline. As presented in this Review, recent data indicate that this is indeed the case and that osteocalcin is necessary for the anti-geronic activity recently ascribed to the plasma of young wild-type mice. The diversity and amplitude of the functions of osteocalcin in the brain, during development and postnatally, had long called for the identification of its receptor in the brain, which was also recently achieved. This Review presents our current understanding of the biology of osteocalcin in the brain, highlighting the bony vertebrate specificity of the regulation of cognitive function and pointing toward where therapeutic opportunities might exist.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Osteocalcin functions in peripheral organs.
Figure 2: Undercarboxylated osteocalcin promotes spatial learning and memory and prevents anxiety-like behaviour.
Figure 3: Maternal undercarboxylated osteocalcin acts directly in the offspring to regulate embryonic brain development.
Figure 4: Osteocalcin is sufficient to improve cognition in aged mice.
Figure 5: Probable G protein-coupled receptor 158 mediates the functions of osteocalcin in the mouse brain.

Similar content being viewed by others

References

  1. Lee, N. K. et al. Endocrine regulation of energy metabolism by the skeleton. Cell 130, 456–469 (2007). This study is the first demonstration that osteocalcin acts as a hormone on pancreatic functions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mera, P. et al. Osteocalcin signaling in myofibers is necessary and sufficient for optimum adaptation to exercise. Cell Metab. 23, 1078–1092 (2016). This study establishes that osteocalcin is necessary and sufficient to promote exercise capacity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Das, S. K., Sharma, N. K. & Elbein, S. C. Analysis of osteocalcin as a candidate gene for type 2 diabetes (T2D) and intermediate traits in Caucasians and African Americans. Dis. Markers 28, 281–286 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  4. De Toni, L. et al. Polymorphism rs2274911 of GPRC6A as a novel risk factor for testis failure. J. Clin. Endocrinol. Metab. 101, 953–961 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. De Toni, L. et al. Osteocalcin and sex hormone binding globulin compete on a specific binding site of GPRC6A. Endocrinology 157, 4473–4486 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Di Nisio, A. et al. The rs2274911 polymorphism in GPRC6A gene is associated with insulin resistance in normal weight and obese subjects. Clin. Endocrinol. 86, 185–191 (2017).

    Article  CAS  Google Scholar 

  7. Gao, J. et al. The PLC/PKC/Ras/MEK/Kv channel pathway is involved in uncarboxylated osteocalcin-regulated insulin secretion in rats. Peptides 86, 72–79 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Gao, J. et al. Inhibition of voltage-gated potassium channels mediates uncarboxylated osteocalcin-regulated insulin secretion in rat pancreatic beta cells. Eur. J. Pharmacol. 777, 41–48 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Korostishevsky, M. et al. Significant association between body composition phenotypes and the osteocalcin genomic region in normative human population. Bone 51, 688–694 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kover, K. et al. Osteocalcin protects pancreatic beta cell function and survival under high glucose conditions. Biochem. Biophys. Res. Commun. 462, 21–26 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Kunutsor, S. K., Apekey, T. A. & Laukkanen, J. A. Association of serum total osteocalcin with type 2 diabetes and intermediate metabolic phenotypes: systematic review and meta-analysis of observational evidence. Eur. J. Epidemiol. 30, 599–614 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Sabek, O. M. et al. Osteocalcin effect on human beta-cells mass and function. Endocrinology 156, 3137–3146 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Wei, J., Hanna, T., Suda, N., Karsenty, G. & Ducy, P. Osteocalcin promotes beta-cell proliferation during development and adulthood through Gprc6a. Diabetes 63, 1021–1031 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Karsenty, G. & Olson, E. N. Bone and muscle endocrine functions: unexpected paradigms of inter-organ communication. Cell 164, 1248–1256 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Khrimian, L. et al. Gpr158 mediates osteocalcin's regulation of cognition. J. Exp. Med. 214, 2859–2873 (2017). This paper provides genetic, biochemical and molecular evidence that GPR158 is the receptor for osteocalcin in the brain and that it mediates the ability of osteocalcin to reverse age-related cognitive decline.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ducy, P. et al. Increased bone formation in osteocalcin-deficient mice. Nature 382, 448–452 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Ferron, M. et al. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142, 296–308 (2010). This paper demonstrates that uncarboxylated and undercarboxylated osteocalcin are the active forms of the hormone.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Oury, F. et al. Endocrine regulation of male fertility by the skeleton. Cell 144, 796–809 (2011). This study shows that osteocalcin regulates male fertility and importantly identifies its first receptor, GPRC6A.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chamouni, A. & Oury, F. Reciprocal interaction between bone and gonads. Arch. Biochem. Biophys. 561, 147–153 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Oury, F. et al. Osteocalcin regulates murine and human fertility through a pancreas-bone-testis axis. J. Clin. Invest. 123, 2421–2433 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yoshikawa, Y. et al. Genetic evidence points to an osteocalcin-independent influence of osteoblasts on energy metabolism. J. Bone Miner. Res. 26, 2012–2025 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Frye, C. A., Edinger, K. & Sumida, K. Androgen administration to aged male mice increases anti-anxiety behavior and enhances cognitive performance. Neuropsychopharmacology 33, 1049–1061 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Aikey, J. L., Nyby, J. G., Anmuth, D. M. & James, P. J. Testosterone rapidly reduces anxiety in male house mice (Mus musculus). Horm. Behav. 42, 448–460 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Oury, F. et al. Maternal and offspring pools of osteocalcin influence brain development and functions. Cell 155, 228–241 (2013). This paper provides the first in vivo evidence that osteocalcin is necessary for brain development and cognition and that it is necessary to prevent anxiety.

    Article  CAS  PubMed  Google Scholar 

  25. Pi, M. et al. GPRC6A null mice exhibit osteopenia, feminization and metabolic syndrome. PLoS ONE 3, e3858 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Pi, M., Wu, Y. & Quarles, L. D. GPRC6A mediates responses to osteocalcin in beta-cells in vitro and pancreas in vivo. J. Bone Miner. Res. 26, 1680–1683 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Nakazawa, K. et al. Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science 297, 211–218 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Valenstein, E. et al. Retrosplenial amnesia. Brain 110, 1631–1646 (1987).

    Article  PubMed  Google Scholar 

  29. To¨rk, I., Tracey, D. J., Paxinos, G. & Stone, J. Neurotransmitters in the Human Brain (Plenum Press, 1995).

    Google Scholar 

  30. Ende, G. Proton magnetic resonance spectroscopy: relevance of glutamate and GABA to neuropsychology. Neuropsychol. Rev. 25, 315–325 (2015).

    Article  PubMed  Google Scholar 

  31. Daubner, S. C., Le, T. & Wang, S. Tyrosine hydroxylase and regulation of dopamine synthesis. Arch. Biochem. Biophys. 508, 1–12 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Wang, S., Lasagna, M., Daubner, S. C., Reinhart, G. D. & Fitzpatrick, P. F. Fluorescence spectroscopy as a probe of the effect of phosphorylation at serine 40 of tyrosine hydroxylase on the conformation of its regulatory domain. Biochemistry 50, 2364–2370 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Walther, D. J. et al. Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 299, 76 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Tochitani, S. & Kondo, S. Immunoreactivity for GABA, GAD65, GAD67 and bestrophin-1 in the meninges and the choroid plexus: implications for non-neuronal sources for GABA in the developing mouse brain. PLoS ONE 8, e56901 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Beckstead, R. M., Domesick, V. B. & Nauta, W. J. Efferent connections of the substantia nigra and ventral tegmental area in the rat. Brain Res. 175, 191–217 (1979).

    Article  CAS  PubMed  Google Scholar 

  36. Lira, A. et al. Altered depression-related behaviors and functional changes in the dorsal raphe nucleus of serotonin transporter-deficient mice. Biol. Psychiatry 54, 960–971 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Ducy, P., Zhang, R., Geoffroy, V., Ridall, A. L. & Karsenty, G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89, 747–754 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Wei, J. et al. Glucose uptake and Runx2 synergize to orchestrate osteoblast differentiation and bone formation. Cell 161, 1576–1591 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tole, S., Christian, C. & Grove, E. A. Early specification and autonomous development of cortical fields in the mouse hippocampus. Development 124, 4959–4970 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Bradburn, S. et al. Association between osteocalcin and cognitive performance in healthy older adults. Age Ageing 45, 844–849 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Puig, J. et al. Lower serum osteocalcin concentrations are associated with brain microstructural changes and worse cognitive performance. Clin. Endocrinol. 84, 756–763 (2016).

    Article  CAS  Google Scholar 

  42. Barker, D. J. Maternal nutrition, fetal nutrition, and disease in later life. Nutrition 13, 807–813 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Hales, C. N. & Barker, D. J. The thrifty phenotype hypothesis. Br. Med. Bull. 60, 5–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Broad, K. D. & Keverne, E. B. Placental protection of the fetal brain during short-term food deprivation. Proc. Natl Acad. Sci. USA 108, 15237–15241 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lawlor, D. A., Relton, C., Sattar, N. & Nelson, S. M. Maternal adiposity — a determinant of perinatal and offspring outcomes? Nat. Rev. Endocrinol. 8, 679–688 (2012).

    Article  PubMed  Google Scholar 

  46. Van den Bergh, B. R., Mulder, E. J., Mennes, M. & Glover, V. Antenatal maternal anxiety and stress and the neurobehavioural development of the fetus and child: links and possible mechanisms. A review. Neurosci. Biobehav. Rev. 29, 237–258 (2005).

    Article  PubMed  Google Scholar 

  47. Wadhwa, P. D., Sandman, C. A. & Garite, T. J. The neurobiology of stress in human pregnancy: implications for prematurity and development of the fetal central nervous system. Prog. Brain Res. 133, 131–142 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Black, M. H., Sacks, D. A., Xiang, A. H. & Lawrence, J. M. The relative contribution of prepregnancy overweight and obesity, gestational weight gain, and IADPSG-defined gestational diabetes mellitus to fetal overgrowth. Diabetes Care 36, 56–62 (2013).

    Article  PubMed  Google Scholar 

  49. Modder, U. I. et al. Relation of age, gender, and bone mass to circulating sclerostin levels in women and men. J. Bone Miner. Res. 26, 373–379 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Ding, Q., Vaynman, S., Souda, P., Whitelegge, J. P. & Gomez-Pinilla, F. Exercise affects energy metabolism and neural plasticity-related proteins in the hippocampus as revealed by proteomic analysis. Eur. J. Neurosci. 24, 1265–1276 (2006).

    Article  PubMed  Google Scholar 

  51. Levinger, I. et al. The effect of acute exercise on undercarboxylated osteocalcin in obese men. Osteoporos. Int. 22, 1621–1626 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Schwab, P. & Scalapino, K. Exercise for bone health: rationale and prescription. Curr. Opin. Rheumatol. 23, 137–141 (2011).

    Article  PubMed  Google Scholar 

  53. van Praag, H., Shubert, T., Zhao, C. & Gage, F. H. Exercise enhances learning and hippocampal neurogenesis in aged mice. J. Neurosci. 25, 8680–8685 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hopkins, M. E., Nitecki, R. & Bucci, D. J. Physical exercise during adolescence versus adulthood: differential effects on object recognition memory and brain-derived neurotrophic factor levels. Neuroscience 194, 84–94 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Scahill, R. I. et al. A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging. Arch. Neurol. 60, 989–994 (2003).

    Article  PubMed  Google Scholar 

  56. Dall, T. M. et al. An aging population and growing disease burden will require a large and specialized health care workforce by 2025. Health Aff. 32, 2013–2020 (2013).

    Article  Google Scholar 

  57. Grady, P. A. Advancing the health of our aging population: a lead role for nursing science. Nurs. Outlook 59, 207–209 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Finch, C. E. Evolution in health and medicine Sackler colloquium: evolution of the human lifespan and diseases of aging: roles of infection, inflammation, and nutrition. Proc. Natl Acad. Sci. USA 107 (Suppl. 1), 1718–1724 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Kramer, A. F. et al. Ageing, fitness and neurocognitive function. Nature 400, 418–419 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. La Rue, A. Memory loss and aging. Distinguishing dementia from benign senescent forgetfulness and depressive pseudodementia. Psychiatr. Clin. North Am. 5, 89–103 (1982).

    Article  CAS  PubMed  Google Scholar 

  61. Small, S. A. Age-related memory decline: current concepts and future directions. Arch. Neurol. 58, 360–364 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Pavlopoulos, E. et al. Molecular mechanism for age-related memory loss: the histone-binding protein RbAp48. Sci. Transl Med. 5, 200ra115 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Chiappe, A. et al. Influence of age and sex in serum osteocalcin levels in thoroughbred horses. Arch. Physiol. Biochem. 107, 50–54 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Price, P. A. & Nishimoto, S. K. Radioimmunoassay for the vitamin K-dependent protein of bone and its discovery in plasma. Proc. Natl Acad. Sci. USA 77, 2234–2238 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Villeda, S. A. et al. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat. Med. 20, 659–663 (2014). This landmark study establishes that age-related cognitive decline can be reversed by treating aged mice with young blood.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hall, J., Thomas, K. L. & Everitt, B. J. Rapid and selective induction of BDNF expression in the hippocampus during contextual learning. Nat. Neurosci. 3, 533–535 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Yamada, K. & Nabeshima, T. Brain-derived neurotrophic factor/TrkB signaling in memory processes. J. Pharmacol. Sci. 91, 267–270 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Dean, C. et al. Synaptotagmin-IV modulates synaptic function and long-term potentiation by regulating BDNF release. Nat. Neurosci. 12, 767–776 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gao, J. et al. A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 466, 1105–1109 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zala, D. et al. Vesicular glycolysis provides on-board energy for fast axonal transport. Cell 152, 479–491 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Chun, L., Zhang, W. H. & Liu, J. F. Structure and ligand recognition of class C GPCRs. Acta Pharmacol. Sin. 33, 312–323 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rondard, P., Goudet, C., Kniazeff, J., Pin, J. P. & Prezeau, L. The complexity of their activation mechanism opens new possibilities for the modulation of mGlu and GABAB class C G protein-coupled receptors. Neuropharmacology 60, 82–92 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Brauner-Osborne, H., Wellendorph, P. & Jensen, A. A. Structure, pharmacology and therapeutic prospects of family C G-protein coupled receptors. Curr. Drug Targets 8, 169–184 (2007).

    Article  PubMed  Google Scholar 

  74. Luo, J., Liu, Z., Liu, J. & Eugene, C. Y. Distribution pattern of GPRC6A mRNA in mouse tissue by in situ hybridization. Zhong Nan Da Xue Xue Bao Yi Xue Ban 35, 1–10 (2010).

    PubMed  Google Scholar 

  75. Wellendorph, P. & Brauner-Osborne, H. Molecular cloning, expression, and sequence analysis of GPRC6A, a novel family C G-protein-coupled receptor. Gene 335, 37–46 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Dragunow, M. & Robertson, H. A. Kindling stimulation induces c-fos protein(s) in granule cells of the rat dentate gyrus. Nature 329, 441–442 (1987).

    Article  CAS  PubMed  Google Scholar 

  77. Sagar, S. M., Sharp, F. R. & Curran, T. Expression of c-fos protein in brain: metabolic mapping at the cellular level. Science 240, 1328–1331 (1988).

    Article  CAS  PubMed  Google Scholar 

  78. Burgess, G. M. et al. The second messenger linking receptor activation to internal Ca release in liver. Nature 309, 63–66 (1984).

    Article  CAS  PubMed  Google Scholar 

  79. Nishizuka, Y. Studies and perspectives of protein kinase C. Science 233, 305–312 (1986).

    Article  CAS  PubMed  Google Scholar 

  80. Kandel, E. R. The molecular biology of memory storage: a dialogue between genes and synapses. Science 294, 1030–1038 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Wigstrom, H. & Gustafsson, B. On long-lasting potentiation in the hippocampus: a proposed mechanism for its dependence on coincident pre- and postsynaptic activity. Acta Physiol. Scand. 123, 519–522 (1985).

    Article  CAS  PubMed  Google Scholar 

  82. Barco, A., Bailey, C. H. & Kandel, E. R. Common molecular mechanisms in explicit and implicit memory. J. Neurochem. 97, 1520–1533 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Hommel, J. D., Sears, R. M., Georgescu, D., Simmons, D. L. & DiLeone, R. J. Local gene knockdown in the brain using viral-mediated RNA interference. Nat. Med. 9, 1539–1544 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Castellano, J. M. et al. Human umbilical cord plasma proteins revitalize hippocampal function in aged mice. Nature 544, 488–492 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by 2P01 AG032959-06A1 and the Columbia Aging Center (G.K.), a 5T32DK007328-38 Endocrinology Training Grant (L.K.) from the NIH, Fondation pour la Recherche Medicale grant AJE20130928594, the Human Frontier Scientific Program–Grant ATIP-AVENIR INSERM - R14080KS - RSE15007KSA Program–INSERM, Grant AGEMED-INSERM (F.O.) and the Philippe Foundation (A.O.).

Author information

Authors and Affiliations

Authors

Contributions

A.O., L.K., G.K. and F.O. researched data for the article, contributed to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Gerard Karsenty or Franck Oury.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obri, A., Khrimian, L., Karsenty, G. et al. Osteocalcin in the brain: from embryonic development to age-related decline in cognition. Nat Rev Endocrinol 14, 174–182 (2018). https://doi.org/10.1038/nrendo.2017.181

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2017.181

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research